Éric Colin de Verdière

Dpt Informatique, École normale supérieure and CNRS, Paris, France

Joint work with

Grégory Ginot (University Paris 6, France)

Xavier Goaoc (Inria Nancy Grand-Est → LIGM, Marne-la-Vallée, France)
Helly’s original theorem (1923)

Let F be a finite family of convex sets in \mathbb{R}^d.
If every $G \subseteq F$ with $|G| \leq d + 1$ has non-empty intersection,
then F has non-empty intersection.

Small-sized certificate of empty intersection

If F has empty intersection, some subfamily of size $\leq d + 1$ has empty intersection.
Intersection patterns and simplicial complexes

Intersection patterns

- Let F be a (finite) family of subsets of an arbitrary ground set.
- The nerve $N(F)$ of F is $\{ G \subseteq F \mid \bigcap G \neq \emptyset \}$.
- It is a simplicial complex (stable under taking subsets / a.k.a. a monotone hypergraph / a monotone set system).
Definition

Missing face F' of $N(F)$:

\[
\begin{cases}
 F' \not\in N(F), \\
 \forall F'' \subset F', \ F'' \in N(F).
\end{cases}
\]

Definition

F is **k-Helly** if all the missing faces of $N(F)$ have size $\leq k$.

Small-sized certificate of empty intersection

If F has empty intersection, then some subfamily of F of size $\leq k$ has empty intersection.
Definition

Missing face F' of $N(F)$:
\[
\begin{align*}
F' &\not\in N(F), \\
\forall F'' \subset F', \ F'' &\in N(F).
\end{align*}
\]

Definition

F is k-Helly if all the missing faces of $N(F)$ have size $\leq k$.

\[\Downarrow\]

Small-sized certificate of empty intersection

If F has empty intersection, then some subfamily of F of size $\leq k$ has empty intersection.
Helly-type theorems

Definition

Missing face F' of $N(F)$:

\[
\begin{aligned}
F' &\not\in N(F), \\
\forall F'' \subsetneq F', \quad F'' \in N(F).
\end{aligned}
\]

Definition

F is k-Helly if all the missing faces of $N(F)$ have size $\leq k$.

Small-sized certificate of empty intersection

For each $G \subseteq F$, if G has empty intersection, then some subfamily of G of size $\leq k$ has empty intersection.
Definition

Missing face F' of $N(F)$:

\[
\begin{cases}
F' \notin N(F), \\
\forall F'' \subset F', \ F'' \in N(F).
\end{cases}
\]

Definition

F is k-Helly if all the missing faces of $N(F)$ have size $\leq k$.

Small-sized certificate of empty intersection

For each $G \subseteq F$, if G has empty intersection, then some subfamily of G of size $\leq k$ has empty intersection.
In this talk...

Results

- A new topological Helly-type theorem for families of disconnected geometric objects
- based on a generalization of the nerve theorem from topological combinatorics
- with applications to geometric transversal theory.
Warm-Up
Topological Helly theorem

Wanted!

Every “convex-like” family in \mathbb{R}^d is $(d + 1)$-Helly.

Wrong statement

Replace “convex-like” with “contractible” (“without hole”; e.g., homeomorphic to a convex set).

Definition

A (finite) family F of (open) geometric objects is **acyclic** (a.k.a. a good cover) if: For every $G \subseteq F$, \bigcap_G is either empty or contractible.

Topological Helly theorem

Every acyclic family in \mathbb{R}^d is $(d + 1)$-Helly [Helly, 1930].
Topological Helly theorem

Wanted!

Every “convex-like” family in \mathbb{R}^d is $(d + 1)$-Helly.

Wrong statement

Replace “convex-like” with “contractible” (“without hole”; e.g., homeomorphic to a convex set).

Definition

A (finite) family F of (open) geometric objects is acyclic (a.k.a. a good cover) if: For every $G \subseteq F$, $\bigcap G$ is either empty or contractible.

Topological Helly theorem

Every acyclic family in \mathbb{R}^d is $(d + 1)$-Helly [Helly, 1930].
Nerve theorem

If F is acyclic, then $\bigcup F \simeq N(F)$: they have “holes” in the same dimensions [Borsuk, 1948].

