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I. Generalities




Self-avoiding walks (SAW)

What is ¢(n), the number of n-step SAW?

c(l) = 4

c(2) = ¢(1)x3 = 12
c(3) = ¢(2) x3 = 36
c(4) = ¢(3) x3 -8 = 100

Not so easy! c¢(n) is only known up to n =71 [Jensen 04]

Problem: a highly non-markovian model



Some (old) conjectures/predictions

e T he number of n-step SAW behaves asymptotically as follows:

c(n) ~ (k) p"'n?
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Some (old) conjectures/predictions

e T he number of n-step SAW behaves asymptotically as follows:
c(n) ~ (k) p*n’

where

- ~v=11/32 for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

- 1 =1/2 4+ /2 on the honeycomb lattice [Nienhuis 82]
(proved this summer [Duminil-Copin & Smirnov])



Some (old) conjectures/predictions

e T he number of n-step SAW behaves asymptotically as follows:

c(n) ~ (k) p" n’

= T he probability that two n-step SAW starting from the same point do not
intersect is
c(2n)
c(n)? -

n~ 7



Some (old) conjectures/predictions

e T he end-to-end distance is on average

E(Dy) ~ n3/4 (vs. n1/2 for a simple random walk)

[Flory 49, Nienhuis 82]
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Some (recent) conjectures/predictions

e Limit process: The scaling limit of SAW is SLEg 3.

(proved if the scaling limit of SAW exists and is conformally invariant
[Lawler, Schramm, Werner 02])

This would imply

c(n) ~ ,ufn’nll/?’2 and E(Dp) ~ n3/4



In 5 dimensions and above

e [ he critical exponents are those of the simple random walk:

c(n) ~ u™nP, E(Dy) ~ nt/2.

e [ he scaling limit exists and is the d-dimensional brownian motion

[Hara-Slade 92]

Proof: a mixture of combinatorics (the lace expansion) and analysis



II. Exactly solvable models

= Design simpler classes of SAW, that should be natural, as general as
possible... but still tractable

e SOlve better and better approximations of real SAW

e develop new techniques in exact enumeration



II.0. A toy model: Partially directed walks

Definition: A walk is partially directed if it avoids (at least) one of the 4 steps
N, S, E, W.

Example: A NEW-walk is partially directed

=

"Markovian with memory 1"

-y

The self-avoidance condition is local.



A toy model: Partially directed walks

o Let a(n) be the number of n-step NEW-walks, and A(t) = >°,>0a(n)t" the
associated generating function.

e Recursive description of NEW-walks:

@ © ©

° £ . o L

= == =

e Generating function:

t £2
A(t) =1+ 20— + A1) +24()—
1+4+¢

— = e~ (1 +V2) ~ (241"

A(t) = -



A toy model: Partially directed walks

e Asymptotic properties: coordinates of the endpoint

E(X,) =0, E(X2)~n, E(Yy) ~ n
e Random NEW-walks:

3000 - 3000 |
2500 2500 |
2000 - 2000 |
1500 1500 -
1000 - 1000 -
500 %ﬂ*
1 -dj%
0 500 1000 1500 2000 2500 0 20 40 60 80 100

Scaled by n (= and |) Scaled by /n (=) and n (|)



II.1. Weakly directed walks

(Joint work with Axel Bacher)



Bridges

e A walk with vertices vg,...,v;,...,vn iS a bridge if the ordinates of its vertices
satisfy yo < y; < yn for 1 <i < n.

—

e [ here are many bridges:

/
b(n) ~ :urgridgenfy

where

Hbridge — HSAW



Irreducible bridges

Def. A bridge is irreducible if it is not the concatenation of two bridges.

Observation: A bridge is a sequence of irreducible bridges




Weakly directed bridges

Definition: a bridge is weakly directed if each of its irreducible bridges avoids
at least one of the steps N, S, E, W.

This means that each irreducible bridge is a NES- or a NWS-walk.

