321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes

Riccardo Biagioli (Université Lyon 1)

joint work with
Frédéric Jouhet and Philippe Nadeau

Séminaire Philippe Flajolet
7 décembre 2017
Introduction and motivations

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
A permutation $\sigma \in S_n$ is **321-avoiding** if no integers $i < j < k$ are such that $\sigma(i) > \sigma(j) > \sigma(k)$.

In S_6, $\sigma = 513624$ is not 321-avoiding while $\sigma = 231564$ is.

They are counted by Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$.

The **inversion number** $\text{inv}(\sigma)$ is the number of inversions of the permutation σ i.e.

$$
\text{inv}(\sigma) = |\{(i,j) \in [n]^2 \mid i < j \text{ and } \sigma(i) > \sigma(j)\}|.
$$

For example $\sigma = 513624$ has $4+0+1+2+0=6$ inversions.
Affine permutations

Definition (Affine permutations)

The group \tilde{S}_n is the set of permutations σ of \mathbb{Z} satisfying

$$\sigma(i + n) = \sigma(i) + n \text{ and } \sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i.$$

Note that $\sigma(i) \equiv \sigma(j) \pmod{n}$ if and only if $i \equiv j \pmod{n}$.

An element of \tilde{S}_4 is

$$\ldots | 2, -7, -5, 4, | 6, -3, -1, 8, | 10, 1, 3, 12, | 14, 5, 7, 16 | \ldots$$

denoted simply by $[6, -3, -1, 8] = [\sigma(1), \sigma(2), \sigma(3), \sigma(4)]$.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Affine permutations

Definition (Affine permutations)

The group \(\tilde{S}_n \) is the set of permutations \(\sigma \) of \(\mathbb{Z} \) satisfying

\[
\sigma(i + n) = \sigma(i) + n \quad \text{and} \quad \sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i.
\]

Note that \(\sigma(i) \equiv \sigma(j) \pmod{n} \) if and only if \(i \equiv j \pmod{n} \).

An element of \(\tilde{S}_4 \) is

\[
\ldots \mid 2, -7, -5, 4, \mid 6, -3, -1, 8, \mid 10, 1, 3, 12, \mid 14, 5, 7, 16 \mid \ldots
\]

denoted simply by \([6, -3, -1, 8] = [\sigma(1), \sigma(2), \sigma(3), \sigma(4)]\).
Definition

An affine permutation is 321-avoiding if there are not \(i < j < k \) in \(\mathbb{Z} \) such that \(\sigma(i) > \sigma(j) > \sigma(k) \). We write \(\sigma \in \tilde{S}_n(321) \).

For example

\[\ldots, | 2, -7, -5, 4, | 6, -3, -1, 8, | 10, 1, 3, 12, | 14, 5, 7, 16 | \ldots \in \tilde{S}_4(321) \]

\[\ldots | -3, -5, 5 | 0, -2, 8 | 3, 1, 11 | 6, 4, 14 | 9, 7, 17 | \ldots \notin \tilde{S}_3(321) \]

Definition (Affine inversions)

\[\text{inv}(\sigma) = |\{(i, j) \in [n] \times \mathbb{P} | i < j \text{ and } \sigma(i) > \sigma(j)\}|. \]

For example \(\text{inv}([6, -3, -1, 8]) = 9. \)
321-avoiding affine permutations

Definition

An affine permutation is 321-avoiding if there are not $i < j < k$ in \mathbb{Z} such that $\sigma(i) > \sigma(j) > \sigma(k)$. We write $\sigma \in \tilde{S}_n(321)$.

For example

$$\ldots, | 2, -7, -5, 4, | 6, -3, -1, 8, | 10, 1, 3, 12, | 14, 5, 7, 16 | \ldots \in \tilde{S}_4(321)$$

$$\ldots | -3, -5, 5 | 0, -2, 8 | 3, 1, 11 | 6, 4, 14 | 9, 7, 17 | \ldots \notin \tilde{S}_3(321)$$

Definition (Affine inversions)

\[\text{inv}(\sigma) = |\{(i, j) \in [n] \times \mathbb{P} | i < j \text{ and } \sigma(i) > \sigma(j)\}|. \]

For example $\text{inv}([6, -3, -1, 8]) = 9$.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Generating function for permutations in $S_n(321)$

$$A_{n-1}(q) := \sum_{\sigma \in S_n(321)} q^{\text{inv}(\sigma)} \quad \text{and} \quad A(x, q) = \sum_{n \geq 0} A_n(q)x^n.$$