Proof(s)

- Follows “trivially” from algebraic topology arguments;
- more “hands-on” (homotopic) combinatorial proof [Björner, 2003].
Nerve theorem

Nerves as topological spaces
- Vertices in general position in \mathbb{R}^d, d large;
- attach segments, triangles, tetrahedra, ...

If F is acyclic, then $\bigcup F \simeq N(F)$: they have “holes” in the same dimensions [Borsuk, 1948].

Proof(s)
- Follows “trivially” from algebraic topology arguments;
- more “hands-on” (homotopic) combinatorial proof [Björner, 2003].
Topological interlude: “holes”

Holes in a topological space S

- Formally, S has a k-hole if the kth dimensional reduced homology of S is nonzero: $\dim \tilde{H}_k(S, \mathbb{Q}) > 0$.

- Intuitively, S has a k-hole if some k-dimensional “closed part” of S is the boundary of no $(k + 1)$-dimensional subset of S.

- Examples:
 - S has a 0-hole if it is not connected;
 - S has a 1-hole if it contains a closed curve that is not the boundary of a surface in S;
 - S has a 2-hole if it contains a “bubble”…

- **Contractible** means “without hole”.

Intuitively, S has a k-hole if some k-dimensional “closed part” of S is the boundary of no $(k + 1)$-dimensional subset of S. **Contractible** means “without hole”.
Let F be an acyclic family in \mathbb{R}^d.
Let G be a missing face of $N(F)$.
- $N(G)$ has a $(|G| - 2)$-hole.
- On the other hand, we have $N(G) \simeq \bigcup G \ldots$
- and $\bigcup G \subseteq \mathbb{R}^d$, so $\bigcup G$ has no hole in dimension $\geq d$.
- So $|G| - 2 < d$, i.e., $|G| \leq d + 1$. \(\square\)
Let F be an acyclic family in \mathbb{R}^d.
Let G be a missing face of $N(F)$.
- $N(G)$ has a $(|G| - 2)$-hole.
- On the other hand, we have $N(G) \simeq \bigcup G \ldots$
- and $\bigcup G \subseteq \mathbb{R}^d$, so $\bigcup G$ has no hole in dimension $\geq d$.
- So $|G| - 2 < d$, i.e., $|G| \leq d + 1$. □
Let F be an acyclic family in \mathbb{R}^d.
Let G be a missing face of $N(F)$.
$N(G)$ has a $(|G| - 2)$-hole.
On the other hand, we have $N(G) \cong \bigcup_G \ldots$
and $\bigcup_G \subseteq \mathbb{R}^d$, so \bigcup_G has no hole in dimension $\geq d$.
So $|G| - 2 < d$, i.e., $|G| \leq d + 1$. □
Let F be an acyclic family in \mathbb{R}^d.
Let G be a missing face of $N(F)$.
$N(G)$ has a $(|G| - 2)$-hole.
On the other hand, we have $N(G) \simeq \bigcup G \ldots$
and $\bigcup G \subseteq \mathbb{R}^d$, so $\bigcup G$ has no hole in dimension $\geq d$.
So $|G| - 2 < d$, i.e., $|G| \leq d + 1$. □
Let F be an acyclic family in \mathbb{R}^d.
Let G be a missing face of $N(F)$.
$N(G)$ has a $(|G| - 2)$-hole.
On the other hand, we have $N(G) \simeq \bigcup G \ldots$
and $\bigcup G \subseteq \mathbb{R}^d$, so $\bigcup G$ has no hole in dimension $\geq d$.
So $|G| - 2 < d$, i.e., $|G| \leq d + 1$. \square
Let F be an acyclic family in \mathbb{R}^d.
Let G be a missing face of $N(F)$.
$N(G)$ has a $(|G| - 2)$-hole.
On the other hand, we have $N(G) \cong \bigcup G \ldots$
and $\bigcup G \subseteq \mathbb{R}^d$, so $\bigcup G$ has no hole in dimension $\geq d$.
So $|G| - 2 < d$, i.e., $|G| \leq d + 1$. □
Results
Definition

A family F of sets in \mathbb{R}^d is r-acyclic if $\forall G \subseteq F$, $\bigcap G$ is the disjoint union of at most r contractible sets.

