Blossoming trees and planar maps

Marie Albenque (CNRS, LIX, École Polytechnique)

joint work with Louigi Addario-Berry (McGill University Montréal) and Dominique Poulalhon (LIAFA)

Séminaire Philippe Flajolet, 6th February 2014
Planar Maps – Definition.

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.
Planar Maps – Definition.

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map = planar graph + cyclic order of neighbours around each vertex.
Planar Maps – Definition.

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

\[
\text{planar map} = \text{planar graph} + \text{cyclic order of neigbours around each vertex.}
\]

\[
\text{face} = \text{connected component of the sphere when the edge are removed}
\]
Planar Maps – Definition.

A planar map is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

Planar map = planar graph + cyclic order of neighbours around each vertex.

Face = connected component of the sphere when the edge are removed.

Plane maps are rooted: by orienting an edge.
Planar Maps – Definition.

A **planar map** is the proper embedding of a finite connected graph in the 2-dimensional sphere seen up to continuous deformations.

planar map = planar graph + cyclic order of neighbours around each vertex.

face = connected component of the sphere when the edge are removed

Plane maps are **rooted**: by orienting an edge.

Distance between two vertices = number of edges between them.

Planar map = **Metric space**
Which maps?

- **Quadrangulations**
- **4-regular maps**
- **Simple triangulations** (no loops nor multiple edges)
Why maps?

What the motivation for studying maps instead of graphs?

Because maps have more structure than graphs, they are actually simpler to study.
Why maps?

What the motivation for studying maps instead of graphs?

Because maps have more structure than graphs, they are actually simpler to study.

Euler Formula: \(\# \text{vertices} + \# \text{faces} = 2 + \# \text{edges} \)

A quadrangulation with \(n \) faces has \(2n \) edges and \(n + 2 \) vertices.
Why maps?

What is the motivation for studying maps instead of graphs?

Because maps have more structure than graphs, they are actually simpler to study.

Euler Formula: \(\# \text{ vertices} + \# \text{ faces} = 2 + \# \text{ edges} \)

A quadrangulation with \(n \) faces has \(2n \) edges and \(n + 2 \) vertices.

Structure allows recursive decomposition \(\Rightarrow \) enumeration [Tutte, ’60s].

Two possibilities:
- The root edge is an isthmus
- The root edge is not an isthmus

\[q_n = \text{number of quadrangulations with } n \text{ faces} = \frac{2}{n+2} \cdot \frac{3^n}{n+1} \binom{2n}{n} \]
Random maps

$\mathcal{Q}_n = \{\text{Quadrangulations of size } n\}$

$= n + 2$ vertices, n faces, $2n$ edges

$\mathcal{Q}_n = \text{Random element of } \mathcal{Q}_n$

$(V(\mathcal{Q}_n), d_{gr})$ is a random compact metric space
Random maps

\[Q_n = \{ \text{Quadrangulations of size } n \} \]
\[= n + 2 \text{ vertices, } n \text{ faces, } 2n \text{ edges} \]

\[Q_n = \text{Random element of } Q_n \]

\((V(Q_n), d_{gr})\) is a random compact metric space

Simulations by N.Curien
Random maps

What is the behavior of Q_n when n goes to infinity? typical distances? convergence towards a continuous object?
Random maps

What is the behavior of Q_n when n goes to infinity?

typical distances?

convergence towards a continuous object?

well understood:

• Schaeffer’s bijection : quadrangulations \leftrightarrow labeled trees.
 Labels in the trees = distances in the map.

• distance between two random points $\sim n^{1/4} +$ law of the distance
 [Chassaing-Schaeffer ’04]

• convergence of normalized quadrangulations $+$ limiting object: Brownian map.
 [Marckert-Mokkadem ’06], [Le Gall ’07], [Miermont ’08],
 [Miermont 13], [Le Gall 13]
Random maps

What is the behavior of Q_n when n goes to infinity? typical distances? convergence towards a continuous object?

