Partitioning a graph into isomorphic subgraphs

Marthe Bonamy, Natasha Morrison, Alex Scott

Packings

\square

Packings

$$
H \subseteq G
$$

Packings

$H \subseteq G$

H-packing: collection of vertex-disjoint copies of H in G

Packings

$H \subseteq G$

H-packing: collection of vertex-disjoint copies of H in G
perfect H-packing: H-packing that spans all vertices in G

Packings

$H \subseteq G$

H-packing: collection of vertex-disjoint copies of H in G
perfect H-packing: H-packing that spans all vertices in G

Necessary conditions for G to admit a perfect H-matching?

Packings

$H \subseteq G$

H-packing: collection of vertex-disjoint copies of H in G
perfect H-packing: H-packing that spans all vertices in G

Necessary conditions for G to admit a perfect H-matching?
(1) $|V(H)|$ divides $|V(G)|$

Packings

$H \subseteq G$

H-packing: collection of vertex-disjoint copies of H in G
perfect H-packing: H-packing that spans all vertices in G

Necessary conditions for G to admit a perfect H-matching?
(1) $|V(H)|$ divides $|V(G)|$
(2) Every vertex of G belongs to a copy of H

Perfect matchings

G

Perfect matching $=$ Perfect \bullet-packing

Perfect matchings

G on an even number of vertices
Perfect matching $=$ Perfect \bullet-packing

Perfect matchings

G on an even number of vertices
Perfect matching $=$ Perfect \bullet-packing

Theorem (Sumner 1974, Las Vergnas 1975)

If G has no induced \mathscr{V}, then G admits a perfect matching.

Perfect matchings

G on an even number of vertices
Perfect matching $=$ Perfect \bullet - packing

Theorem (Sumner 1974, Las Vergnas 1975)

If G has no induced \mathfrak{V}, then G admits a perfect matching.

Theorem (Godsil, Royle 2001)

If G is vertex-transitive, then G admits a perfect matching.
(Vertex-transitive $=\forall u, v, \exists$ automorphism f s.t. $f(u)=v)$

Cartesian products and Hypercubes

$G_{1} \square G_{2}$

Cartesian products and Hypercubes

$$
G_{1} \square G_{2}
$$

Cartesian products and Hypercubes

$$
\begin{aligned}
& G_{1} \square G_{2} \\
& V\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\} \\
& \vdots \\
& \vdots \\
& b \\
& \bullet \\
& \bullet
\end{aligned}={ }_{a_{1}}^{b_{1}} \bullet_{a_{2}}^{b_{2}} .
$$

Cartesian products and Hypercubes

$G_{1} \square G_{2}$

$V\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\}$
$E\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right)\left(u_{1}, v_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} v_{2} \in E\left(G_{2}\right)\right\} \cup$ $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, u_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\}$
$\stackrel{b}{\bullet} \square \stackrel{1}{\bullet} \stackrel{2}{\bullet} \stackrel{b}{1}^{b_{1}}{ }_{a_{2}}^{b_{2}}$

Cartesian products and Hypercubes

$G_{1} \square G_{2}$
$V\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\}$
$E\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right)\left(u_{1}, v_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} v_{2} \in E\left(G_{2}\right)\right\} \cup$ $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, u_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\}$

Cartesian products and Hypercubes

$G_{1} \square G_{2}$

$$
\begin{aligned}
& V\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\} \\
& E\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right)\left(u_{1}, v_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} v_{2} \in E\left(G_{2}\right)\right\} \cup \\
& \left\{\left(u_{1}, u_{2}\right)\left(v_{1}, u_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\}
\end{aligned}
$$

$$
G^{k}=\underbrace{G \square G \square \cdots \square G}_{k \text { times }}
$$

Cartesian products and Hypercubes

$G_{1} \square G_{2}$

$$
\begin{aligned}
& V\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\} \\
& E\left(G_{1} \square G_{2}\right)=\left\{\left(u_{1}, u_{2}\right)\left(u_{1}, v_{2}\right) \mid u_{1} \in V\left(G_{1}\right), u_{2} v_{2} \in E\left(G_{2}\right)\right\} \cup \\
& \left\{\left(u_{1}, u_{2}\right)\left(v_{1}, u_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\}
\end{aligned}
$$

$$
G^{k}=\underbrace{G \square G \square \cdots \square G}_{k \text { times }}
$$

Hypercube of dimension $k: Q_{k}=(\bullet)^{k}$

Higher dimension

For every $H \subseteq G$ satisfying conditions (1) and (2), does there exist $p \in \mathbb{N}$ such that G^{p} admits a perfect H-packing?

