Statistical physics approach to compressed sensing

Marc Mézard
LPTMS, Université Paris Sud, CNRS

collaboration with

Florent Krzakala (ESPCI), François Sausset
(LPTMS), Yifan Sun (ESPCI), Lenka Zdeborova (IPhT)

arXiv:1109.4424
Sparse signals

From 65,536 wavelet coefficients, keep 25,000

(From Candes-Wakin)

Exploited for data compression (JPEG). More recently: data acquisition (..., Donoho, Candes-Romberg-Tao, 2006, +...)

dimanche 10 juin 2012
Compressed sensing

Acquire N bit data by doing measurements on much less than N bits (possible if signal is compressible, i.e. it has much less than N bits of information).

Possible applications:
- Rapid Magnetic Resonance Imaging
- Tomography, microscopy
- Image acquisition (single-pixel camera)
- Infer regulatory interactions among many genes using only a limited number of experimental conditions
- Possible relevance in information processing in the brain (e.g. uncover original signal from compressed signal sent by retina
- ...

dimanche 10 juin 2012
An example from magnetic resonance imaging

Left: image acquired with compressed sensing: acceleration 2.5

Lustig et al.,
The simplest problem: getting a signal from some measurement= linear transforms

Consider a system of linear measurements

\[y = Fx \]

Measurements

\[y = \begin{pmatrix} y^1 \\ \vdots \\ y^M \end{pmatrix} \]

(e.g. wavelet components)

Signal

\[x = \begin{pmatrix} x^1 \\ \vdots \\ x^N \end{pmatrix} \]

\(F = M \times N \) matrix

Pb: Find \(x \) when \(M < N \) and \(x \) is sparse
The problem: \[y = Fs \] and \(x \) is sparse, i.e. it has \(R \) components \(\neq 0 \)

\[R < M < N \] \(y \) is observed, \(F \) is known. Find \(s \)

Study the linear system \[y = Fx \]

Exploit the sparsity of the original \(s \)
The problem: \[y = Fs \] and \(s \) is sparse \[\text{and} \quad R \text{ components } \neq 0 \]

→ Study the linear system \[y = Fx \]

A ‘simple’ solution: guess the positions where \(x_i \neq 0 \) and check if it is correct

e.g. \(x_1, \ldots, x_R \neq 0 \)

\[G = \{ R \text{ first columns of } F \} \]

Solve: \[y_\mu = \sum_{i=1}^{R} G^{\mu i} x_i \quad \mu = 1, \ldots, M \]

\(R < M \) → too many equations

→ generically inconsistent (no solution), except if the guess of locations of \(x_i \neq 0 \) was correct

dimanche 10 juin 2012
The problem: \(y = Fs \) and \(s \) is sparse

\[R \text{ components } \neq 0 \]

Study the linear system \(y =Fx \)

A ‘simple’ solution: guess the positions where \(x_i \neq 0 \) and check if it is correct

e.g. \(G = \{ x_1, x_2 \} \)

\[\binom{N}{R} \text{ possible guesses} \]

Solve:

\[y_\mu = R_i \]

\[x_i \mu = 1, \ldots , M \]

\(R < M \) generically inconsistent (no solution), except if the guess of locations of \(x_i \neq 0 \) was correct
Compressed sensing as an optimization problem: the L_1 norm approach

Find a N-component vector x such that the M equations $y = Fx$ are satisfied and $\|x\|$ is minimal.

Hopefully: $x = s$

$$\|x\|_0 : \text{number of non-zero components}$$

$$\|x\|_p = \sum_{i} |x_i|^p$$

Ideally, use $\|x\|_0$. In practice, use $\|x\|_1$.
Compressed sensing as an optimization problem: the L_1 norm approach

Find a N-component vector x such that the M equations $y = Fx$ are satisfied and $||x||$ is minimal.