+ what if quadrangulations are replaced by triangulations, simple triangulations, 4-regular maps?
Random maps

What is the behavior of Q_n when n goes to infinity? typical distances? convergence towards a continuous object?

+ what if quadrangulations are replaced by triangulations, simple triangulations, 4-regular maps?

Idea: The Brownian map is a universal limiting object. All "reasonable models" of maps (properly rescaled) are expected to converge towards it.

Problem: These results rely on nice bijections between maps and labeled trees [Schaeffer '98], [Bouttier-Di Francesco-Guitter '04].
Which maps?

Quadrangulations
Number of quadrangulations with \(n \) faces:

\[
q_n = \frac{2 \cdot 3^n}{(n + 2)(n + 1)} \binom{2n}{n}
\]

[Cori-Vauquelin '81], [Schaeffer '98]

4-regular maps

Simple triangulations (no loops nor multiple edges)
Which maps?

Quadrangulations
Number of quadrangulations with n faces:
\[
q_n = \frac{2 \cdot 3^n}{(n + 2)(n + 1)} \binom{2n}{n}
\]
[Tutte, 60], [Cori-Vauquelin '81], [Schaeffer '98]

4-regular maps
Number of rooted 4-regular maps with n vertices:
\[
R_n = \frac{2 \cdot 3^n}{n + 1} \binom{2n}{n}
\]
[Tutte, 62], [Schaeffer '97]

Simple triangulations (no loops nor multiple edges)
Which maps?

Quadrangulations

Number of quadrangulations with n faces:

$$q_n = \frac{2 \cdot 3^n}{(n + 2)(n + 1)} \binom{2n}{n}$$

[Tutte, 60], [Cori-Vauquelin '81], [Schaeffer '98]

4-regular maps

Number of rooted 4-regular maps with n vertices:

$$R_n = \frac{2 \cdot 3^n}{n + 1} \binom{2n}{n}$$

[Tutte, 62], [Schaeffer '97]

Simple triangulations (no loops nor multiple edges)

Number of simple triangulations with $n + 2$ vertices:

$$\Delta_n = \frac{2 \cdot (4n - 3)!}{n!(3n - 1)!}$$

[Tutte, 62], [Poulalhon-Schaeffer '05]
History: what questions about maps?

- **Enumerate them**: a lot of different techniques

 - Recursive decomposition: [Tutte, '60]
 - Matrix integrals: [t’Hooft, '74], [Brézin, Itzykson, Parisi and Zuber ’78]
 - Representation of the symmetric group: [Goulden and Jackson ’87].

 - Bijective approach with labeled trees: [Cori-Vauquelin ’81], [Schaeffer ’98], [Bouttier, Di Francesco and Guitter ’04], [Bernardi and Fusy], ...
 - Bijective approach with blossoming trees: [Schaeffer ’98], [Schaeffer and Bousquet-Mélou ’00], [Poulalhon and Schaeffer ’05], [Fusy, Poulalhon and Schaeffer ’06], [Bernardi and Fusy]
History: what questions about maps?

- **Enumerate them**: a lot of different techniques
 - Recursive decomposition: [Tutte, ’60]
 - Matrix integrals: [t’Hooft, ’74], [Brézin, Itzykson, Parisi and Zuber ’78]
 - Representation of the symmetric group: [Goulden and Jackson ’87].
 - Bijective approach with labeled trees: [Cori-Vauquelin ’81], [Schaeffer ’98], [Bouttier, Di Francesco and Guitter ’04], [Bernardi and Fusy], ...
 - Bijective approach with blossoming trees: [Schaeffer ’98], [Schaeffer and Bousquet-Mélou ’00], [Poulalhon and Schaeffer ’05], [Fusy, Poulalhon and Schaeffer ’06], [Bernardi and Fusy]

- **Sample them** (efficiently)
 - Take a bijection between maps and trees, sample a tree (easy), you’re DONE.
History: what questions about maps?