Theorem (Barcucci, Del Lungo, Pergola, Pinzani, 2001)

We have

$$A(x, q) = \frac{1}{1 - xq} \times \frac{J(xq)}{J(x)},$$

where

$$J(x) := \sum_{n \geq 0} \frac{(-x)^n q^n}{(q)_n(xq)_n}.$$

Here $(a)_0 := 1$ and $(a)_n := (1 - a)(1 - aq) \cdots (1 - aq^{n-1})$, $n \geq 1$.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Generating function for affine permutations in $\tilde{S}_n(321)$

$$\tilde{A}_{n-1}(q) := \sum_{\sigma \in \tilde{S}_n(321)} q^{\text{inv}(\sigma)} \quad \text{and} \quad \tilde{A}(x, q) := \sum_{n \geq 1} \tilde{A}_{n-1}(q) x^n$$

Theorem (B., Bousquet-Mélou, Jouhet, Nadeau, 2016)

$$\tilde{A}(x, q) = -x \frac{J'(x)}{J(x)} - \sum_{n \geq 1} \frac{x^n q^n}{1 - q^n}$$

- Hanusa and Jones [2009] found a complicated expression for $\tilde{A}(x, q)$ and showed that the coefficients of the series $\tilde{A}_{n-1}(q)$ are ultimately periodic of period dividing n.
- BJN [2013] characterized the series $\tilde{A}_{n-1}(q)$ by a systems of non-linear q-equations.
- BBJN [2016] found the previous formula for $\tilde{A}(x, q)$, manipulating such q-equations.
Generating function for affine permutations in $\tilde{S}_n(321)$

$$\tilde{\mathcal{A}}_{n-1}(q) := \sum_{\sigma \in \tilde{S}_n(321)} q^{\text{inv}(\sigma)} \quad \text{and} \quad \tilde{\mathcal{A}}(x, q) := \sum_{n \geq 1} \tilde{\mathcal{A}}_{n-1}(q)x^n$$

Theorem (B., Bousquet-Mélou, Jouhet, Nadeau, 2016)

$$\tilde{\mathcal{A}}(x, q) = -x \frac{J'(x)}{J(x)} - \sum_{n \geq 1} \frac{x^nq^n}{1 - q^n}$$

- Hanusa and Jones [2009] found a complicated expression for $\tilde{\mathcal{A}}(x, q)$ and showed that the coefficients of the series $\tilde{\mathcal{A}}_{n-1}(q)$ are ultimately periodic of period dividing n.
- Bijn [2013] characterized the series $\tilde{\mathcal{A}}_{n-1}(q)$ by a systems of non-linear q-equations.
- Bijn [2016] found the previous formula for $\tilde{\mathcal{A}}(x, q)$, manipulating such q-equations.
This computational approach does not explain the simplicity of $\tilde{A}(x, q)$ and $A(x, q)$. In this talk, we provide two bijective explanations of them.

Today's combinatorial methods.

Encode 321-avoiding (affine) permutations by:

- (affine) alternating diagrams, then by
 - (periodic) parallelogram polyominoes, and
 - (marked) heaps of segments;

or by

- Motzkin type paths, and
- (marked) pyramids of monomers and dimers.
Fully commutative elements

The original motivation was the computation of the series

$$\sum_{w \in W^{FC}} q^{\ell(w)}$$

where W^{FC} denotes the set of fully commutative elements in the Coxeter group W, and ℓ the Coxeter length.

Coxeter group

(W, S) Coxeter group W given by Coxeter matrix $(m_{st})_{s, t \in S}$.

Relations:

$$s^2 = 1$$

$$sts \ldots = tst \ldots$$ \hspace{1cm} (called Braid relations)

(if $m_{st} = 2$ commutation relations)
The original motivation was the computation of the series

$$\sum_{w \in W^{FC}} q^{\ell(w)}$$

where W^{FC} denotes the set of **fully commutative elements** in the Coxeter group W, and ℓ the Coxeter length.

Coxeter group

(W, S) Coxeter group W given by Coxeter matrix $(m_{st})_{s,t \in S}$.

Relations:

$$\begin{cases} s^2 = 1 \\ sts \cdots = tst \cdots \end{cases} \quad (\text{called Braid relations})$$

(if $m_{st} = 2$ commutation relations)
Reduced decompositions

Definition (Length)

\[\ell(w) = \text{minimal } l \text{ such that } w = s_1 s_2 \cdots s_l \text{ with } s_i \in S \]

Such a minimal word is a **reduced decomposition** of \(w \).