Worst-case analysis: How many equations are needed in order to get the correct result for any initial sparse signal? Candès-Tao, Donoho

Typical-case analysis: How many equations are needed in order to get the correct result for almost all initial sparse signals and measurement matrices, drawn from some measure (e.g. $F_{\mu i} = \text{iid Gaussian variables}$)
Phase diagram of the L_1 norm approach

Find a N - component vector x such that the M equations $y = Fx$ are satisfied and $||x||$ is minimal.

Hardest and most interesting regime:

- $N \gg 1$ variables
- $R = \rho N$ non-zero variables
- $M = \alpha N$ equations

Typical-case analysis: phase diagram in the plane ρ, α
Find a \(N \)-component vector \(x \) such that the equations \(y = Fx \) are satisfied and \(\|x\| \) is minimal.
Possible by linear programming
Efficient message passing solution

Donoho Maleki Montanari;
(Kabashima MM)

Possible by enumeration, using a time $O(e^N)$

Reconstruction impossible
Alternative approach, able to reach the optimal rate $\alpha = \rho$

Krzakala Sausset Mézard Sun Zdeborova 2011

- Probabilistic approach
- Message passing reconstruction of the signal
- Careful design of the measurement matrix

NB: each of these three ingredients is crucial
Step 1: Probabilistic approach to compressed sensing

Signal generated from:

\[P_0(s) = \prod_{i=1}^{N} [(1 - \rho_0)\delta(s_i) + \rho_0\phi_0(s_i)] \]

Probabilistic decoding using:

\[P(x) = \prod_{i=1}^{N} [(1 - \rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{P} \delta \left(y_\mu - \sum_i F_{\mu i}x_i \right) \]

NB: \((\rho, \phi(x))\) may be distinct from true signal distribution \((\rho_0, \phi_0(x))\): no need of prior knowledge of signal

Theorem: if \(\rho_0 < 1\), \(\rho < 1\), \(\alpha > \rho_0\), \(F\) random Gaussian, in the large \(N\) limit the maximum of \(P(x)\) is at \(x = s\)

Sampling from \(P(x)\) is optimal, even if we do not know the correct \(\rho_0\), \(\phi_0\) Not intuitive!

dimanche 10 juin 2012
Theorem: if \(\rho_0 < 1 \), \(\rho < 1 \), \(\alpha > \rho_0 \), \(F \) random Gaussian, in the large \(N \) limit the maximum of \(P(x) \) is at \(x = s \)

\[
Z(D) \equiv \lim_{\Delta \to 0} \int \prod_{i=1}^{N} dx_i \prod_{i=1}^{N} (x_i - s_i)^2 / N = D \\
\prod_{i=1}^{N} [(1 - \rho) \delta(x_i) + \rho \phi(x_i)] \prod_{\mu=1}^{M} \frac{1}{\sqrt{2\pi \Delta}} e^{-\frac{1}{2\Delta} \left[\sum_{i=1}^{N} F_{\mu_i}(x_i - s_i) \right]^2}
\]

In the limit \(\Delta \to 0 \) when \(D \to 0 \) (i.e. \(x = s \)) there is a factor \(\delta(0)^{(1-\rho_0+\alpha)N} \) and \(N \) integrals over \(x_i \)

Therefore \(\lim_{D \to 0} Z(D) = \infty \) when \(\alpha > \rho_0 \). (Proof...)

while \(Z(D > 0) \) is finite. (Proof by first moment (annealed) bound)
Step 2: belief propagation-based reconstruction with parameter learning

\[
P(x) = \prod_{i=1}^{N} [(1 - \rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{P} \delta \left(y_\mu - \sum_i F_{\mu i} x_i \right) \]

«Native configuration» = stored signal \(x_i = s_i \) is infinitely more probable than other configurations.
Efficient sampling?