Topological Helly theorem

Let F be a 1-acyclic family in \mathbb{R}^d. Then F is $(d + 1)$-Helly.

Remarks

- The value $(d + 1)r$ cannot be lowered;
- strengthens a result by [Kalai and Meshulam, 2008] on r-families of acyclic families (also [Amenta, 1996]);
 - r-family F of a “ground” family G: The intersection of a subfamily of F is the disjoint union of at most r elements in G.
- [Matoušek, 1997] had proved that F is k-Helly for some (large) k.
Generalized version

Definition

A family F of sets in \mathbb{R}^d is r-acyclic if $\forall G \subseteq F$, $\bigcap G$ is the disjoint union of at most r contractible sets.

New topological Helly-type theorem: Let $r \geq 1$

Let F be an r-acyclic family in \mathbb{R}^d. Then F is $(d + 1) \times r$-Helly.

Remarks

- The value $(d + 1)r$ cannot be lowered;
- strengthens a result by [Kalai and Meshulam, 2008] on r-families of acyclic families (also [Amenta, 1996]);
 - r-family F of a “ground” family G: The intersection of a subfamily of F is the disjoint union of at most r elements in G.
- [Matoušek, 1997] had proved that F is k-Helly for some (large) k.
Generalized version

Definition

A family F of sets in \mathbb{R}^d is r-acyclic if $\forall G \subseteq F$, $\bigcap G$ is the disjoint union of at most r contractible sets.

New topological Helly-type theorem: Let $r \geq 1$

Let F be an r-acyclic family in \mathbb{R}^d.
Then F is $(d + 1) \times r$-Helly.

Remarks

- The value $(d + 1)r$ cannot be lowered;
- strengthens a result by [Kalai and Meshulam, 2008] on r-families of acyclic families (also [Amenta, 1996]);
 r-family F of a “ground” family G: The intersection of a subfamily of F is the disjoint union of at most r elements in G.
- [Matoušek, 1997] had proved that F is k-Helly for some (large) k.
Comparison with other results

convex sets in \mathbb{R}^d
[Helly, 1923]
$d + 1$

acyclic families in \mathbb{R}^d
[Helly, 1930]
$d + 1$

r-family of convex sets in \mathbb{R}^d
[Amenta, 1996]
$(d + 1)r$

topological condition
[Matoušek, 1997]
no explicit bound

r-family of an acyclic family in \mathbb{R}^d
[Kalai and Meshulam, 2008]
$(d + 1)r$

r-family of a non-additive family G closed under \bigcap
[Eckhoff and Nischke, 2009]
$r \times h(G)$

r-acyclic family
[CdV, G, and G]
$(d + 1)r$
Application to geometric transversal theory

- Let C_1, \ldots, C_n be disjoint convex sets in \mathbb{R}^d.
- For each i, let F_i be the set of lines meeting C_i.
- Let $F := \{F_1, \ldots, F_n\}$.

In which cases is F k-Helly?

Central question in geometric transversal theory.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Previous Bound</th>
<th>Our Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>paralleloptopes in \mathbb{R}^d ($d \geq 2$)</td>
<td>$2^{d-1}(2d - 1)$ [Santaló, 1940]</td>
<td>$2^{d-1}(2d - 1)$</td>
</tr>
<tr>
<td>disjoint translates of a convex in \mathbb{R}^2</td>
<td>5 [Tverberg, 1989]</td>
<td>10</td>
</tr>
<tr>
<td>disjoint unit balls in \mathbb{R}^d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d = 2$</td>
<td>5 [Danzer, 1957]</td>
<td>12</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>11 [Cheong et al., 2008]</td>
<td>15</td>
</tr>
<tr>
<td>$d = 4$</td>
<td>15 [Cheong et al., 2008]</td>
<td>20</td>
</tr>
<tr>
<td>$d = 5$</td>
<td>19 [Cheong et al., 2008]</td>
<td>20</td>
</tr>
<tr>
<td>$d \geq 6$</td>
<td>$4d - 1$ [Cheong et al., 2008]</td>
<td>$4d - 2$</td>
</tr>
</tbody>
</table>
Let C_1, \ldots, C_n be disjoint convex sets in \mathbb{R}^d.