Proposition (Matsumoto-Tits property)

Given two reduced decompositions of \(w \), there is a sequence of braid or commutation relations which can be applied to transform one into the other.

Definition

An element \(w \) is **fully commutative** if given two reduced decompositions of \(w \), there is a sequence of **commutation relations** which can be applied to transform one into the other.
Definition (Length)

\[\ell(w) = \text{minimal } l \text{ such that } w = s_1 s_2 \cdots s_l \text{ with } s_i \in S \]

Such a minimal word is a reduced decomposition of \(w \).

Proposition (Matsumoto-Tits property)

Given two reduced decompositions of \(w \), there is a sequence of braid or commutation relations which can be applied to transform one into the other.

Definition

An element \(w \) is fully commutative if given two reduced decompositions of \(w \), there is a sequence of commutation relations which can be applied to transform one into the other.
Reduced decompositions

Definition (Length)
\[\ell(w) = \text{minimal } l \text{ such that } w = s_1 s_2 \cdots s_l \text{ with } s_i \in S \]
Such a minimal word is a reduced decomposition of \(w \).

Proposition (Matsumoto-Tits property)
Given two reduced decompositions of \(w \), there is a sequence of braid or commutation relations which can be applied to transform one into the other.

Definition
An element \(w \) is fully commutative if given two reduced decompositions of \(w \), there is a sequence of commutation relations which can be applied to transform one into the other.
The symmetric group

Example

The symmetric group S_n is generated as a Coxeter group by the set S of simple transpositions $s_i = (i, i + 1)$ with

$$s_i^2 = 1$$

Relations:

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \text{ (braid relations)}$$

$$s_i s_j = s_j s_i \text{ if } j \neq i \pm 1 \text{ (commutation relations)}$$

All elements of S_3 are FC except $321 = s_1 s_2 s_1 = s_2 s_1 s_2$.

Note that $\ell(\sigma) = \text{inv}(\sigma)$.
Fully commutative elements

Theorem (Billey-Jockush-Stanley, 1993)

A permutation in S_n is fully commutative if and only if it is 321-avoiding.

Theorem (Green, 2001)

An affine permutation in \tilde{S}_n is fully commutative if and only if it is 321-avoiding.

Theorem (Lusztig, 1983)

\begin{itemize}
 \item \tilde{S}_n is a Coxeter group of type \tilde{A}_{n-1};
 \item $s_0 = \ldots (-1-n, -n)(-1, 0)(-1+n, n) \ldots$.
 \item $s_i = \ldots (i, i+1)(i+n, i+1+n) \ldots$.
\end{itemize}

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Fully commutative elements

Theorem (Billey-Jockush-Stanley, 1993)

A permutation in S_n is fully commutative if and only if it is 321-avoiding.

Theorem (Green, 2001)

An affine permutation in \tilde{S}_n is fully commutative if and only if it is 321-avoiding.

Theorem (Lusztig, 1983)

- \tilde{S}_n is a Coxeter group of type \tilde{A}_{n-1};
- $s_0 = \cdots (-1 - n, -n)(-1, 0)(-1 + n, n) \cdots$;
- $s_i = \cdots (i, i + 1)(i + n, i + 1 + n) \cdots$.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Affine alternating diagrams
From line diagrams to alternating diagrams

Take the 321-avoiding permutation $\sigma = 461279358 \in S_9$.

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\bullet & \bullet
\end{array}
\]
Take the 321-avoiding permutation $\sigma = 461279358 \in S_9$.

![Diagram of 321-avoiding permutation](image)
Take the 321-avoiding permutation $\sigma = 461279358 \in S_9$.

\begin{center}
\begin{tikzpicture}
\draw (1,0) -- (9,0);
\fill (1,0) circle (2pt) (2,0) circle (2pt) (3,0) circle (2pt) (4,0) circle (2pt) (5,0) circle (2pt) (6,0) circle (2pt) (7,0) circle (2pt) (8,0) circle (2pt) (9,0) circle (2pt);
\end{tikzpicture}
\end{center}
Take the 321-avoiding permutation $\sigma = 461279358 \in S_9$.
Take the 321-avoiding permutation $\sigma = 461279358 \in S_9$.
From line diagrams to alternating diagrams

The alternating diagram of $\sigma = 461279358 \in S_9 : \text{inv}(\sigma) = 12.$

Definition (Alternating diagram)

An alternating diagram of rank n is a poset:
- its elements are labeled by the generators $\{s_1, \ldots, s_{n-1}\}$ of S_n
- $\forall i$, elements with labels s_i, s_{i+1} form an alternating chain;
- the ordering is given by the transitive closure of these chains.
From line diagrams to alternating diagrams

The alternating diagram of $\sigma = 461279358 \in S_9 : \text{inv}(\sigma) = 12$.