Use belief propagation, with gaussian-approximated messages, and parameter learning of \((\rho, \phi)\).
Belief propagation = replica symmetric cavity method on a given instance

\[P(x) = \prod_{i=1}^{N} \left[(1 - \rho) \delta(x_i) + \rho \phi(x_i) \right] \prod_{\mu=1}^{P} \delta \left(y_\mu - \sum_{i} F_{\mu i} x_i \right) \]
«spins»

\[m_{\mu \rightarrow i}(x_i) : \text{distribution of } x_i \text{ when it is connected only to } \mu \]

constraints = interactions

\[m_{\mu \rightarrow i}(x_i) = \frac{1}{Z_{\mu \rightarrow i}} \int \prod_{j \neq i} dx_j \prod_{j \neq i} m_{j \rightarrow \mu}(x_j) \delta \left(\sum_j F_{\mu j} x_j - y_\mu \right) \]

\[m_{j \rightarrow \mu}(x_j) : \text{distribution of } x_j \text{ when } \mu \text{ is absent} \]
Message passing for compressed sensing

\[m_{i \to \mu}(x_i) \] : distribution of \(x_i \)
when it is disconnected from \(\mu \)

Belief Propagation equations

\[
m_{i \to \mu}(x_i) = \frac{1}{Z_{i \to \mu}} \left[(1 - \rho)\delta(x_i) + \rho \phi(x_i) \right] \prod_{\gamma \neq \mu} m_{\gamma \to i}(x_i)
\]

\[
m_{\mu \to i}(x_i) = \frac{1}{Z_{\mu \to i}} \int \prod_{j \neq i} dx_j \prod_{j \neq i} m_{j \to \mu}(x_j) \delta \left(\sum_j F_{\mu j} x_j - y_\mu \right)
\]

dimanche 10 juin 2012
NB: Validity of BP equations?

- Fully connected system, «couplings» \(F_{\mu i} = O(1/\sqrt{N}) \)

 SK like. small correlations within one single pure state

- If the prior matches the original signal distribution
 \((\rho = \rho_0, \phi(x) = \phi_0(x)) \), then a Nishimori condition guarantees that there is a single pure state --- BP OK

\[
m_{i \rightarrow \mu}(x_i) = \frac{1}{Z_{i \rightarrow \mu}} \left[(1 - \rho)\delta(x_i) + \rho \phi(x_i) \right] \prod_{\gamma \neq \mu} m_{\gamma \rightarrow i}(x_i)
\]

\[
m_{\mu \rightarrow i}(x_i) = \frac{1}{Z_{\mu \rightarrow i}} \int \prod_{j \neq i} dx_j \prod_{j \neq i} m_{j \rightarrow \mu}(x_j) \delta \left(\sum_j F_{\mu j} x_j - y_\mu \right)
\]

dimanche 10 juin 2012
Message passing for compressed sensing

Large connectivity: simplification by projection on first two moments (cf SK model).

One message = two numbers (mean, variance)

\[
m_{i \rightarrow \mu}(x_i) = \frac{1}{Z_{i \rightarrow \mu}} \left[(1 - \rho) \delta(x_i) + \rho \phi(x_i) \right] \prod_{\gamma \neq \mu} m_{\gamma \rightarrow i}(x_i)
\]

\[
m_{\mu \rightarrow i}(x_i) = \frac{1}{Z_{\mu \rightarrow i}} \int \prod_{j \neq i} dx_j \prod_{j \neq i} m_{j \rightarrow \mu}(x_j) \delta \left(\sum_j F_{\mu j} x_j - y_\mu \right)
\]
Large connectivity: simplification by projection of the messages on their first two moments

\[a_{i \rightarrow \mu} = \int dx_{i} x_{i} m_{i \rightarrow \mu}(x_{i}) \]

\[v_{i \rightarrow \mu} = \int dx_{i} x_{i}^{2} m_{i \rightarrow \mu}(x_{i}) - a_{i \rightarrow \mu}^{2} \]

\[m_{\mu \rightarrow i}(x_{i}) = \frac{1}{\tilde{Z}_{\mu \rightarrow i}} e^{-\frac{x_{i}^{2}}{2}} A_{\mu \rightarrow i} + B_{\mu \rightarrow i} x_{i} \]

\[m_{i \rightarrow \mu}(x_{i}) = \frac{1}{\tilde{Z}_{i \rightarrow \mu}} \left[(1 - \rho) \delta(x_{i}) + \rho \phi(x_{i}) \right] e^{-\frac{x_{i}^{2}}{2}} \sum_{\gamma \neq \mu} A_{\gamma \rightarrow i} + x_{i} \sum_{\gamma \neq \mu} B_{\gamma \rightarrow i} \]

Gaussian-projected BP («relaxed-BP»)

... (TAP +cavity method for SK model)...