For each i, let F_i be the set of lines meeting C_i.

Let $F := \{F_1, \ldots, F_n\}$.

In which cases is F k-Helly?

Central question in geometric transversal theory.

<table>
<thead>
<tr>
<th>Shape</th>
<th>previous bound</th>
<th>our bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>paralleloptopes in \mathbb{R}^d ($d \geq 2$)</td>
<td>$2^d - 1(2d - 1)$ [Santaló, 1940]</td>
<td>$2^d - 1(2d - 1)$</td>
</tr>
<tr>
<td>disjoint translates of a convex in \mathbb{R}^2</td>
<td>5 [Tverberg, 1989]</td>
<td>10</td>
</tr>
<tr>
<td>disjoint unit balls in \mathbb{R}^d</td>
<td>$d = 2$</td>
<td>5 [Danzer, 1957]</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>11 [Cheong et al., 2008]</td>
<td>15</td>
</tr>
<tr>
<td>$d = 4$</td>
<td>15 [Cheong et al., 2008]</td>
<td>20</td>
</tr>
<tr>
<td>$d = 5$</td>
<td>19 [Cheong et al., 2008]</td>
<td>20</td>
</tr>
<tr>
<td>$d \geq 6$</td>
<td>$4d - 1$ [Cheong et al., 2008]</td>
<td>$4d - 2$</td>
</tr>
</tbody>
</table>
Why does our result apply?

New topological Helly-type theorem

Let F be a family of sets in \mathbb{R}^d such that $\forall G \subseteq F$, $\bigcap G$ is the disjoint union of at most r contractible sets. Then F is $((d + 1)r)$-Helly.

Idea: Apply the main result in the space of lines of \mathbb{R}^d

- **Good**: Often, if $G \subseteq F$, each connected component of $\bigcap G$ corresponds to a geometric permutation of the objects C_i.
- **Bad**: The space of lines in \mathbb{R}^d is a $(2d - 2)$-manifold. → Extension to arbitrary topological spaces (d=dimension of vanishing homology of open sets).
- **Bad**: Some components of $\bigcap G$ are not contractible. → For small G, allow $\bigcap G$ to have holes in low dimension.
Why does our result apply?

New topological Helly-type theorem

Let F be a family of sets in \mathbb{R}^d such that $\forall G \subseteq F$, $\bigcap G$ is the disjoint union of at most r contractible sets. Then F is $((d + 1)r)$-Helly.

Idea: Apply the main result in the space of lines of \mathbb{R}^d

- **Good**: Often, if $G \subseteq F$, each connected component of $\bigcap G$ corresponds to a geometric permutation of the objects C_i.

- **Bad**: The space of lines in \mathbb{R}^d is a $(2d - 2)$-manifold.
 → Extension to arbitrary topological spaces ($d=$dimension of vanishing homology of open sets).

- **Bad**: Some components of $\bigcap G$ are not contractible.
 → For small G, allow $\bigcap G$ to have holes in low dimension.
Why does our result apply?

New topological Helly-type theorem

Let F be a family of sets in \mathbb{R}^d such that $\forall G \subseteq F$, \bigcap_G is the disjoint union of at most r contractible sets. Then F is $((d+1)r)$-Helly.

Idea: Apply the main result in the space of lines of \mathbb{R}^d

- **Good**: Often, if $G \subseteq F$, each connected component of \bigcap_G corresponds to a geometric permutation of the objects C_i.
- **Bad**: The space of lines in \mathbb{R}^d is a $(2d-2)$-manifold.
 \rightarrow Extension to arbitrary topological spaces ($d=$dimension of vanishing homology of open sets).
- **Bad**: Some components of \bigcap_G are not contractible.
 \rightarrow For small G, allow \bigcap_G to have holes in low dimension.
Sketch of Proof
The multinerve $M(F)$ of a family F of sets is a blown-up version of the nerve $N(F)$: (roughly,) order the connected components of the intersecting subfamilies by inclusion.

- $M(F)$ is a more general simplicial poset [Björner, Stanley, ...];
- every “lower interval” is a simplex.
The multinerve $M(F)$ of a family F of sets is a blown-up version of the nerve $N(F)$: (roughly,) order the connected components of the intersecting subfamilies by inclusion.