Definition (Alternating diagram)

An alternating diagram of rank n is a poset:

- its elements are labeled by the generators $\{s_1, \ldots, s_{n-1}\}$ of S_n
- $\forall i$, elements with labels s_i, s_{i+1} form an alternating chain
- the ordering is given by the transitive closure of these chains.
From line diagrams to affine alternating diagrams

\(\sigma = \ldots \mid 2, -7, -5, 4, \mid 6, -3, -1, 8, \mid 10, 1, 3, 12, \mid 14, 5, 7, 16 \mid \ldots \)

Here \(\sigma \in \tilde{S}_4(321) \) and \(inv(\sigma) = 9 \).
From line diagrams to affine alternating diagrams

\[\sigma = \ldots | 2, -7, -5, 4, | 6, -3, -1, 8, | 10, 1, 3, 12, | 14, 5, 7, 16 | \ldots \]

Here \(\sigma \in \tilde{S}_4(321) \) and \(\text{inv}(\sigma) = 9 \).
From line diagrams to affine alternating diagrams

\[\sigma = \ldots | 2, -7, -5, 4, | 6, -3, -1, 8, | 10, 1, 3, 12, | 14, 5, 7, 16 | \ldots \]

Here \(\sigma \in \tilde{S}_4(321) \) and \(\text{inv}(\sigma) = 9 \).

Proposition (Characterization of affine alternating diagrams)

- Same number of occurrences of \(s_0 \) in the first and last column.
From line diagrams to affine alternating diagrams

\[\sigma = \ldots | 2, -7, -5, 4, | 6, -3, -1, 8, | 10, 1, 3, 12, | 14, 5, 7, 16 | \ldots \]

Here \(\sigma \in \tilde{S}_4(321) \) and \(\text{inv}(\sigma) = 9 \).

Proposition (Characterization of affine alternating diagrams)

- **Same** number of occurrences of \(s_0 \) in the first and last column.
Representations of alternating diagrams on a cylinder

Two affine alternating diagrams of \tilde{S}_8.

The second is self-dual.

Two excluded diagrams!
(rectangular shape)

They do not represent posets.
Representations of alternating diagrams on a cylinder

Two affine alternating diagrams of \tilde{S}_8.

The second is self-dual.

Two excluded diagrams! (rectangular shape)

They do not represent posets.
The map Δ between $\tilde{S}_n(321)$ and affine alternating diagrams is a bijection such that:

- $\sigma \in S_n(321)$ if and only if $\Delta(\sigma)$ do not contain any s_0
- σ is an involution if and only if $\Delta(\sigma)$ is self-dual.
The map Δ between $\tilde{S}_n(321)$ and affine alternating diagrams is a bijection such that:

- $\sigma \in S_n(321)$ if and only if $\Delta(\sigma)$ do not contain any s_0
- σ is an involution if and only if $\Delta(\sigma)$ is self-dual.
Periodic parallelogram polyominoes
From alternating diagrams to parallelogram polyominoes

Theorem (Viennot, 1992)
There is a bijection between alternating diagrams and parallelogram polyominoes (PP).

A PP is a convex polyomino enclosed by two paths consisting of unit horizontal and vertical steps, both starting in the same point and ending in the same point and non-intersecting elsewhere.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Theorem (Viennot, 1992)

There is a bijection between alternating diagrams and parallelogram polyominoes (PP).

A PP is a convex polyomino enclosed by two paths consisting of unit horizontal and vertical steps, both starting in the same point and ending in the same point and non-intersecting elsewhere.
From alternating diagrams to parallelogram polyominoes

Theorem (Viennot, < 1992)

There is a bijection between alternating diagrams and parallelogram polyominoes (PP).

A PP is a convex polyomino enclosed by two paths consisting of unit horizontal and vertical steps, both starting in the same point, ending in the same point, and non-intersecting elsewhere.
Parallelogram polyominoes are coded by sequences $(a_i, b_i)_{1 \leq i \leq n}$ with $a_1 = 1$, where:

- b_i is the **height** of the column C_i;
- a_i is the **number of common rows** between C_{i-1} and C_i.