Kabashima Saad, Guo Wang, Rangan → CS

dimanche 10 juin 2012
Parameter learning

\[
P(x) = \frac{1}{Z} \prod_{i=1}^{N} [(1 - \rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{M} \delta \left(y_\mu - \sum_{i=1}^{N} F_{\mu i} x_i \right)
\]

Parameters: \(\rho, \overline{x}, \sigma \)

(taking Gaussian \(\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\overline{x})^2}{2\sigma^2}} \))

Express the Bethe free-entropy \(\log Z \) in terms of the BP messages.

Update the parameters \(\rho, \overline{x}, \sigma \) at each iteration by moving in the direction of the gradient of \(\log Z \)

Find the parameters which maximize \(Z \)
Performance of the probabilistic approach + message passing + parameter learning

\[Z = \int \prod_{j=1}^{N} dx_j \prod_{i=1}^{N} [(1 - \rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{M} \delta \left(y_\mu - \sum_{i=1}^{N} F_{\mu i} x_i \right) \]

\[F_{\mu i} \text{ iid Gaussian, variance } 1/N \]

- Simulations
- Analytic study of the large \(N \) limit
Analytic study: cavity equations, density evolution, replicas, state evolution

\[Z = \int \prod_{j=1}^{N} dx_j \prod_{i=1}^{N} [(1 - \rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{M} \delta \left(y_\mu - \sum_{i=1}^{N} F_{\mu i} x_i \right) \]

Quenched disorder:

\[F_{\mu i} \quad \text{iid Gaussian, variance} \quad 1/N \]

\[y_\mu = \sum_{i=1}^{N} F_{\mu i} x_i^0 \quad \text{where} \quad x_i^0 \quad \text{are iid distributed from} \]

\[(1 - \rho_0)\delta(x_i^0) + \rho_0\phi_0(x_i) \]

Infinite range weak interactions...

Replica computation:

\[E(\log Z) = \lim_{n \to 0} \frac{E(Z^n) - 1}{n} \]
Analytic study: cavity equations, density evolution, replicas, state evolution

\[E(Z^n) = \max_{D,V} e^{Nn\Phi(D,V)} \]

\[\Phi \text{ is known} \]

Order parameters:

\[D = \frac{1}{N} \sum_i (\langle x_i \rangle - s_i)^2 \]
\[V = \frac{1}{N} \sum_i (\langle x_i^2 \rangle - \langle x_i \rangle^2) \]

Cavity approach shows that the order parameters of the BP iteration flow according to the gradient of the replica free entropy \(\Phi \)

NB: Replica symmetric expression of \(\Phi \) is OK only on the Nishimori line: \(\rho = \rho_0 \quad \phi = \phi_0 \)
Free entropy

\[\Phi(D) \]

\[\alpha = 0.62 \]
\[\alpha = 0.6 \]
\[\alpha = 0.58 \]
\[\alpha = 0.56 \]

distance to native state

Dynamic glass transition

When \(\alpha \) is too small, BP is trapped in a glass phase

\[\rho_0 = 0.4 \]

BP convergence time

\[\alpha = \rho \]
\[\alpha_{rBP} \]
\[\alpha_{L1} \]

Number of iterations

Seeded BEP - \(L = 10 \)
Seeded BEP - \(L = 40 \)

dimanche 10 juin 2012
Performance of BP with parameter learning: phase diagram

Gaussian signal

Binary signal
Step 3: design the measurement matrix in order to get around the glass transition

Getting around the glass trap: design the matrix F so that one nucleates the naive state (crystal nucleation idea, borrowed from error correcting codes!)