- $M(F)$ is a more general simplicial poset [Björner, Stanley, ...];
- every “lower interval” is a simplex.
Main new object: the multinerve

The multinerve $M(F)$ of a family F of sets is a blown-up version of the nerve $N(F)$: (roughly,) order the connected components of the intersecting subfamilies by inclusion.

- $M(F)$ is a more general simplicial poset [Björner, Stanley, ...];
- every “lower interval” is a simplex.
The **multinerve** $M(F)$ of a family F of sets is a blown-up version of the nerve $N(F)$: (roughly,) order the connected components of the intersecting subfamilies by inclusion.

- $M(F)$ is a more general *simplicial poset* [Björner, Stanley, ...];
- every “lower interval” is a simplex.
Main new object: the multinerve

The multinerve $M(F)$ of a family F of sets is a blown-up version of the nerve $N(F)$: (roughly,) order the connected components of the intersecting subfamilies by inclusion.

- $M(F)$ is a more general simplicial poset [Björner, Stanley, ...];
- every “lower interval” is a simplex.
Multinerve theorem

Let F be a family of sets in \mathbb{R}^d such that $\forall G \subseteq F$, \bigcap_G is the disjoint union of finitely many contractible sets. Then $M(F)$ and \bigcup_F have holes in the same dimensions.

Proof

- Spectral sequences with Leray’s acyclic cover theorem;
- alternatively, variation on [Björner, 2003].
We know that $M(F)$ has no hole in dimension $\geq d$; we want to infer that $N(F)$ has no hole in dimension $\geq (d + 1)r - 1$.

Theorem [Kalai and Meshulam, 2008]

- Let M and N be simplicial complexes.
- Let $\pi : M \to N$ be simplicial, size-preserving, at most r-to-one, and onto.
- Assume (roughly) that M has no hole in dim. $\geq d$.
 Assume that some suitably defined subcomplexes of $sd(M)$ have no hole in dim. $\geq d$.

Then N has no hole in dimension $\geq (d + 1)r - 1$.
We know that $M(F)$ has no hole in dimension $\geq d$; we want to infer that $N(F)$ has no hole in dimension $\geq (d + 1)r - 1$.

Theorem [Kalai and Meshulam, 2008]

Let M and N be simplicial complexes. Let $\pi : M \rightarrow N$ be simplicial, size-preserving, at most r-to-one, and onto.

Assume (roughly) that M has no hole in dim. $\geq d$. Assume that some suitably defined subcomplexes of $sd(M)$ have no hole in dim. $\geq d$.

Then N has no hole in dimension $\geq (d + 1)r - 1$.
New topological Helly theorem: proof sketch

- We know that $M(F)$ has no hole in dimension $\geq d$;
- we want to infer that $N(F)$ has no hole in dimension $\geq (d + 1)r - 1$.

Theorem [Kalai and Meshulam, 2008]

- Let M and N be simplicial complexes.
- Let $\pi : M \to N$ be simplicial, size-preserving, at most r-to-one, and onto.
- Assume (roughly) that M has no hole in dim. $\geq d$.
 Assume that some suitably defined subcomplexes of sd(M) have no hole in dim. $\geq d$.

Then N has no hole in dimension $\geq (d + 1)r - 1$.
We know that $M(F)$ has no hole in dimension $\geq d$; we want to infer that $N(F)$ has no hole in dimension $\geq (d + 1)r - 1$.

Theorem (generalizing [Kalai and Meshulam, 2008])

- Let M be a simplicial poset and N a simplicial complex.
- Let $\pi : M \to N$ be simplicial, size-preserving, at most r-to-one, and onto.
- Assume (roughly) that M has no hole in dim. $\geq d$.
 Assume that some suitably defined subcomplexes of $sd(M)$ have no hole in dim. $\geq d$.

Then N has no hole in dimension $\geq (d + 1)r - 1$.
We know that $M(F)$ has no hole in dimension $\geq d$; we want to infer that $N(F)$ has no hole in dimension $\geq (d + 1)r - 1$.

Theorem (generalizing [Kalai and Meshulam, 2008])

Let M be a simplicial poset and N a simplicial complex.

Let $\pi : M \to N$ be simplicial, size-preserving, at most r-to-one, and onto.

