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Abstract

Classifying lattice walks in restricted lattices is an important problem in enumerative
combinatorics. Recently, computer algebra methods have been used to explore and solve a
number of difficult questions related to lattice walks. This talk gave an overview of recent
results on structural properties and explicit formulas for generating functions of walks in the
quarter plane, with an emphasis on the algorithmic methodology.

1 Introduction
Lattice path enumeration is a classical topic of combinatorics, with applications in probability
theory (branching processes, gambler’s ruin,. . . ), queuing theory, discrete mathematics (permu-
tations, words, trees, urns,. . . ) and statistical physics (percolation, Ising model,. . . ).

The work reported in this talk concentrates on the enumeration of nearest-neigbor walks in
the quarter plane N2. A set S of elements of {−1, 0, 1}2 \ {(0, 0)} is given and one considers
walks starting at (0, 0), remaining in N2 and using only steps in S. From the enumeration
viewpoint, the quantity of interest is fS(n; i, j), the number of such walks ending at (i, j) after
n steps, and the corresponding generating series

FS(t;x, y) =
∞∑

n=0

 ∞∑
i,j=0

fS(n; i, j)xiyj

 tn.
Specializing x and y to 0 gives the walks returning to the origin (called excursions), while
specializing them both to 1 gives the total number of walks of length n. Another meaningful
specialization is x = 1, y = 0, which gives the generating series of walks ending on the horizontal
axis (the vertical one is obtained by x = 0, y = 1).

The sequence fS(n; i, j) is easily seen to obey a linear recurrence with constant coefficients,
but its behavior is much more complicated than for solutions of such recurrences in dimension 1.
Instead of a simple linear equation for the generating series, one obtains a functional equa-
tion called the kernel equation relating FS(t;x, y) and its specializations FS(t; 0, y), FS(t;x, 0),
FS(t; 0, 0). An exact “formula” for fS(n; i, j) or for FS(t;x, y) is not available in general, but a
lot has been discovered in the past few years concerning the nature of these sequences and series.
Computer algebra plays an essential role in this study, where a large number of coefficients are
used to first produce reasonable conjectures and then rigorous proofs, some of which do not have
a purely human version yet.
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2 Varieties of Power Series
The simplest family of power series consists of polynomials. These occur rarely as generating
series of walks: only the polynomial 1 can occur, for trivial walks whose steps all have a negative
coordinate. Next in complexity, rational generating series occur when the step set does not
have any element with a negative coordinate. For these walks, staying in N2 is not a constraint.
Rational power series form a subclass of algebraic power series, that are solutions of a polynomial.
It has been known for a long time that all walks whose step sets belong to the right half-
plane have an algebraic generating series. They are not the only ones. The generating series
of the Kreweras walks, with step set {(0,−1), (−1, 0), (1, 1)} has been known to be algebraic
for almost 30 years [8, 6]. More recently, the more difficult case of Gessel walks, with step
set {(1, 1), (−1 − 1), (−1, 0), (1, 0)} has been proved to have an algebraic generating series [2].
Algebraic power series are themselves a special case of D-finite power series, i.e., solutions
of linear differential equations with polynomial coefficients. An interesting subclass of D-finite
power series is composed of hypergeometric series (where the ratio of two consecutive coefficients
is a fixed rational function of the index) and their integrals, that occur very frequently in this
application too, see §5 below.

3 The group of the walk
To the step set S is associated the characteristic polynomial of the walk

χS =
∑

(i,j)∈S
xiyj =

1∑
i=−1

Bi(y)xi =
1∑

j=−1
Aj(x)yj .

This polynomial is left invariant under the substitutions ψ(x, y) = (x,A−1(x)/A1(x)/y) and
φ(x, y) = (B−1(y)/B1(y)/x, y). The group of the walk is the group of substitutions generated
by ψ and φ. It seems to play an important role in the classification of the possible behaviors of
the generating series.

