The Z-invariant Ising model on isoradial graphs

Cédric Boutillier
Séminaire Flajolet, IHP, 30 March 2017

LPMA, UPMC
joint work with Béatrice de Tilière (Créteil), Kilian Raschel (Tours)
Outline

The Ising model

The Ising model via dimers

Z-invariance

Z-invariant Ising model out of criticality
The Ising model
The Ising model

- (planar) graph G
- spin configurations: $\sigma : G \to \pm 1$
- parameters: coupling constants $(J_e)_{e \in E(G)} > 0$
- Energy of a configuration:
 \[H(\sigma) = - \sum_{e=xy} J_e \sigma_x \sigma_y \]
- Probability of a configuration:
 \[\mathbb{P}(\sigma) = \frac{1}{Z(G, (J_e))} \times \exp \left(-H(\sigma) \right) \]
The Ising model on the square lattice

- A single parameter to study possible phase transitions: \(\beta \rightarrow J(e, \beta) \) increasing
- On a regular graph: \(J(e, \beta) = \beta J \quad (\beta = 1/T) \)

\(\beta > \beta_c \) (low T) \hspace{2cm} \beta = \beta_c \hspace{2cm} \beta < \beta_c \) (high T)

Simulation pictures: Raphaël Cerf
The Ising model via dimers
The Ising model is free fermionic

Physics folklore: the Ising model is a model of free fermions

Kasteleyn: the partition of the Ising model on any planar graph can be written as a Pfaffian, in connection with dimers
dimer configurations = perfect matchings = 1-factors
The Ising model is free fermionic

Physics folklore: the Ising model is a model of **free fermions**

Kasteleyn: the partition of the Ising model on any planar graph can be written as a Pfaffian, in connection with **dimers**

dimer configurations = perfect matchings = 1-factors

Fisher: another explicit correspondence with dimers on a decorated graph
Fisher’s bijection

Ising spins ↔ contours (separating spins) ↔ dimers

This version (Dubédat) is not a bijection: 2 choices for each decoration of a vertex
Kasteleyn’s theory of dimer models

Let \mathcal{G} a finite planar graph.

- weights ν_e on edges of \mathcal{G}
- probability of a dimer conf. $\mathcal{C} \propto \prod_{e \in \mathcal{C}} \nu_e$

Theorem (Kasteleyn)

Let K be the weighted oriented adjacency matrix of G for an admissible orientation. Then:

- The partition function $Z_{\text{dimers}} := \sum_{\mathcal{C}} \prod_{e \in \mathcal{C}} \nu_e$ is $\pm \text{Pfaff } K$,
- The probability that $e_1 = (v_{i_1}, v_{i_2}), \ldots, e_k = (v_{i_{2k-1}}, v_{i_{2k}})$ occur in a random dimer configuration is

$$\left(\prod_{j} K(v_{i_{2j-1}}, v_{i_{2j}}) \right)^{\text{Pfaff}1 \leq p, q \leq 2k} K^{-1}(v_{ip}, v_{iq})^T$$

Pfaffian process
Z-invariance
Star-triangle transformation

G and G': planar graphs differing by a $Y - \nabla$ transformation

Coupling constants so that the Ising models are equivalent?
Star-triangle transformation

G and G': planar graphs differing by a $Y - \nabla$ transformation

Coupling constants so that the Ising models are equivalent?

<table>
<thead>
<tr>
<th>$\sigma_1 \sigma_2 \sigma_3$</th>
<th>G</th>
<th>G'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pm \pm \pm$</td>
<td>$2 \cosh(J_1 + J_2 + J_3)$</td>
<td>$e^{L_1 + L_2 + L_3}$</td>
</tr>
<tr>
<td>$\pm \pm \mp$</td>
<td>$2 \cosh(-J_1 - J_2 + J_3)$</td>
<td>$e^{-L_1 - L_2 + L_3}$</td>
</tr>
<tr>
<td>$\pm \mp \pm$</td>
<td>$2 \cosh(-J_1 + J_2 - J_3)$</td>
<td>$e^{-L_1 + L_2 - L_3}$</td>
</tr>
<tr>
<td>$\mp \pm \pm$</td>
<td>$2 \cosh(J_1 - J_2 - J_3)$</td>
<td>$e^{L_1 - L_2 - L_3}$</td>
</tr>
</tbody>
</table>
Isoradial graphs