- **Enumerate them**: a lot of different techniques
 Recursive decomposition: [Tutte, '60]
 Matrix integrals: [t'Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]
 Representation of the symmetric group: [Goulden and Jackson '87].
 Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ...
 Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

- **Sample them** (efficiently)
 Take a bijection between maps and trees, sample a tree (easy), you’re DONE.

- **Understand random ones**
 Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you’re DONE (maybe).
History: what questions about maps?

- **Enumerate them**: a lot of different techniques

 Recursive decomposition: [Tutte, '60]

 Matrix integrals: [t’Hooft, '74], [Brézin, Itzykson, Parisi and Zuber '78]

 Representation of the symmetric group: [Goulden and Jackson '87].

 Bijective approach with labeled trees: [Cori-Vauquelin '81], [Schaeffer '98], [Bouttier, Di Francesco and Guitter '04], [Bernardi and Fusy], ...

 Bijective approach with blossoming trees: [Schaeffer '98], [Schaeffer and Bousquet-Mélou '00], [Poulalhon and Schaeffer '05], [Fusy, Poulalhon and Schaeffer '06], [Bernardi and Fusy]

- **Sample them** (efficiently)

 Take a bijection between maps and trees, sample a tree (easy), you’re DONE.

- **Understand random ones**

 Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you’re DONE (maybe).
History: what questions about maps?

- **Enumerate them**: a lot of different techniques
 Recursive decomposition: [Tutte, '60]
 Matrix integrals: [t’Hooft, ’74], [Brézin, Itzykson, Parisi and Zuber ’78]
 Representation of the symmetric group: [Goulden and Jackson ’87].
 Bijective approach with labeled trees: [Cori-Vauquelin ’81], [Schaeffer ’98], [Bouttier, Di Francesco and Guitter ’04], [Bernardi and Fusy], ...
 Bijective approach with blossoming trees.

- **Sample them** (efficiently)
 Take a bijection between maps and trees, sample a tree (easy), you’re DONE.

- **Understand random ones**
 Take a bijection between maps and trees, study the trees (complicated but doable), relate the distances in the maps and in the trees (sometimes OK, sometimes not), work a lot, you’re DONE (maybe).
Today: what’s the plan?

What is a blossoming tree?

Can we unify the constructions involving blossoming trees?

Can we prove some convergence results to the Brownian map using blossoming trees? i.e. can we put ”distances” on trees?
Today: what’s the plan?

What is a blossoming tree? Wait a second

Can we unify the constructions involving blossoming trees?

Yes, cf also [Bernardi, Fusy]

Can we prove some convergence results to the Brownian map using blossoming trees?

i.e. can we put ”distances” on trees? Yes ... for some models
What is a blossoming tree?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:

\[\# \text{ closing stems} = \# \text{ opening stems} \]
What is a blossoming tree?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:

\[
\# \text{ closing stems} = \# \text{ opening stems}
\]
What is a blossoming tree?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:

\[
\# \text{ closing stems} = \# \text{ opening stems}
\]
What is a blossoming tree?

A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that:

\[\# \text{ closing stems} = \# \text{ opening stems} \]
What is a blossoming tree?

A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that:

\[
\# \text{ closing stems} = \# \text{ opening stems}
\]
What is a blossoming tree?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:

\[\# \text{ closing stems} = \# \text{ opening stems} \]

![Diagram of blossoming tree with opening and closing stems]
What is a blossoming tree?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:

\[# \text{ closing stems} = \# \text{ opening stems}#

What is a blossoming tree?

A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that:

\[\# \text{ closing stems} = \# \text{ opening stems} \]
What is a blossoming tree?

A **blossoming tree** is a plane tree where vertices can carry **opening stems** or **closing stems**, such that:

$$\# \text{ closing stems} = \# \text{ opening stems}$$

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.
What is a blossoming tree?

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the tree is rooted and its edges oriented towards the root + closure edges oriented naturally

⇒ Accessible orientation of the map without ccw cycles.
What is a blossoming tree?

A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the tree is rooted and its edges oriented towards the root + closure edges oriented naturally

⇒ Accessible orientation of the map without ccw cycles.
Can we transform a plane map into a blossoming tree?