Any of such finite sequences $(a_i, b_i)_{1 \leq i \leq n}$ satisfies:

\[1 \leq b_1 \geq a_2 \leq b_2 \geq \ldots \leq b_{n-1} \geq a_n \leq b_n. \]
Classical case (Bousquet-Mélou–Viennot, 1992)

\[(1, 5), (5, 5), (4, 4), (1, 1), (1, 3), (2, 3)\]
From parallelogram polyominoes to heaps of segments

Classical case (Bousquet-Mélou–Viennot, 1992)

$$(1, 5), (5, 5), (4, 4), (1, 1), (1, 3), (2, 3)$$
From parallelogram polyominoes to heaps of segments

Classical case (Bousquet-Mélou–Viennot, 1992)

(1, 5), (5, 5), (4, 4), (1, 1), (1, 3), (2, 3)
From parallelogram polyominoes to heaps of segments

Classical case (Bousquet-Mélou–Viennot, 1992)

$$(1, 5), (5, 5), (4, 4), (1, 1), (1, 3), (2, 3)$$
Classical case (Bousquet-Mélou–Viennot, 1992)

(1, 5), (5, 5), (4, 4), (1, 1), (1, 3), (2, 3)

Theorem (Bousquet-Mélou–Viennot, 1992)

The map f is a bijection between the set of parallelogram polyominoes and the set of half pyramids of segments.
Let S be the set of finite sequences $(a_i, b_i)_{1 \leq i \leq n}$ satisfying

$$a_1 \leq b_1 \geq a_2 \leq b_2 \geq \ldots \leq b_{n-1} \geq a_n \leq b_n.$$

Let S be the set of finite sequences $(a_i, b_i)_{1 \leq i \leq n}$ satisfying

$$(4, 5), (5, 5), (4, 4), (1, 1), (1, 3), (2, 3)$$

The map f extends to a bijection between the set of (PP) marked in their first column and the set of heaps of segments \mathcal{H}.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Definition (PPP)

A periodic parallelogram polyomino is a couple \((P, c)\), where \(P\) is a marked PP and \(c\) is an integer between 1 and the height of the last column of \(P\).

Periodic parallelogram polyominoes as sequences

These naturally correspond to sequences \((a_i, b_i)_{1 \leq i \leq n} \in S\) such that \(b_n \geq a_1\), i.e.

\[b_n \geq a_1 \leq b_1 \geq a_2 \leq b_2 \geq \ldots \leq b_{n-1} \geq a_n \leq b_n. \]
Definition (PPP)

A periodic parallelogram polyomino is a couple \((P, c)\), where \(P\) is a marked \(PP\) and \(c\) is an integer between 1 and the height of the last column of \(P\).

Periodic parallelogram polyominoes as sequences

These naturally correspond to sequences \((a_i, b_i)_{1 \leq i \leq n} \in S\) such that \(b_n \geq a_1\), i.e.

\[
b_n \geq a_1 \leq b_1 \geq a_2 \leq b_2 \geq \ldots \leq b_{n-1} \geq a_n \leq b_n.
\]
From PPP to heaps of segments

Let \(\tilde{\mathcal{H}} \) be the set of heaps satisfying condition (\(\sim \)) i.e. the beginning of the rightmost maximal segment should be on the left of the end of the leftmost minimal segment.

Proposition

The map \(f \) induces a bijection between the set \(PPP \) and \(\tilde{\mathcal{H}} \).
Summary

\[S_n(321) \quad \leftrightarrow \quad \text{Parallelogram Polyominoes} \quad \leftrightarrow \quad (S, a_1 = 1) \quad \leftrightarrow \quad \text{Half pyramids} \]

\[(S, a_1 \leq b_n) \quad \leftrightarrow \quad \text{Heaps of segments in } \tilde{\mathcal{H}} \]

Recent papers (2016) on PPP also by Aval, Boussicault, Laborde–Zubieta, and Pétréolle.
Recent papers (2016) on PPP also by Aval, Boussicault, Laborde–Zubieta, and Pétréolle.
Summary

\[S_n(321) \quad \leftrightarrow \quad \text{Parallelogram} \quad \leftrightarrow \quad (S, a_1 = 1) \quad \leftrightarrow \quad \text{Half pyramids} \]

\[S_n(321) \quad ? \quad \leftrightarrow \quad (S, a_1 \leq b_n) \quad \leftrightarrow \quad \text{Heaps of segments in } \tilde{H} \]

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Connection between \(\tilde{S}_n(321) \) and PPP
Back to 321-avoiding affine permutations
From 321-avoiding affine permutations to PPP^*
From 321-avoiding affine permutations to \(PPP^* \)

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
From 321-avoiding affine permutations to \(PPP^* \)
From 321-avoiding affine permutations to PPP^*

A mark in $[a_1, b_1]$ to recover s_0

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
From 321-avoiding affine permutations to PPP*
From PPP^* to 321-avoiding affine permutations

Theorem (B, Jouhet, Nadeau, (2016))

The previous application is a bijection between 321-avoiding affine permutations and marked PPP of non-rectangular shape.
Why the rectangular shape?