After removing trivial cases and taking symmetry into account, there are 79 inherently
different cases of small-step sets [7]. These are now completely classified as follows:

• 23 admit a finite group [13]. Of these

– 4 are algebraic (Gessel’s and variants of Kreweras’);
– 19 are D-finite and transcendental [9, 5].

• 56 admit an infinite group [7]. Moreover,

– 5 singular cases are non-D-finite [14, 12];
– the other 51 cases are non-D-finite by other arguments [4, 11].

4 Computer-aided proofs of algebraicity
The discovery that Gessel’s walks have an algebraic generating series was based on experimental
mathematics. It is a very nice story that deserves more than a few lines and we refer to the
original article for details [2]. With hindsight it can be obtained by computing a large number
of coefficients of the series and then computing a Hermite-Padé approximant for the series and
its first powers. Because of the size of these objects, the computation are better performed
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modulo primes, concentrating on the specializations at x = 0 or y = 0 and for given values of
the remaining variable.

Once polynomials annihilating FS(t;x, 0) and FS(t; 0, y) have been conjectured, they can
be proved automatically by showing first that these polynomials has a unique power series
solution, next (by resultant computations using fast algorithms) that these power series have
to satisfy equations derived from the kernel equation and finally that these derived equations
themselves have a unique formal power series solution. This establishes the algebraicity of
both generating series. From there, the kernel equation implies that the full generating series
FS(t;x, y) is algebraic too, which concludes the proof. The first purely human proof of this
result has appeared very recently [3].

The size of the minimal polynomial annihilating the generating function of the Gessel walks
is estimated at 30 gigabytes. An interesting extra structure of the generating function has been
discovered and proved with computer algebra more recently, resulting in a 5 lines-long formula
for the generating series. No human proof of this “simple” formula is known yet.

5 Computer-aided proofs of D-finiteness
The same experimental mathematics approach can be used to determine and prove linear differ-
ential equations satisfied by the 19 non-algebraic D-finite cases corresponding to finite groups.
More precise information on the structure of these series is obtained by starting from the kernel
equation. Letting the group act on this equation, an expression of the generating series as the
positive part of a rational Laurent series can be obtained [7]. By known properties of D-finite
series, this proves D-finiteness and the computer algebra technique of creative telescoping pro-
duces the desired linear differential equation. A more thorough analysis of this equation using
factorization of linear differential operators leads to the discovery of even more structure: it
turns out that all those 19 cases have a generating series that can be expressed using integrals
of 2F1 series [1]. A nice example is provided by the “King’s walk”, where all 8 steps are allowed,
for which the generating function of all walks (ie the value at x = y = 1) is given explicitly as

1
t

∫ t

0

1
(1 + 4x)3 2F1

(
3
2

3
2

2

∣∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx.

Again, no purely human proof is known at this stage.

6 Computer-aided proofs of non-D-finiteness
The proof that a generating series does not satisfy a linear differential equation is usually based
on exhibiting a property of the series that is not compatible with it being D-finite. Thus,
a recent result in probability theory giving access to the asymptotic behavior of the integer
sequence fS(n; 0, 0) leads to a proof of non-D-finiteness provided an exponent in the expansion is
proved irrational. This is decided algorithmically, using Gröbner basis computations, polynomial
factorization and cyclotomy testing [4]. The non-D-finiteness of FS(t; 0, 0) implies that of the
more general FS(t;x, y), for which an alternative proof is known [11]. No human proof is known
for the specialization at (0,0) and the nature of the specialization at (1,1) is still unknown.

Conclusion
The classification of the 2D walks with small-step sets has been completed in the past few years
thanks in a part to a very efficient toolbox coming from computer algebra. Much remains to be
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done. Several of the results or observations still do not have a purely human proof. The exact
role played by the group of the walk is still unclear. The non-D-finite nature of FS(t; 1, 1) in
the non-singular cases with infinite group is still only a conjecture. Some of these may become
clearer with work in progress studying longer 2D steps or higher dimensional walks.
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