Partitioning a graph into isomorphic subgraphs

Marthe Bonamy, Natasha Morrison, Alex Scott

G

Marthe Bonamy Partitioning a graph into isomorphic subgraphs

H-packing: collection of vertex-disjoint copies of H in G

H-packing: collection of vertex-disjoint copies of H in G

perfect H-packing: H-packing that spans all vertices in G

H-packing: collection of vertex-disjoint copies of H in G

perfect *H*-packing: *H*-packing that spans <u>all</u> vertices in *G*

Necessary conditions for G to admit a perfect H-matching?

H-packing: collection of vertex-disjoint copies of H in G

perfect H-packing: H-packing that spans <u>all</u> vertices in G

H-packing: collection of vertex-disjoint copies of H in G

perfect H-packing: H-packing that spans all vertices in G

Necessary conditions for G to admit a perfect H-matching?

- |V(H)| divides |V(G)|
- 2 Every vertex of G belongs to a copy of H

G

Perfect matching = Perfect ● - packing

G on an even number of vertices

Perfect matching = Perfect ● - packing

G on an even number of vertices

Perfect matching = Perfect ● - packing

Theorem (Sumner 1974, Las Vergnas 1975)

If G has no induced Ψ , then G admits a perfect matching.

G on an even number of vertices

Perfect matching = Perfect ● - packing

Theorem (Sumner 1974, Las Vergnas 1975)

If G has no induced Ψ , then G admits a perfect matching.

Theorem (Godsil, Royle 2001)

If G is vertex-transitive, then G admits a perfect matching.

(Vertex-transitive= $\forall u, v, \exists$ automorphism f s.t. f(u) = v)

$$V(G_1 \Box G_2) = \{(u_1, u_2) | u_1 \in V(G_1), u_2 \in V(G_2)\}$$

$$V(G_1 \Box G_2) = \{(u_1, u_2) | u_1 \in V(G_1), u_2 \in V(G_2)\}$$

$$E(G_1 \Box G_2) = \{(u_1, u_2)(u_1, v_2) | u_1 \in V(G_1), u_2 v_2 \in E(G_2)\} \cup$$

$$\{(u_1, u_2)(v_1, u_2) | u_1 v_1 \in E(G_1), u_2 \in V(G_2)\}$$

$$V(G_1 \Box G_2) = \{(u_1, u_2) | u_1 \in V(G_1), u_2 \in V(G_2)\}$$

$$E(G_1 \Box G_2) = \{(u_1, u_2)(u_1, v_2) | u_1 \in V(G_1), u_2 v_2 \in E(G_2)\} \cup$$

$$\{(u_1, u_2)(v_1, u_2) | u_1 v_1 \in E(G_1), u_2 \in V(G_2)\}$$

$$V(G_1 \Box G_2) = \{(u_1, u_2) | u_1 \in V(G_1), u_2 \in V(G_2)\} \\ E(G_1 \Box G_2) = \{(u_1, u_2)(u_1, v_2) | u_1 \in V(G_1), u_2 v_2 \in E(G_2)\} \cup \\ \{(u_1, u_2)(v_1, u_2) | u_1 v_1 \in E(G_1), u_2 \in V(G_2)\}$$

$$G^k = \underbrace{G \square G \square \cdots \square G}_{k \text{ times}}$$

$$V(G_1 \Box G_2) = \{(u_1, u_2) | u_1 \in V(G_1), u_2 \in V(G_2)\} \\ E(G_1 \Box G_2) = \{(u_1, u_2)(u_1, v_2) | u_1 \in V(G_1), u_2 v_2 \in E(G_2)\} \cup \\ \{(u_1, u_2)(v_1, u_2) | u_1 v_1 \in E(G_1), u_2 \in V(G_2)\}$$

$$G^k = \underbrace{G \square G \square \cdots \square G}_{k \text{ times}}$$

Hypercube of dimension k: $Q_k = (\bullet - \bullet)^k$

Higher dimension

For every $H \subseteq G$ satisfying conditions (1) and (2), does there exist $p \in \mathbb{N}$ such that G^p admits a perfect *H*-packing?

Question (Offner 2014)

What about if $G = Q_k$ for some k?

Question (Offner 2014)

What about if $G = Q_k$ for some k? For every k, for every $H \subseteq Q_k$ with $|V(H)| = 2^{\cdots}$, does there exist $p \in \mathbb{N}$ such that Q_p admits a perfect H-packing?

Question (Offner 2014)

What about if $G = Q_k$ for some k? For every k, for every $H \subseteq Q_k$ with $|V(H)| = 2^{\cdots}$, does there exist $p \in \mathbb{N}$ such that Q_p admits a perfect H-packing?

Theorem (Gruslys 2016)

Yes.

Question (Offner 2014)

What about if $G = Q_k$ for some k? For every k, for every $H \subseteq Q_k$ with $|V(H)| = 2^{\cdots}$, does there exist $p \in \mathbb{N}$ such that Q_p admits a perfect H-packing?

Theorem (Gruslys 2016)

Yes.

Conjecture (Gruslys 2016)

Works for any vertex-transitive G.

What about if $G = (C_k)^p$ for some k and p?

What about if $G = (C_k)^p$ for some k and p? For every k, p, for every $H \subseteq (C_k)^p$ with $k^p \equiv 0 \mod |V(H)|$, does there exist $n \in \mathbb{N}$ such that $(C_k)^n$ admits a perfect H-packing?