Assume (roughly) that M has no hole in dim. $\geq d$. Assume that some suitably defined subcomplexes of $sd(M)$ have no hole in dim. $\geq d$.

Then N has no hole in dimension $\geq (d + 1)r - 1$.

Tools

Algebraic topology (spectral sequences, multiple point set, etc.).
Definition
If σ is a simplex of a simplicial poset X, then $\text{barylink}_X(\sigma)$ is the subcomplex of sd_X that is the order complex of $(\sigma, \cdot]$ in X.

Lemma
For any acyclic family F in \mathbb{R}^d, $\text{barylink}_{M(F)}(\sigma)$ has no hole in dimension $\geq d$.
Proof sketch (end)

Multiple point set

\[M_k := \{ m_1, \ldots, m_k \in |M|^k \mid \pi(m_1) = \ldots = \pi(m_k) \}. \]

Consequence of [Goryunov and Mond, 1993]

Some spectral sequence \((E_{p,q}^\bullet)\) converging to \(H_\ast(N)\) satisfies:

If, for all \(q\), for all \(p \leq r - 1\), and for all \(p + q \geq (d + 1)r - 1\), we have \(H_q(M_{p+1}) = 0\),

then \(E_{p,q}^1 = 0\) (and therefore \(H_k(N) = 0\) for all \(k \geq (d + 1)r - 1\)).

Rephrasing [Kalai and Meshulam, 2008]

Some spectral sequence \((E'_{p,q}^\bullet)\) converging to \(H_\ast(M_{p+1})\) satisfies

\[
E'_{p,q}^1 \cong \bigoplus_{(\sigma_2, \ldots, \sigma_k) \in S_p} \bigoplus_{i_1, \ldots, i_k \geq 0} \bigcap_{i=2}^k \tilde{\sigma}_i \left(M \left[\bigcap_{i=2}^k \tilde{\sigma}_i \right] \right) \otimes \bigotimes_{j=2}^k \tilde{H}_{i_j-1} \left(\text{barylink}_M(\sigma_j) \right)
\]

Thus in our setting \(H_q(M_{p+1}) = 0\)
Conclusion
Fractional Helly-type theorems

Definition

F is *k-fractional Helly* if the following holds: If “many” k-tuples of F have non-empty intersection, then there exists a “large” subfamily of F that has non-empty intersection.

More precisely: If a fraction x of the k-tuples have non empty intersection, then a fraction $f(x)$ of the elements in F have non-empty intersection, where $f(x)$ tends to one as x tends to one.

More theorems for free!

Using [Alon, Kalai, Matoušek, Meshulam, 2002], we obtain immediately such fractional Helly theorems for r-acyclic families.
Conclusion: Get rid of topology?

Another proof without topology?

[Eckhoff and Nischke, 2009] reproves [Kalai and Meshulam, 2008] in a purely combinatorial way ("generalized pigeonhole principle"). Can we use that proof technique instead?

Core of their proof

- Let M, N be simplicial complexes.
- Let $\pi : M \to N$ be simplicial, size-preserving, at most r-to-one, and onto.
- If N contains all the strict subfamilies of a set S of size $k + 1$, then $\pi^{-1}(2^S)$ contains all the subfamilies of size $\leq \left\lfloor \frac{k}{r} \right\rfloor$ of a set of size $k + 1$.

Can we allow M to be a simplicial poset? Under which conditions?
Thanks!
Most general results

Common hypotheses

- Let Γ be a locally arcwise connected topological space.
- Let F be a finite family of open subsets of Γ that is r-acyclic with slack d: for every subfamily $G \subseteq F$, $G \neq \emptyset$,
 - if $|G| \geq d$, then G intersects in at most r connected components.
 - for every $i \geq \max\{1, d - |G|\}$, we have $\tilde{H}_i(\bigcap G, \mathbb{Q}) = 0$.

General multinerve theorem

For every $i \geq d$, $\tilde{H}_i(M(F), \mathbb{Q}) \simeq \tilde{H}_i(\bigcup F, \mathbb{Q})$.

General topological Helly theorem

Assume moreover that every open set of Γ has trivial homology in dimension $\geq d$. Then F is $((d + 1)r)$-Helly.