Theorem: [Bernardi '07], [A., Poulalhon 14+]

If a plane map M has a marked vertex v is endowed with an orientation such that:

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,

then there exists a **unique** blossoming tree rooted at v whose closure is M endowed with the same orientation.
Can we transform a plane map into a blossoming tree?

Theorem: [Bernardi '07], [A., Poulalhon 14+]
If a plane map M has a marked vertex v is endowed with an orientation such that:

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,

then there exists a **unique** blossoming tree rooted at v whose closure is M endowed with the same orientation.
Can we transform a plane map into a blossoming tree?

Theorem: [Bernardi '07], [A., Poulalhon 14+]
If a plane map M has a marked vertex v is endowed with an orientation such that:

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,

then there exists a **unique** blossoming tree rooted at v whose closure is M endowed with the same orientation.
Can we transform a plane map into a blossoming tree?

Theorem: [Bernardi ’07], [A., Poulalhon 14-]

If a plane map M has a marked vertex v is endowed with an orientation such that:

- there exists a directed path from any vertex to v,
- there is no counterclockwise cycle,

then there exists a **unique** blossoming tree rooted at v whose closure is M endowed with the same orientation.

Proof by induction on the number of faces + identification of closure edges
Orientations

Orientation = orientation of the edges of the map.

To apply the construction: need to find **canonical orientations**
Orientations

Orientation = orientation of the edges of the map.

To apply the construction: need to find **canonical orientations**

4-regular maps

2 outgoing edges/vertex
2 ingoing edges/vertex
Orientations

Orientation = orientation of the edges of the map.

To apply the construction: need to find **canonical orientations**

- **4-regular maps**
 - 2 outgoing edges/vertex
 - 2 ingoing edges/vertex

A map is 4-regular iff it admits an orientation with indegree 2 and outdegree 2 for each vertex.
Orientations

Orientation = orientation of the edges of the map.

To apply the construction: need to find **canonical orientations**

4-regular maps
- 2 outgoing edges/vertex
- 2 ingoing edges/vertex

Simple triangulations
- 3 outgoing edges / non-root vertex
- 1 outgoing edge / root vertex
Orientations

Orientation = orientation of the edges of the map.

To apply the construction: need to find **canonical orientations**

4-regular maps

- 2 outgoing edges/vertex
- 2 ingoing edges/vertex

Simple triangulations

- 3 outgoing edges / non-root vertex
- 1 outgoing edge / root vertex

A triangulation is simple iff it admits an orientation with:
- Outdegree 3 for each non-root vertex
- Outdegree 1 for each vertex on the root face.
Orientations

4-regular maps

- 2 outgoing edges/vertex
- 2 ingoing edges/vertex

Simple triangulations

- 3 outgoing edges / non-root vertex
- 1 outgoing edge / root vertex

Many families admit a characterization via orientations
(description of the orientation = outdegree for each vertex is prescribed)
Orientations

4-regular maps

2 outgoing edges/vertex
2 ingoing edges/vertex

Simple triangulations

3 outgoing edges / non-root vertex
1 outgoing edge / root vertex

Theorem requires accessible orientation without ccw cycles:
Too much too ask?
Orientations

4-regular maps
2 outgoing edges/vertex
2 ingoing edges/vertex

Simple triangulations
3 outgoing edges / non-root vertex
1 outgoing edge / root vertex

Theorem requires accessible orientation without ccw cycles: NO!
Too much too ask?