It is not a PPP.

It is a PPP of rectangular shape.

It is not a PPP.

It is a PPP of rectangular shape.
Marked PPP

(2, 4), (3, 5), (5, 5), (4, 4), (1, 1), (1, 3)

Mark in \([a_1, b_1]\]

Definition

\(PPP^* = PPP\) with a mark between \(a_1\) and \(b_1\);
\(\tilde{\mathcal{H}}^* = \) heaps in \(\tilde{\mathcal{H}}\) with a mark in their rightmost maximal segment.

Corollary

The map \(f\) induces a bijection between \(PPP^*\) and \(\tilde{\mathcal{H}}^*\).
Introduction and motivations

Alternating diagrams

Parallelograms polyominoes

Generating functions

Summary

S_n(321) ↔ PP ↔ Half pyramids

Parallelogram polyominoes

PPP ↔ Heaps of segments in \(\tilde{H} \)

Periodic parallelogram polyominoes

PPP* ↔ Marked heaps of segments in \(\tilde{H}^* \)

\(\tilde{S}_n(321) \) ↔ PPP* ↔ Marked periodic parallelogram polyominoes (non rectangular)

Recent papers (2016) on parallelogram polyominoes also by Aval, Boussicault, Laborde–Zubieta, and Pérèolle.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Generating functions
Statistics on PPP

- $\text{width}(P) = |H|$ the number of segments in H
- $\text{height}(P) = \ell(H)$ the sum of the lengths of the segments of H
- $\text{area}(P) = e(H)$ sum of right endpoints of the segments of H

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Statistics on \textit{PPP}

\[e(H) - |H| \quad \text{area}(P) - \text{width}(P) \quad \text{ell}(H) + |H| \quad \text{half perimeter}(P) \quad \text{inv}(\sigma) \quad n = \text{number of vertical columns : } \sigma \in \tilde{S}_n(321) \]

Hence we have that

\[\tilde{A}(x, q) = \sum_{n \geq 1} \left(\sum_{\sigma \in \tilde{S}_{n+1}(321)} q^{\text{inv}(\sigma)} \right) x^n = \sum_{H \in \tilde{H}^*} x^{\ell(H) + |H|} q^{e(H) - |H|} - \sum_{n \geq 1} \frac{x^n q^n}{1 - q^n}. \]
Generating functions for \textit{PPP}

\textbf{Goal: to compute the series}

\[
\tilde{\mathcal{H}}^*(x, y, q) = \sum_{H \in \tilde{\mathcal{H}}^*} x^{\ell(H)} y^{|H|} q^{e(H)}.
\]

\textbf{Theorem (Inversion Lemma - Viennot, 1985)}

\[
\mathcal{H}(x, y, q) = \frac{1}{T(x, y, q)} \quad \text{and} \quad \mathcal{H}\mathcal{P}(x, y, q) = \frac{T^c(x, y, q)}{T(x, y, q)}
\]

where T (resp. T^c) is the signed GF for trivial heaps (resp. not touching abscissa 1), and $\mathcal{H}\mathcal{P}$ denotes the half pyramids.

\textit{Riccardo Biagioli (Université Lyon 1)}

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Generating functions for PPP

Goal: to compute the series

\[\tilde{\mathcal{H}}^*(x, y, q) = \sum_{H \in \tilde{\mathcal{H}}^*} x^{\ell(H)} y^{|H|} q^{e(H)}. \]

Theorem (Inversion Lemma - Viennot, 1985)

\[\mathcal{H}(x, y, q) = \frac{1}{\mathcal{T}(x, y, q)} \quad \text{and} \quad \mathcal{H}\mathcal{P}(x, y, q) = \frac{\mathcal{T}^c(x, y, q)}{\mathcal{T}(x, y, q)} \]

where \(\mathcal{T} \) (resp. \(\mathcal{T}^c \)) is the signed GF for trivial heaps (resp. not touching abscissa 1), and \(\mathcal{H}\mathcal{P} \) denotes the half pyramids.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Trivial heaps

A trivial heap $T \in \mathcal{T}$ has no two pieces in concurrence.