Higher dimension

For every $H \subseteq G$ satisfying conditions (1) and (2), does there exist $p \in \mathbb{N}$ such that G^{p} admits a perfect H-packing?

Question (Offner 2014)
What about if $G=Q_{k}$ for some k ?

Higher dimension

For every $H \subseteq G$ satisfying conditions (1) and (2), does there exist $p \in \mathbb{N}$ such that G^{p} admits a perfect H-packing?

Question (Offner 2014)

What about if $G=Q_{k}$ for some k ?
For every k, for every $H \subseteq Q_{k}$ with $|V(H)|=2 \cdots$, does there exist $p \in \mathbb{N}$ such that Q_{p} admits a perfect H-packing?

Higher dimension

For every $H \subseteq G$ satisfying conditions (1) and (2), does there exist $p \in \mathbb{N}$ such that G^{p} admits a perfect H-packing?

Question (Offner 2014)

What about if $G=Q_{k}$ for some k ?
For every k, for every $H \subseteq Q_{k}$ with $|V(H)|=2 \cdots$, does there exist $p \in \mathbb{N}$ such that Q_{p} admits a perfect H-packing?

Theorem (Gruslys 2016)

Yes.

Higher dimension

For every $H \subseteq G$ satisfying conditions (1) and (2), does there exist $p \in \mathbb{N}$ such that G^{p} admits a perfect H-packing?

Question (Offner 2014)

What about if $G=Q_{k}$ for some k ?
For every k, for every $H \subseteq Q_{k}$ with $|V(H)|=2 \cdots$, does there exist $p \in \mathbb{N}$ such that Q_{p} admits a perfect H-packing?

Theorem (Gruslys 2016)

Yes.
Conjecture (Gruslys 2016)
Works for any vertex-transitive G.

Higher dimension: tori

Question

What about if $G=\left(C_{k}\right)^{p}$ for some k and p ?

Higher dimension: tori

Question

What about if $G=\left(C_{k}\right)^{p}$ for some k and p ?
For every k, p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0 \bmod |V(H)|$, does there exist $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing?

Higher dimension: tori

Question

What about if $G=\left(C_{k}\right)^{p}$ for some k and p ?
For every k, p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0 \bmod |V(H)|$, does there exist $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing?

Theorem (B., Morrison, Scott 2017)

Yes for even k.

Higher dimension: tori

Question

What about if $G=\left(C_{k}\right)^{p}$ for some k and p ?
For every k, p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0 \bmod |V(H)|$, does there exist $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing?

Theorem (B., Morrison, Scott 2017)

Yes for even k.

Theorem (B., Morrison, Scott 2017)

Not always for odd k unless maybe if k is a prime power.

Higher dimension: tori

Question

What about if $G=\left(C_{k}\right)^{p}$ for some k and p ?
For every k, p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0 \bmod |V(H)|$, does there exist $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing?

Theorem (B., Morrison, Scott 2017)

Yes for even k.

Theorem (B., Morrison, Scott 2017)

Not always for odd k unless maybe if k is a prime power.
What about $k=a \cdots$ where a is an odd prime?

Other settings

Other settings

Theorem (Gruslys, Leader, Tan 2015)
 $T \subseteq \mathbb{Z}^{k}$, where T is finite and $\neq \emptyset$. There is n s.t. \mathbb{Z}^{n} can be partitioned into isometric copies of T.

Other settings

Theorem (Gruslys, Leader, Tan 2015)

$T \subseteq \mathbb{Z}^{k}$, where T is finite and $\neq \emptyset$. There is n s.t. \mathbb{Z}^{n} can be partitioned into isometric copies of T.

Theorem (Gruslys, Leader, Tomon 2016 - 1991 conjecture of Lonc)

Let P be a poset of size 2^{k} with a greatest and least element. There is n s.t. the Boolean lattice $2^{[n]}$ can be partitioned into copies of P.

Other settings

Theorem (Gruslys, Leader, Tan 2015)

$T \subseteq \mathbb{Z}^{k}$, where T is finite and $\neq \emptyset$. There is n s.t. \mathbb{Z}^{n} can be partitioned into isometric copies of T.