Proposition: [Felsner ’04]
For a given map and orientation, there exists a unique orientation with the same outdegrees and without ccw cycles.
If there exists one accessible such orientation, all of them are accessible.
Summary

- Take a family of maps,

Maps with even degrees.
Summary

• Take a family of maps,
• Try to find a characterization of the family by an orientation,

Maps with even degrees.
Orientations with same out/in degrees
Summary

- Take a family of maps,
- Try to find a characterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees
Summary

- Take a family of maps,
- Try to find a characterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees
Summary

• Take a family of maps,
• Try to find a characterization of the family by an orientation,
• Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees
Summary

- Take a family of maps,
- Try to find a characterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees
Summary

- Take a family of maps,
- Try to find a characterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees
Summary

• Take a family of maps,
• Try to find a characterization of the family by an orientation,
• Consider the unique orientation without counterclockwise cycles,

Maps with even degrees.
Orientations with same out/in degrees.
Summary

• Take a family of maps,
• Try to find a characterization of the family by an orientation,
• Consider the unique orientation without counterclockwise cycles,
• Apply the bijection,

Maps with even degrees.
Orientations with same out/in degrees
Summary

- Take a family of maps,
- Try to find a characterization of the family by an orientation,
- Consider the unique orientation without counterclockwise cycles,
- Apply the bijection,
- Study the family of blossoming trees.
Distances in blossoming trees: simple triangulations

Simple Triangulation:
- no multiple edges
- no loops

Euler Formula: \(v + f = 2 + e \)

Triangulation: \(2e = 3f \)

\(\mathcal{M}_n = \{ \text{Simple triangulations of size } n \} \)
= \(n + 2 \) vertices, \(2n \) faces, \(3n \) edges

\(M_n = \text{Random element of } \mathcal{M}_n \)

What is the behavior of \(M_n \) when \(n \) goes to infinity?
Typical distances? Scaling limit of \(M_n \)?
From simple triangulations to blossoming trees

Simple triangulation endowed with its unique orientation such that:
- no counterclockwise cycle
- $\text{out}(v) = 3$ for v an inner vertex
- $\text{out}(v) = 1$ for v an outer vertex
Simple triangulation endowed with its unique orientation such that:
- no counterclockwise cycle
- out$(v) = 3$ for v an inner vertex
- out$(v) = 1$ for v an outer vertex
From simple triangulations to blossoming trees

Simple triangulation endowed with its unique orientation such that:

- no counterclockwise cycle
- \(\text{out}(v) = 3\) for \(v\) an inner vertex
- \(\text{out}(v) = 1\) for \(v\) an outer vertex
From simple triangulations to blossoming trees

Simple triangulation endowed with its unique orientation such that:
- no counterclockwise cycle
- $\text{out}(v) = 3$ for v an inner vertex
- $\text{out}(v) = 1$ for v an outer vertex
The closure operation is a bijection between balanced 2-blossoming trees and simple triangulations.

Theorem: [Poulalhon, Schaeffer ’05]

The closure operation is a bijection between balanced 2-blossoming trees and simple triangulations.
Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.
Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.
Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.
Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.
Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:

- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.
Same bijection with corner labels

- Start with a planted 2-blossoming tree.
- Give the root corner label 2.

In contour order, apply the following rules:
- Non-leaf to leaf, label does not change.
- Leaf to non-leaf, label increases by 1.
- Non-leaf to non-leaf, label decreases by 1.

Aside: Tree is balanced \iff

\[\text{all labels } \geq 2 \]

+ root corner incident to two stems

Closure: Merge each leaf with the first subsequent corner with a smaller label.
Same bijection with corner labels

Aside: Tree is balanced ⇔
all labels ≥ 2
+root corner incident to two stems
Closure: Merge each leaf with the first subsequent corner with a smaller label.
Same bijection with corner labels

Aside: Tree is balanced ⇔
 all labels \(\geq 2 \)
 + root corner incident to two stems

Closure: Merge each leaf with the first subsequent corner with a smaller label.
From blossoming trees to labeled trees

In the following:
Labels gives approximate distances to the root **in the map**

label of a vertex =
minimum label of its corners
From blossoming trees to labeled trees

Generic vertex:

\[\begin{align*}
&i - 1 \quad i \\
&i - 1 \quad i + 1 \\
&i - 1 \quad i + 1
\end{align*} \]
From blossoming trees to labeled trees

Generic vertex:

- Can retrieve the blossoming tree from the labeled tree.
- Labeled tree = GW trees + random displacements on edges uniform on \((-1, -1, \ldots, -1, 0, 0, \ldots, 0, 1, 1 \ldots, 1)\).

almost the setting of [Janson-Marckert] and [Marckert-Miermont] but r.v are not ”locally centered” ⇒ symmetrization required
Distances in simple triangulations

Claim 1: \(3d_M(root, u) \geq \text{Label of } u\)

First observation: In the tree, the labels of two adjacent vertices differ by at most 1. **What can go wrong with closures?**
Distances in simple triangulations

Claim 1: $3d_M(root, u) \geq \text{Label of } u$

First observation: In the tree, the labels of two adjacent vertices differ by at most 1. **What can go wrong with closures?**
Distances in simple triangulations

Claim 1: $3d_M(root, u) \geq \text{Label of } u$

First observation: In the tree, the labels of two adjacent vertices differ by at most 1. **What can go wrong with closures?**
Distances in simple triangulations

Claim 1: $3d_M(root, u) \geq \text{Label of } u$

Claim 2: $d_M(root, u) \leq \text{Label of } u$
Distances in simple triangulations

Claim 1: $3d_M(root, u) \geq \text{Label of } u$

Claim 2: $d_M(root, u) \leq \text{Label of } u$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex: 3 LMP
Distances in simple triangulations

Claim 1: \(3d_M(root, u) \geq \) Label of \(u\)

Claim 2: \(d_M(root, u) \leq \) Label of \(u\)

- Consider the Left Most Path from \((u, v)\) to the root face.
- For each inner vertex: 3 LMP
- LMP are not self-intersecting \(\Rightarrow\) they reach the outer face
Distances in simple triangulations

Claim 1: \(3d_M(root, u) \geq \text{Label of } u\)

Claim 2: \(d_M(root, u) \leq \text{Label of } u\)

- Consider the **Left Most Path** from \((u, v)\) to the root face.
- For each inner vertex: 3 LMP
- LMP are not self-intersecting \(\Rightarrow\) they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.
Distances in simple triangulations

Claim 1: $3d_M(root, u) \geq \text{Label of } u$

Claim 2: $d_M(root, u) \leq \text{Label of } u$

- Consider the Left Most Path from (u, v) to the root face.
- For each inner vertex: 3 LMP
- LMP are not self-intersecting \Rightarrow they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.
Distances in simple triangulations

Claim 1: \(3d_M(root, u) \geq \text{Label of } u \)

Claim 2: \(d_M(root, u) \leq \text{Label of } u \)

- Consider the **Left Most Path** from \((u, v)\) to the root face.
- For each inner vertex: 3 LMP
- LMP are not self-intersecting \(\Rightarrow\) they reach the outer face
- On the left of a LMP, corner labels decrease exactly by one.
LMP are almost geodesic

Leftmost path
Another path: can it be shorter?
LMP are almost geodesic

Euler Formula:
\[|E(T_q)| = 3|V(T_q)| - 3 - (\ell_p + \ell_q) \]

3-orientation + LMP:
\[|E(T_q)| \geq 3|V(T_q)| - 2\ell_q - 2 \]

\[\implies \ell_q \geq \ell_p + 1 \]

Leftmost path
Another path: can it be shorter?
LMP are almost geodesic

Leftmost path

Another path: can it be shorter?

\[\ell_q \geq \ell_p + 1 \]
LMP are almost geodesic

Leftmost path

Another path: can it be shorter? YES

\[\ell_q \geq \ell_p + 1 \]

\[\ell_q \geq \ell_p \]

\[\ell_q \geq \ell_p + 3 \]

\[\ell_q \geq \ell_p - 2 \]

with possible equality
LMP are almost geodesic

Leftmost path

Another path: can it be shorter? YES ... but not too often

Bad configuration = too many windings around the LMP

But w.h.p a winding cannot be too short.

\[\Rightarrow \text{w.h.p the number of windings is } o(n^{1/4}). \]
LMP are almost geodesic

Leftmost path

Another path: can it be shorter? YES ... but not too often

Bad configuration =

too many **windings** around the LMP

But w.h.p a winding cannot be too short.

$$\implies \text{w.h.p the number of windings is } o(n^{1/4}).$$

Proposition:

For $\varepsilon > 0$, let $A_{n,\varepsilon}$ be the event that there exists $u \in M_n$ such that

Label of $u \geq d_{M_n}(u, \text{root}) + \varepsilon n^{1/4}$.

