Le Séminaire de Combinatoire Enumérative et Analytique, rebaptisé Séminaire Philippe Flajolet le 7 avril 2011, a pour objectif de couvrir un large spectre de recherche en combinatoire, et est ouvert à tous les chercheurs et étudiants intéressés.

Il se tient un jeudi tous les deux mois à l'IHP, plus de détails ici.

Traditionnellement, après chaque exposé, un volontaire se charge de rédiger une petite synthèse des résultats présentés. Voir la page des archives.

Les séances de l'année 2016-2017 sont fixées au: 29 septembre 2016, 1er decembre 2016, 2 février 2017, 30 mars 2017, 1er juin 2017.

Prochaine séance : 1 juin 2017, Amphi Hermite, IHP
  • 10h30 - 11h30: Irène Marcovici (Université de Lorraine, Nancy),
    Ergodicité de certains automates cellulaires bruités,
    .

Quand on perturbe un automate cellulaire par un bruit aléatoire (probabilité positive d'erreur, indépendamment pour différentes cellules), on s'attend généralement à ce que le système soit ergodique, c'est-à-dire à ce qu'il oublie progressivement la configuration initiale au cours de son évolution. Lorsque le bruit est suffisamment élevé, des méthodes classiques de couplage permettent de le montrer. Mais lorsque le bruit est faible, l'ergodicité est souvent difficile à prouver. Je présenterai différentes extensions de la méthode de couplage lorsque l'automate cellulaire a des propriétés spécifiques (nilpotence, permutivité...).

  • 13h45 - 14h45: Elie de Panafieu (Bell Labs France, Nokia),
    Combinatoire analytique des graphes connexes,
    .

Nous présentons le calcul, basé sur la combinatoire analytique, de l'asymptotique des graphes connexes en fonction de leur nombre de sommets et d'arêtes. Il s'agit à la fois d'un problème naturel pour de nombreuses applications où les graphes connexes apparaissent, mais aussi d'un défi motivant l'élaboration de nouveaux outils d'énumération des graphes. Pour parvenir au résultat, nous aborderons l'énumération des graphes à degrés contraints, et des graphes où une famille de sous-graphes est interdite. Une partie de ces travaux a été présentée à FPSAC'16.

  • 14h45 - 15h45: Jean-Christophe Aval (Labri, Bordeaux),
    Fonctions de parking,
    .

Les fonctions de parking sont des objets classiques en combinatoire, énumérative ou algébrique. On peut les définir comme des étiquetages de chemins de Duck, qui sont des chemins avec des pas $(1,0)$ et $(0,1)$, usuellement dessinés dans le carré $n \times n$, et contraints à être au-dessus de la diagonale. Il est bien connu que leur nombre est $(n + 1)^{n-1}$. Le groupe symétrique $S_n$ agit sur les fonctions de parking par permutation des étiquettes. Cette action est élégamment traduite en termes de fonctions symétriques via la caractéristique de Frobenius. Dans cet exposé, nous étudierons certaines généralisations : pour les fonctions de parking incluses dans un rectangle $m\times n$, pour les fonctions de parking de Schroder, analogues du cas précédent pour les chemins de Schroder, pour lesquels un troisième type de pas $(1,1)$ est permis. Enfin, nous verrons une notion de fonctions de parking {\em entrelacées}, relatives à une action de $S_n \times S_m$.
C'est un travail en commun avec F. Bergeron (Montréal).

  • 16h00: Pause café