Hassani Macris Urbanke
Nucleation and seeding
Getting around the glass trap: design the matrix F so that one nucleates the naive state (crystal nucleation idea, borrowed from error correcting codes!)

Step 3: design the measurement matrix in order to get around the glass transition

Seeded BP

Group the variables and the measurements into L blocks

$$F_{\mu i} = \text{independent random Gaussian variables, zero mean and variance } J_{b(\mu)b(i)}/N$$
Structured measurement matrix.
Variances of the matrix elements
\[
\begin{pmatrix}
y \\
\end{pmatrix}
=
\begin{pmatrix}
\begin{bmatrix}
1 \\
J_1 \\
J_2 \\
J_1 \\
1 \\
J_1 \\
1 \\
J_1 \\
J_2 \\
J_1 \\
1 \\
J_1 \\
J_2 \\
\end{bmatrix} & F \\
0 \\
& 0 \\
\end{pmatrix}
\times
\begin{pmatrix}
\end{pmatrix}
\]

- : unit coupling
- : coupling \(J_1 \)
- : coupling \(J_2 \)
- : no coupling (null elements)

\(L = 8 \)

\(N_i = \frac{N}{L} \)

\(M_i = \alpha_i \frac{N}{L} \)

\(\alpha_1 > \alpha_{BP} \)

\(\alpha_j = \alpha' < \alpha_{BP} \quad j \geq 2 \)

\(\alpha = \frac{1}{L} (\alpha_1 + (L - 1)\alpha') \)
\[
\begin{pmatrix}
\bullet \\
\end{pmatrix}
=
\begin{pmatrix}
1 & j_2 \\
\vdots & \vdots \\
1 & j_2 \\
\end{pmatrix}
\times
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix}
\]

\[N_i = \frac{N}{L}\]

\[L = 8\]

\[N_i = \frac{N}{L}\]

\[M_i = \alpha_i \frac{N}{L}\]

\[\alpha_1 > \alpha_{BP}\]

\[\alpha_j = \alpha' < \alpha_{BP} \quad j \geq 2\]

\[\alpha = \frac{1}{L} (\alpha_1 + (L - 1)\alpha')\]
\[M_1 = \alpha_1 N/L \]

\[y = F \times s \]

\[M_i = \alpha' N/L \]

\[i \in \{2, \cdots, L\} \]

\[L = 8 \]

\[N_i = N/L \]

\[M_i = \alpha_i N/L \]

\[\alpha_1 > \alpha_{BP} \]

\[\alpha_j = \alpha' < \alpha_{BP} \quad j \geq 2 \]

\[\alpha = \frac{1}{L} (\alpha_1 + (L - 1)\alpha') \]
\[
\begin{pmatrix}
\mathbf{y} \\
\end{pmatrix}
=
\begin{pmatrix}
\mathbf{F} \\
\end{pmatrix}
\times
\begin{pmatrix}
\mathbf{s} \\
\end{pmatrix}
\]

- : unit coupling
- : coupling \(J_1 \)
- : coupling \(J_2 \)
- : no coupling (null elements)

\(L = 8 \)

\(N_i = N/L \)

\(M_i = \alpha_i N/L \)

\(\alpha_1 > \alpha_{BP} \)

\(\alpha_j = \alpha' < \alpha_{BP} \quad j \geq 2 \)

\(\alpha = \frac{1}{L} (\alpha_1 + (L - 1) \alpha') \)
Numerical study

![Graph showing block index vs. mean square error for different time points.]