Then under the uniform law on M_n, for all $\varepsilon > 0$:

$$\mathbb{P}(A_{n,\varepsilon}) \to 0.$$
The result

Theorem: [Addario-Berry, A.]

$\{M_n\} =$ sequence of random **simple** triangulations, then:

$$\left(M_n, \left(\frac{3}{4n} \right)^{1/4} d_{M_n} \right) \xrightarrow{(d)} \text{Brownian map}$$

for the distance of Gromov-Hausdorff on the isometry classes of compact metric spaces.

Simulation by J.F Marckert
Beyond the universality

Simple triangulations converge to the Brownian map
⇒ properties of the Brownian map from the simple triangulations?
Beyond the universality

Simple triangulations converge to the Brownian map
⇒ properties of the Brownian map from the simple triangulations?

One motivation: Circle-packing theorem

Each simple triangulation M has a unique (up to Möbius transformations and reflections) circle packing whose tangency graph is M.

[Koebe-Andreev-Thurston]

Gives a canonical embedding of simple triangulations in the sphere and possibly of their limit.
Random circle packing

Random circle packing = canonical embedding of random simple triangulation in the sphere.

Gives a way to define a canonical embedding of their limit?

Team effort: code by Kenneth Stephenson, Eric Fusy and our own.
Perspectives

Same approach works also for simple quadrangulations.

Can we make this approach work for the general setting of bijections developed in [A., Poulalhon] and in [Bernardi, Fusy]?

Can we say something about a random circle packing?
Perspectives

Same approach works also for simple quadrangulations.

Can we make this approach work for the general setting of bijections developed in [A., Poulalhon] and in [Bernardi, Fusy]?

Can we say something about a random circle packing?

Thank you!
Brownian snake \((e_t, Z_t)_{0 \leq t \leq 1}\)

1st step: the Brownian tree [Aldous]

\[C_n^T \text{ (or } C_n) = \text{contour process} \]

\[i \text{ and } j = \text{same vertex of } T \]

\[\text{iff } C_n(i) = C_n(j) = \min_{i \leq k \leq j} C_n(k) \]
Brownian snake \((e_t, Z_t)_{0 \leq t \leq 1}\)

1st step: the Brownian tree [Aldous]

\[C^T_n \text{ (or } C_n \text{)} = \text{contour process} \]

\[(e_t)_{0 \leq t \leq 1} = \text{Brownian excursion} \]
Brownian snake \((e_t, Z_t)_{0 \leq t \leq 1}\)

1st step: the Brownian tree [Aldous]

\[T \]

\[C_n^T \text{ (or } C_n) = \text{ contour process} \]

\[\mathcal{T}_e \]

\[(e_t)_{0 \leq t \leq 1} = \text{ Brownian excursion} \]

\[d_e(u, v) = e_u + e_v - 2 \min_{u \leq s \leq v} e_s \]

\[\mathcal{T}_e = [0, 1]/ \sim_e \]

\[u \sim_e v \text{ iff } d_e(u, v) = 0 \]
Brownian snake \((e_t, Z_t)_{0\leq t\leq 1}\)

1st step: the Brownian tree [Aldous]

\[d_e(u, v) = e_u + e_v - 2 \min_{u \leq s \leq v} e_s\]

\[\mathcal{T}_e = [0, 1]/\sim_e\]

\(u \sim_e v\) iff \(d_e(u, v) = 0\)
Brownian snake \((e_t, Z_t)_{0 \leq t \leq 1}\)