$$T = \begin{array}{cccccccccccccccccc}
\vdots & \vdots \\
\end{array}$$

$$v(T) = x^5 y^3 q^{17}$$

Signed generating function for trivial heaps

$$\mathcal{T} = \mathcal{T}(x, y, q) = \sum_{T \in \mathcal{T}} (-1)^{|T|} x^{\ell(T)} y^{|T|} q^{e(T)}.$$
Generating functions for heaps of segments

Theorem (Bousquet-Mélou, Viennot, 1992)

\[
\mathcal{T} = \sum_{n \geq 0} \frac{(-y)^n q^{\binom{n+1}{2}}}{(q)_n (xq)_n} \quad \text{and} \quad \mathcal{T}^c = \sum_{n \geq 1} \frac{(-y)^n q^{\binom{n+1}{2}}}{(q)_{n-1} (xq)_n}.
\]

Since **321-avoiding permutations** are in bijection with **half pyramids**, we obtain back the result of Barcucci et al, by setting \(y \rightarrow y/q \) (recall that we added a box in each column), and then \(y \rightarrow x \), in Viennot formula. Note that \(\text{inv}(\sigma) = e(H) \).

Theorem (Barcucci et al.)

\[
A(x, q) = \frac{1}{1 - xq} \times \frac{J(xq)}{J(x)} \quad \text{where} \quad J(x) := \sum_{n \geq 0} \frac{(-x)^n q^{\binom{n}{2}}}{(q)_n (xq)_n}.
\]
Adaptation to our special heaps of segments in $\tilde{\mathcal{H}}^*$

We can adapt the Viennot’s technique to $\tilde{\mathcal{H}}$ and $\tilde{\mathcal{H}}^*$, but condition (\sim) is very complicated to handle.

Theorem (B, Jouhet, Nadeau, 2016)

$$PPP(x, y, q) = -y \frac{\partial_y T}{T} \quad PPP^*(x, y, q) = -x \frac{\partial_x T}{T}.$$

Since marked PPP^* (minus those of rectangular shape) of half-perimeter n are in bijection with 321-avoiding affine permutations of size n, we obtain (after taking care about the weight, $y \to y/q$, and $y \to x$) that

Theorem (B., Bousquet-Mélou, Jouhet, Nadeau)

$$\tilde{A}(x) = -x \frac{J''(x)}{J(x)} - \sum_{n \geq 1} \frac{x^n q^n}{1 - q^n}.$$
Adaptation to our special heaps of segments in \tilde{H}^*

We can adapt the Viennot’s technique to \tilde{H} and \tilde{H}^*, but condition (\sim) is very complicated to handle.

Theorem (B, Jouhet, Nadeau, 2016)

$$PPP(x, y, q) = -y \frac{\partial_y T}{T} \quad PPP^*(x, y, q) = -x \frac{\partial_x T}{T}.$$

Since marked PPP^* (minus those of rectangular shape) of half-perimeter n are in bijection with 321-avoiding affine permutations of size n, we obtain (after taking care about the weight, $y \rightarrow y/q$, and $y \rightarrow x$) that

Theorem (B., Bousquet-Mélou, Jouhet, Nadeau)

$$\tilde{A}(x) = -x \frac{J''(x)}{J(x)} - \sum_{n \geq 1} \frac{x^n q^n}{1 - q^n}.$$

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
We can adapt the Viennot’s technique to $\tilde{\mathcal{H}}$ and $\tilde{\mathcal{H}}^*$, but condition (\sim) is very complicated to handle.

Theorem (B, Jouhet, Nadeau, 2016)

\[
PPP(x, y, q) = -y \frac{\partial_y T}{T} \quad PPP^*(x, y, q) = -x \frac{\partial_x T}{T}.
\]

Since marked PPP^* (minus those of rectangular shape) of half-perimeter n are in bijection with 321-avoiding affine permutations of size n, we obtain (after taking care about the weight, $y \rightarrow y/q$, and $y \rightarrow x$) that

Theorem (B., Bousquet-Mélou, Jouhet, Nadeau)

\[
\tilde{A}(x) = -x \frac{J''(x)}{J(x)} - \sum_{n \geq 1} \frac{x^n q^n}{1 - q^n}
\]
A different encoding
A different bijection

Theorem (BJN, 2013)

The map φ' is a bijection between:

1. $\tilde{S}_n(321)$ and

2. $O_n^* \setminus \{\text{paths at constant height } h > 0 \text{ with all steps having the same label } L \text{ or } R\}$, where O_n^* is the set of length n paths with starting and ending point at the same height, with steps in $(1, 1)$, $(1, -1)$ and $(1, 0)$ satisfying condition (\ast).