- $t = 10$ decoding of first block
- $t = 100$ decoding of blocks 1 to 9

Parameters:
- $L = 20$
- $N = 50000$
- $\rho = 0.4$
- $J_1 = 20$
- $J_2 = 0.2$
- $\alpha_1 = 1$
- $\alpha = 0.5$

dimanche 10 juin 2012
Performance of the probabilistic approach + message passing + parameter learning+ seeding matrix

\[
Z = \int \prod_{j=1}^{N} dx_j \prod_{i=1}^{N} [(1 - \rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{M} \delta \left(y_\mu - \sum_{i=1}^{N} F_{\mu i} x_i \right)
\]

\[
F = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
\]

- Simulations
- Analytic approaches
Analytic study: cavity equations, density evolution, replicas, state evolution

\[E(Z^n) = \max_{\{D_r, V_r, \}} e^{Nn\Phi(D_1, V_1, ..., D_L, V_L)} \]

\(\Phi \) is known

2L order parameters:

\[D_r = \frac{1}{N/L} \sum_{i \in B_r} (\langle x_i \rangle - s_i)^2 \]

\[V_r = \frac{1}{N/L} \sum_{i \in B_r} (\langle x_i^2 \rangle - \langle x_i \rangle^2) \]

Cavity approach shows that the order parameters of the BP iteration + parameter learning flow according to the gradient of the replica free entropy \(\Phi \):

dimanche 10 juin 2012
Replica/cavity analysis

\[E(Z^n) = \max_{D_1, V_1, \ldots, D_L, V_L} e^{Nn\phi(D_1, V_1, \ldots, D_L, V_L)} \]

Time evolution of the s-BP algorithm: follows the gradient of \(\phi(D_1, V_1, \ldots, D_L, V_L) \) + evolution of the parameters

Dynamical system, dimension 2L+3

Convergence time for the infinite \(N \) system
Performance of the probabilistic approach + message passing + parameter learning + seeding matrix

- Replica/cavity analysis

\[E(Z^n) = \max_{D_1, V_1, \ldots, D_L, V_L} e^{Nn\phi(D_1, V_1, \ldots, D_L, V_L)} \]

Numerical study of the dynamical system

- Optimize \(J_1, J_2 \)
- There is no dynamical glass transition (in the large \(L \) limit)

\[\alpha = \rho_0 + \frac{c}{L} \]
\[\rightarrow \alpha_c = \rho_0 \]

Recent proof: Donoho Javanmard Montanari

dimanche 10 juin 2012
Numerical study

\[\alpha = \rho \]

\[\alpha_{rBP} \]

\[\alpha_{L1} \]

\[\text{Mean square error} \]

\[\text{tanh}[\frac{4}{\rho} E] \]

\[\text{Number of iterations} \]

\[\text{dimanche 10 juin 2012} \]
Analytic study: cavity equations, density evolution, replicas

Replica study of the seeding measurement matrix: in some regimes of α_1, J_1, J_2

there is no dynamical glass transition (in the large L limit)

possible to reach the optimal compressed sensing limit $\alpha = \rho$
Theory: seeded-BP threshold at $\alpha = \rho$ when $L \to \infty$

L_1 phase transition line moves up when using seeding F
with US notation:

Our s-BP algorithm:
- large-N theory
- simulations

Donoho Tanner

dimanche 10 juin 2012
Shepp-Logan phantom, in the Haar-wavelet representation
\[\alpha = \rho \approx 0.24 \]
Summary

Progress based on the union of three ingredients:

- Probabilistic approach
- Message passing reconstruction of the signal
- Careful design of the measurement matrix to avoid glass transition

![Graph showing different regions and curves for probabilistic approach and message passing reconstruction.](image)
Very powerful CS solver, available on our «ASPICS» webpage:

www.
Finite-size effects
Robustness to noise

CS with Gauss-Bernoulli ($\rho_0=0.2$) noisy ($\sigma_n=10^{-4}$) signals

$N = 5000$

$L = 4$, theory BP, $L = 4$, $N = 5000$

$L_1 \min$, $N = 5000$

Robustness to noise
CS with Gauss-Bernoulli ($\rho_0=0.2$) noisy ($\sigma_n=10^{-4}$) signals

![Graph showing MSE vs. α for different L1 norms and signal recovery methods.](image)