1st step: the Brownian tree [Aldous]

\[d_e(u, v) = e_u + e_v - 2 \min_{u \leq s \leq v} e_s \]

\[T_e = [0, 1]/ \sim_e \]

\[u \sim_e v \text{ iff } d_e(u, v) = 0 \]

2nd step: Brownian labels

Conditional on \(T_e\), \(Z\) a centered Gaussian process with \(Z_0 = 0\) and

\[E[(Z_s - Z_t)^2] = d_e(s, t) \]

\[Z \sim \text{Brownian motion on the tree} \]
The Brownian map

\[d_e(u, v) = e_u + e_v - 2 \min_{u \leq s \leq v} e_s \]
\[\mathcal{T}_e = [0, 1] / \sim e \]
\[u \sim_e v \text{ iff } d_e(u, v) = 0 \]

Conditional on \(\mathcal{T}_e \), \(Z \) a centered Gaussian process with \(Z_\rho = 0 \) and
\[E[(Z_s - Z_t)^2] = d_e(s, t) \]
\[Z \sim \text{Brownian motion on the tree} \]
The Brownian map

\[\bar{u} \]

\[0 \quad u \quad v \quad 1 \]

\[d_e(u, v) = e_u + e_v - 2 \min_{u \leq s \leq v} e_s \]

\[T_e = [0, 1]/ \sim_e \]

\[u \sim_e v \text{ iff } d_e(u, v) = 0 \]

Conditional on \(T_e \), \(Z \) a centered Gaussian process with \(Z_\rho = 0 \) and

\[E[(Z_s - Z_t)^2] = d_e(s, t) \]

\[Z \sim \text{Brownian motion on the tree} \]

\[D^\circ(s, t) = Z_s + Z_t - 2 \max \left(\inf_{s \leq u \leq t} Z_u, \inf_{t \leq u \leq s} Z_u \right), \quad s, t \in [0, 1]. \]
The Brownian map

\[d_e(u, v) = e_u + e_v - 2 \min_{u \leq s \leq v} e_s \]

\[T_e = [0, 1]/ \sim_e \]

\[u \sim_e v \iff d_e(u, v) = 0 \]

Conditional on \(T_e \), \(Z \) a centered Gaussian process with \(Z_\rho = 0 \) and \(E[(Z_s - Z_t)^2] = d_e(s, t) \) \(Z \sim \text{Brownian motion on the tree} \)

\[D^\circ(s, t) = Z_s + Z_t - 2 \max \left(\inf_{s \leq u \leq t} Z_u, \inf_{t \leq u \leq s} Z_u \right), \quad s, t \in [0, 1]. \]

\[D^*(a, b) = \inf \left\{ \sum_{i=1}^{k-1} D^\circ(a_i, a_{i+1}) : k \geq 1, a = a_1, a_2, \ldots, a_{k-1}, a_k = b \right\}, \]
The Brownian map

\(d_e(u, v) = e_u + e_v - 2 \min_{u \leq s \leq v} e_s\)

\(\mathcal{T}_e = [0, 1]/\sim_e\)

\(u \sim_e v \iff d_e(u, v) = 0\)

Conditional on \(\mathcal{T}_e\), \(Z\) a centered Gaussian process with \(Z_0 = 0\) and

\(E[(Z_s - Z_t)^2] = d_e(s, t)\)

\(Z \sim \text{Brownian motion on the tree}\)

\[D^\circ(s, t) = Z_s + Z_t - 2 \max \left(\inf_{s \leq u \leq t} Z_u, \inf_{t \leq u \leq s} Z_u \right), \quad s, t \in [0, 1].\]

\[D^*(a, b) = \inf \left\{ \sum_{i=1}^{k-1} D^\circ(a_i, a_{i+1}) : k \geq 1, a = a_1, a_2, \ldots, a_{k-1}, a_k = b \right\},\]

Then \(M = (\mathcal{T}_e/\sim_{D^*}, D^*)\) is the \text{Brownian map}.\]