- quad graph: projection of a surface in \mathbb{Z}^d
- star-triangle transformation: natural flip operation

- Each edge e has a natural parameter $\theta_e = \frac{\beta - \alpha}{2}$
If we require that for isoradial graphs:

- for any edge e, $J(e) = J(\theta_e)$
- invariance under star-triangle transformations

1-parameter family of coupling constants:

\[
\sinh(2J(\theta|k)) = \text{sc}(\theta \frac{2K(k)}{\pi} | k) = \frac{\text{sn}(\theta \frac{2K(k)}{\pi} | k)}{\text{cn}(\theta \frac{2K(k)}{\pi} | k)} \quad [\text{Baxter}]
\]

The Ising model is then said to be **Z-invariant**
Z-invariant coupling constants

\[
\sinh(2J(\theta|k)) = \frac{2K(k)}{\pi} = \frac{\sin(\theta \frac{2K(k)}{\pi} |k)}{\cos(\theta \frac{2K(k)}{\pi} |k)}
\]

\(k\): elliptic modulus \hspace{1cm} \hspace{1cm} k' = \sqrt{1 - k^2} \in (0, \infty) \leftrightarrow \text{temperature}

\[K(k) = \int_0^{\pi/2} \frac{dt}{\sqrt{1-k^2 \cos^2(t)}}\] \hspace{1cm} \text{elliptic integral of 1st kind}

\(\text{sn}(\cdot|k), \text{cn}(\cdot|k), \text{sc}(\cdot|k)\) Jacobi elliptic functions functions:

\hspace{1cm} \text{generalization of } \sin, \cos, \tan \text{ respectively.}

Bonus: Kramers-Wannier duality built-in

\[
\sinh(2J(\theta|k)) \times \sinh(2J(\frac{\pi}{2} - \theta|k^*)) = 1 \hspace{1cm} \text{with } k' \times (k^*)' = 1
\]
Critical Z-invariant Ising model \((k = 0)\)

Self-duality: \(k^* = k \iff k = 0\)

- Elliptic functions \(\sim\) trigonometric: \(\sinh(2J(\theta|0)) = \tan(\theta)\)
- really critical [Li, Cimasoni–Duminil-Copin]
- discrete harmonic fermionic observable
- conformally invariant scaling limit [Mercat, Chelkak-Smirnov...]
- construction of probability measure in infinite volume on isoradial graphs (dimers, Fisher correspondence) [B.–de Tilière]
- locality of dimers (and thus spin) correlations
- related to local expression for Green function on isoradial graphs for conductances [Kenyon]

Question: does locality still hold out of criticality?
Critical Z-invariant Ising model ($k = 0$)

Self-duality: $k^* = k \Leftrightarrow k = 0$

- Elliptic functions \sim trigonometric: $\sinh(2J(\theta|0)) = \tan(\theta)$
- really critical [Li, Cimasoni–Duminil-Copin]
- discrete harmonic fermionic observable
- conformally invariant scaling limit [Mercat, Chelkak-Smirnov...]

- construction of probability measure in infinite volume on isoradial graphs (dimers, Fisher correspondence)
 [B.–de Tilière]
- locality of dimers (and thus spin) correlations
- related to local expr. for Green function on isoradial graphs for conductances $\tan(\theta)$ [Kenyon]
Critical Z-invariant Ising model \((k = 0)\)

Self-duality: \(k^* = k \iff k = 0\)

- Elliptic functions \(\sim\) trigonometric: \(\sinh(2J(\theta|0)) = \tan(\theta)\)
- really critical [Li, Cimasoni–Duminil-Copin]
- discrete harmonic fermionic observable
- conformally invariant scaling limit [Mercat, Chelkak-Smirnov…]
- construction of probability measure in infinite volume on isoradial graphs (dimers, Fisher correspondence) [B.–de Tilière]
- locality of dimers (and thus spin) correlations
- related to local expr. for Green function on isoradial graphs for conductances \(\tan(\theta)\) [Kenyon]

Question: does locality still holds out of criticality?
Z-invariant Ising model out of criticality
Consider the dimer model on the Fisher graph G coming from a Z-invariant Ising model on an isoradial graph G:

$$\nu_e = \begin{cases}
\frac{\text{sn}(\frac{2K\theta}{\pi}|k)}{1 + \text{cn}(\frac{2K\theta}{\pi}|k)} & \text{if } e \text{ is an edge coming from } G \\
1 & \text{otherwise}
\end{cases}$$