What about if $G = (C_k)^p$ for some k and p? For every k, p, for every $H \subseteq (C_k)^p$ with $k^p \equiv 0 \mod |V(H)|$, does there exist $n \in \mathbb{N}$ such that $(C_k)^n$ admits a perfect H-packing?

Theorem (B., Morrison, Scott 2017)

Yes for even k.

What about if $G = (C_k)^p$ for some k and p? For every k, p, for every $H \subseteq (C_k)^p$ with $k^p \equiv 0 \mod |V(H)|$, does there exist $n \in \mathbb{N}$ such that $(C_k)^n$ admits a perfect H-packing?

Theorem (B., Morrison, Scott 2017)

Yes for even k.

Theorem (B., Morrison, Scott 2017)

Not always for odd k unless maybe if k is a prime power.

What about if $G = (C_k)^p$ for some k and p? For every k, p, for every $H \subseteq (C_k)^p$ with $k^p \equiv 0 \mod |V(H)|$, does there exist $n \in \mathbb{N}$ such that $(C_k)^n$ admits a perfect H-packing?

Theorem (B., Morrison, Scott 2017)

Yes for even k.

Theorem (B., Morrison, Scott 2017)

Not always for odd k unless maybe if k is a prime power.

What about $k = a^{\cdots}$ where *a* is an odd prime?

 $T \subseteq \mathbb{Z}^k$, where T is finite and $\neq \emptyset$. There is n s.t. \mathbb{Z}^n can be partitioned into isometric copies of T.

 $T \subseteq \mathbb{Z}^k$, where T is finite and $\neq \emptyset$. There is n s.t. \mathbb{Z}^n can be partitioned into isometric copies of T.

Theorem (Gruslys, Leader, Tomon 2016 – 1991 conjecture of Lonc)

Let P be a poset of size 2^k with a greatest and least element. There is n s.t. the Boolean lattice $2^{[n]}$ can be partitioned into copies of P.

 $T \subseteq \mathbb{Z}^k$, where T is finite and $\neq \emptyset$. There is n s.t. \mathbb{Z}^n can be partitioned into isometric copies of T.

Theorem (Gruslys, Leader, Tomon 2016 – 1991 conjecture of Lonc)

Let P be a poset of size 2^k with a greatest and least element. There is n s.t. the Boolean lattice $2^{[n]}$ can be partitioned into copies of P.

Conjecture (Gruslys, Leader, Tan 2016)

For $H \subseteq Q_k$, \exists *n* s.t. Q_n can be edge-partitioned into copies of H.

 $T \subseteq \mathbb{Z}^k$, where T is finite and $\neq \emptyset$. There is n s.t. \mathbb{Z}^n can be partitioned into isometric copies of T.

Theorem (Gruslys, Leader, Tomon 2016 – 1991 conjecture of Lonc)

Let P be a poset of size 2^k with a greatest and least element. There is n s.t. the Boolean lattice $2^{[n]}$ can be partitioned into copies of P.

Conjecture (Gruslys, Leader, Tan 2016)

For $H \subseteq Q_k$, \exists n s.t. Q_n can be edge-partitioned into copies of H.

Theorem (B., Morrison, Scott 2017)

No. For every k, there is $Q_k \subseteq H \subseteq Q_{k+1}$ s.t. no Q_n can be edge-partitioned into copies of H.

r-cover: collection of copies of H s.t. every vertex of G belongs to r elements of the collection.

r-cover: collection of copies of H s.t. every vertex of G belongs to r elements of the collection.

(1 mod r)-cover: collection of copies of H s.t. every vertex of G belongs to (1 mod r) elements of the collection.

r-cover: collection of copies of H s.t. every vertex of G belongs to r elements of the collection.

(1 mod r)-cover: collection of copies of H s.t. every vertex of G belongs to (1 mod r) elements of the collection.

Lemma (Gruslys, Leader, Tan 2016)

If for some $r \ge 1$, the graph $(C_k)^p$ admits both an r-cover and a $(1 \mod r)$ -cover, then it admits a perfect H-packing.

r-cover: collection of copies of H s.t. every vertex of G belongs to r elements of the collection.

(1 mod r)-cover: collection of copies of H s.t. every vertex of G belongs to (1 mod r) elements of the collection.

Lemma (Gruslys, Leader, Tan 2016)

If for some $r \ge 1$, the graph $(C_k)^p$ admits both an r-cover and a $(1 \mod r)$ -cover, then it admits a perfect H-packing.

r = |V(H)|

Conclusion

Prime powers?

Better conjecture for the edge case?

Prime powers?

Better conjecture for the edge case?

Conjecture (Gruslys, Leader, Tomon 2016)

Let P be a finite poset. Is there a constant c(P) such that, for any n, it is possible to cover all but at most c(P) elements of $2^{[n]}$ with disjoint copies of P?

Conjecture (Gruslys, Leader, Tan 2015)

For any $t \in \mathbb{N}^*$, $\exists ?d \ s.t.$ for any $T \subset \mathbb{Z}$ with |T| = t, we have that \mathbb{Z}^d can be partitioned into isometric copies of T?

Prime powers?

Better conjecture for the edge case?

Conjecture (Gruslys, Leader, Tomon 2016)

Let P be a finite poset. Is there a constant c(P) such that, for any n, it is possible to cover all but at most c(P) elements of $2^{[n]}$ with disjoint copies of P?

Conjecture (Gruslys, Leader, Tan 2015)

For any $t \in \mathbb{N}^*$, $\exists ?d \ s.t.$ for any $T \subset \mathbb{Z}$ with |T| = t, we have that \mathbb{Z}^d can be partitioned into isometric copies of T?

Thanks!