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
A different bijection

Theorem (BJN, 2013)

The map φ' is a bijection between:

1. $\tilde{S}_n(321)$ and
2. $\mathcal{O}^*_n \setminus \{\text{paths at constant height } h > 0 \text{ with all steps having the same label } L \text{ or } R\}$, where \mathcal{O}^*_n is the set of length n paths with starting and ending point at the same height, with steps in $(1,1)$, $(1,-1)$ and $(1,0)$ satisfying condition (*)&.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Corollary

\[\tilde{A}_{n-1}^{FC}(q) = O_n^*(q) - \frac{2q^n}{1 - q^n} = \frac{q^n(\tilde{O}_n(q) - 2)}{1 - q^n} + \tilde{O}_n^*(q), \]

from which the periodicity follows.

Corollary (Hanusa and Jones, 2010)

The coefficients of \(\tilde{A}_{n-1}^{FC}(q) \) are ultimately periodic of period dividing \(n \).
Encoding by heaps of monomers and dimers

A marked pyramid (Pm) of dimers and monomers L, R with condition (*)

(*) only in column 0

Monomers: weight $x q_i$

Dimers: weight $x 2q_i^2 + 1$

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Encoding by heaps of monomers and dimers

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Encoding by heaps of monomers and dimers

A marked pyramid (P_m) of dimers and monomers L, R with condition (*)

(*) only in column 0

Monomers: weight xq_i

Dimers: weight x^{2q_i+1}

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Encoding by heaps of monomers and dimers

A marked pyramid \((P_m)\) of dimers and monomers \(L, R\) with condition (*)

(*) only in column 0

Monomers : weight \(xq^i\)

Dimers : weight \(x^2q^{2i+1}\)

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
GF of heaps of monomers and dimers

For a marked heap E, the weight is

$$
\nu(E) := \prod_{\text{monomers } [i]} xq^i \prod_{\text{dimers } [i,i+1]} x^2 q^{2i+1}.
$$

We need to compute the GF of marked pyramids $\Pi_m(x)$. If the GF of heaps is $E(x)$, the GF for marked heaps is $xE'(x)$.

Proposition (Viennot)

$$
xE'(x) = \Pi_m(X) \times E(x).
$$
Once again we conclude using the Inversion Lemma.

Theorem (Inversion Lemma - Viennot, 1985)

$$E(x) = \frac{1}{T^*(x)},$$

where T^* is the signed GF for trivial heaps satisfying condition (\ast). A computation shows that $T^*(x) = (xq; q)_\infty J(x)$ from which we obtain the previous result

$$\tilde{A}(x) = -x \frac{J'(x)}{J(x)} - \sum_{n \geq 1} \frac{x^n q^n}{1 - q^n}.$$
321-avoiding involutions in S_n and \tilde{S}_n

\[\mathcal{A} = \sum_{n \geq 0} A_n^{\text{Invo}}(q)x^n \quad \text{and} \quad \tilde{\mathcal{A}} = \sum_{n \geq 1} \tilde{A}_{n-1}^{\text{Invo}}(q)x^n. \]

Theorem (B., Bousquet-Mélou, Jouhet, Nadeau, 2016)

We have

\[\mathcal{A} = \frac{\mathcal{J}(-xq)}{\mathcal{J}(x)} \quad \text{and} \quad \tilde{\mathcal{A}} = -x \frac{\mathcal{J}'(x)}{\mathcal{J}(x)}, \quad \text{where} \]

\[\mathcal{J}(x) = \sum_{n \geq 0} (-1)^{\lceil n/2 \rceil} x^n q^{n(2)} \frac{n}{(q^2)^{\lfloor n/2 \rfloor}}. \]

Give a proof of this results using PPP^*.

Riccardo Biagioli (Université Lyon 1)

321-avoiding affine permutations, heaps, and periodic parallelogram polyominoes
Open problem : pyramids

Denote by Π the set of pyramids (heaps with a unique maximal element).

By using the bijection ϕ we find

$$
\sum_{H \in \Pi} x^{\ell(H)} y^{|H|} q^{e(H)} = -y \frac{\partial y}{\partial T} = \sum_{H \in \tilde{\mathcal{H}}} x^{\ell(H)} y^{|H|} q^{e(H)}
$$

A bijection between the set $\tilde{\mathcal{H}}$ and the set of pyramids Π would be nice, as would be a direct way of encoding periodic parallelogram polyominoes as pyramids.
The end