Let K the corresponding (infinite) Kasteleyn matrix on G

Theorem (B.–de Tilière – Raschel)

- For $k \neq 0$, the Kasteleyn operator on the Fisher graph has a unique inverse with bounded coefficients $K_{x,y}^{-1}$.
- These coefficients have a local expression

$$K_{x,y}^{-1} = \frac{k'}{8\pi} \int_{\Gamma_{x,y}} f_x(u + 2K)f_y(u) \text{Exp}_{x,y}(u|k) du$$
\[
K_{x,y}^{-1} = \frac{k'}{8\pi} \int_{\Gamma_{x,y}} f_x(u+2K)f_y(u) \text{Exp}_{x,y}(u|k)\,du
\]

Definition (massive exponential functions)

\[
\text{Exp}_{x,y}(u|k) = \prod_j i \sqrt{k'} \text{sc}\left(\frac{u - \alpha_j}{2}|k\right), \quad u \in T_k
\]

Definition (function \(f\))

- If \(x\) internal to a decoration \(f_x(u) = \pm \text{cn}\left(\frac{u - \alpha}{2}|k\right)^{-1}\), where \(e^{i\alpha}\) edge of the quad-graph
- If \(x\) connected to an edge of \(G\), \(f_x\) is the sum of two such terms
\[K_{x,y}^{-1} = \frac{k'}{8\pi} \int_{\Gamma_{x,y}} f_x(u+2K)f_y(u) \text{Exp}_{x,y}(u|k)du \]

- This expression is local: \(K_{x,y}^{-1} \) depends on the geometry of the graph only along a path from \(x \) to \(y \)
- It can be used to define a Gibbs measure on dimer configurations of the Fisher graph, and thus on Ising contours (without assumption on periodicity of the graph)
- Dimer statistics are local
On periodic isoradial graphs: spectral curve

- If G is periodic, the Kasteleyn operator K is also periodic
- $K(z, w)$ Fourier transform of K: matrix with rows/columns indexed by vertices in a fund. domain with extra $z^{\pm 1}$ or $w^{\pm 1}$ weight for edges crossing its boundary
- $P(z, w) = \det K(z, w)$ characteristic polynomial
- Fourier formula for K^{-1}:

$$K_{x,y}^{-1}(m,n) = \int \int_{|z|=|w|=1} z^{-m} w^{-n} \frac{Q_{x,y}(z,w)}{P(z,w)} \frac{dz}{2i\pi z} \frac{dw}{2i\pi w}$$

where $Q_{x,y}$ cofactor of $K(z, w)$.

Asymptotics depends on the zeros of P.

$C = \{(z, w) : P(z, w) = 0\}$ is called the spectral curve
Theorem (B–de Tilière–Raschel)

spectral curve of a Z-invariant Ising model on isoradial graph

\[(z, w) \leftrightarrow \left(\frac{1}{z}, \frac{1}{w} \right) \]

- Parametrization: \(u \mapsto (\text{Exp}_{x,x+(1,0)}(u|k), \text{Exp}_{x,x+(0,1)}(u|k)) \)
- Area of the hole as a function of \(k \) and the local geom. of \(G \)
- Same curve for the Ising model with param. \(k \) and \(k^* \)
On periodic isoradial graphs: free energy

free energy F_{Ising}: normalized log of the partition function

Theorem

$$F_{\text{Ising}}(k) = -\frac{\log 2}{2} |V_1| - |V_1| \int_0^K 2H'(\theta) \log \text{sc}(\theta) d\theta + \sum_{e \in E_1} \left(-H(2\theta) \log \text{sc}(\theta) + \int_0^{\theta_e} 2H'(\theta) \log \text{sc}(\theta) d\theta \right).$$

As k goes to 0,

$$F_{\text{Ising}}(k) = F_{\text{Ising}}(0) - \frac{|V_1|}{2} k^2 \log k^{-1} + O(k^2)$$
Z-invariant Ising model and rooted spanning forests

- This free energy is half the free energy of rooted spanning forests, “counted” by the determinant of a massive Laplacian on isoradial graphs, with conductances $sc(2K\theta/\pi|k)$ we introduced.

- Same phase transition in Ising as from spanning forests to spanning trees

- Massive exponential functions: harmonic for this massive Laplacian (elliptic generalisation of Mercat’s harmonic exponential functions)
Phase transition in the Ising model