Theorem (Gruslys, Leader, Tomon 2016 - 1991 conjecture of Lonc)

Let P be a poset of size 2^{k} with a greatest and least element. There is n s.t. the Boolean lattice $2^{[n]}$ can be partitioned into copies of P.

Conjecture (Gruslys, Leader, Tan 2016)
For $H \subseteq Q_{k}, \exists n$ s.t. Q_{n} can be edge-partitioned into copies of H.

Other settings

Theorem (Gruslys, Leader, Tan 2015)

$T \subseteq \mathbb{Z}^{k}$, where T is finite and $\neq \emptyset$. There is n s.t. \mathbb{Z}^{n} can be partitioned into isometric copies of T.

Theorem (Gruslys, Leader, Tomon 2016 - 1991 conjecture of Lonc)
Let P be a poset of size 2^{k} with a greatest and least element. There is n s.t. the Boolean lattice $2^{[n]}$ can be partitioned into copies of P.

Conjecture (Gruslys, Leader, Tan 2016)
For $H \subseteq Q_{k}, \exists n$ s.t. Q_{n} can be edge-partitioned into copies of H.

Theorem (B., Morrison, Scott 2017)

No. For every k, there is $Q_{k} \subseteq H \subseteq Q_{k+1}$ s.t. no Q_{n} can be edge-partitioned into copies of H.

The proof

For every even k, for every p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0$ $\bmod |V(H)|$, there exists $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing.

The proof

For every even k, for every p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0$ $\bmod |V(H)|$, there exists $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing.
r-cover: collection of copies of H s.t. every vertex of G belongs to r elements of the collection.

The proof

For every even k, for every p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0$ $\bmod |V(H)|$, there exists $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing.
r-cover: collection of copies of H s.t. every vertex of G belongs to r elements of the collection.
$(1 \bmod r)$-cover: collection of copies of H s.t. every vertex of G belongs to ($1 \bmod r$) elements of the collection.

The proof

For every even k, for every p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0$ $\bmod |V(H)|$, there exists $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing.
r-cover: collection of copies of H s.t. every vertex of G belongs to r elements of the collection.
$(1 \bmod r)$-cover: collection of copies of H s.t. every vertex of G belongs to $(1 \bmod r)$ elements of the collection.

Lemma (Gruslys, Leader, Tan 2016)

If for some $r \geq 1$, the graph $\left(C_{k}\right)^{p}$ admits both an r-cover and a (1 mod r)-cover, then it admits a perfect H-packing.

The proof

For every even k, for every p, for every $H \subseteq\left(C_{k}\right)^{p}$ with $k^{p} \equiv 0$ $\bmod |V(H)|$, there exists $n \in \mathbb{N}$ such that $\left(C_{k}\right)^{n}$ admits a perfect H-packing.
r-cover: collection of copies of H s.t. every vertex of G belongs to r elements of the collection.
$(1 \bmod r)$-cover: collection of copies of H s.t. every vertex of G belongs to $(1 \bmod r)$ elements of the collection.

Lemma (Gruslys, Leader, Tan 2016)

If for some $r \geq 1$, the graph $\left(C_{k}\right)^{p}$ admits both an r-cover and a (1 mod r)-cover, then it admits a perfect H-packing.
$r=|V(H)|$

Conclusion

Prime powers?

Better conjecture for the edge case?

Conclusion

Prime powers?

Better conjecture for the edge case?

Conjecture (Gruslys, Leader, Tomon 2016)

Let P be a finite poset. Is there a constant $c(P)$ such that, for any n, it is possible to cover all but at most $c(P)$ elements of $2^{[n]}$ with disjoint copies of P ?

Conjecture (Gruslys, Leader, Tan 2015)

For any $t \in \mathbb{N}^{*}, \exists$?d s.t. for any $T \subset \mathbb{Z}$ with $|T|=t$, we have that \mathbb{Z}^{d} can be partitioned into isometric copies of T ?

Conclusion

Prime powers?

Better conjecture for the edge case?

Conjecture (Gruslys, Leader, Tomon 2016)

Let P be a finite poset. Is there a constant $c(P)$ such that, for any n, it is possible to cover all but at most $c(P)$ elements of $2^{[n]}$ with disjoint copies of P ?

Conjecture (Gruslys, Leader, Tan 2015)

For any $t \in \mathbb{N}^{*}, \exists$? d s.t. for any $T \subset \mathbb{Z}$ with $|T|=t$, we have that \mathbb{Z}^{d} can be partitioned into isometric copies of T ?

Thanks!