- B

Un

(%0

= Count NES- (irreducible) bridges



Enumeration of NES-bridges

Proposition

e T he generating function of NES-bridges of height k+1 is

k+1
B(k—l—l)(t> — Zb%k_l_l)tn _ t + |
n Gk(t)
where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t>+ )G}, — t°Gp_1.




Enumeration of NES-bridges

Proposition

e The generating function of NES-bridges of height k41 is i |

tk+1

BEHD () = S plityn = &
=2 G

where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t>+ )G}, — t°Gp_1.

e T he generating function of NES-excursions of height at most k is

EF) (4) = % (Gg_l — 1) .
k

Excursion: yg =0 =1y, and y; > 0 for 1 <i < n. 4



Enumeration of NES-bridges

(\/\/ W Last return to height 0
_/\[\ M M First return to height 0

e Bridges of height k + 1:
Bk+1) — yg(k) 1 p(k)2 p(k)
e Excursions of height at most k&
ER) =1 +4t5W 442 (B*D — 1) 443 (01 — 1) pW)

e Initial conditions: E(¢-1) =1, B =¢/(1 —¢t).



Enumeration of NES-bridges

Proposition

e The generating function of NES-bridges of height k41 is i |

tk+1

BEHD () = S plityn = &
=2 G

where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t>+ )G}, — t°Gp_1.

e T he generating function of NES-excursions of height at most k is

EF) (4) = % (Gg_l — 1) .
k

Excursion: yg =0 =1y, and y; > 0 for 1 <i < n. 4



Enumeration of weakly directed bridges

e GF of NES-bridges:
tk+1
B(t)= ) ——
k>0 G



Enumeration of weakly directed bridges

e GF of NES-bridges:
th+1
B(t) = —_—
k>0 G,

e GF of irreducible NES-bridges:

(1) _ BQ@)
1—1(t) = 1) = 14+ B(t)

B(t) =



Enumeration of weakly directed bridges

e GF of NES-bridges:

k41
B(t) = —_—
k>0 G
e GF of irreducible NES-bridges:
I(t B(t
B(t) = (t) = I(t) = ()
1—1(¢) 1+ B(t)

e GF of weakly directed bridges (sequences of irreducible NES- or NWS-
bridges):

W) — 1 B 1
TIEO-0 1 (2 )

with G_1 =1, Go=1—-t, and for k> 0,

Gry1= (1 —t+t>+ )G} — t°Gh_1.

[Bacher-mbm 10]



Asymptotic results and nature of the generating functions

B(t) = e Wi(t) = .
t ¢
’ 2B(t
k>0 1= (1+£§<3f) —t)

with G_1 =1, Go=1—t, and for k > 0,

Gry1= (1 —t+t>+ )G}, — t°G_1.

The zeroes of G (here, k = 20):

—V2-1




Asymptotic results and nature of the generating functions

(t) = e Wi(t) = .
B(t t
’ 2B(t
k>0 1“(L+é&)_t>

e The series B(t) and W (t) are meromorphic in C\ £, where £ consists of the
two real intervals [-v/2 — 1, —1] and [v/2 — 1, 1], and of the curve

1 — 22 —-223

1422 }
This curve is a natural boundary of B and W. These series thus have infinitely
many singularities.

EOZ{:I:—I—iy::cZO, y2=
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e The series B(t) has radius v/2 — 1, while W (t) has a simple pole p of smaller

- — 2B(p) _
modulus (for which 1 = T+ 5(0) 0).



Asymptotic results and nature of the generating function

(1) —tk+1 W (t) .
’ 2B(t
k=0 Ok - (50 —Y)

e The series B(t) and W (t) are meromorphic in C\ & where £ consists of the
two real intervals [-v/2 — 1, —1] and [v2 — 1, 1], and of the curve

1 — 22 —2¢3
1422 '

This curve is a natural boundary of B and W. These series thus have infinitely
many singularities.

SOZ{x—I—iy::BZO, y2=

e The series B(t) has radius v/2 — 1, while W (t) has a simple pole p of smaller

- _ 2B(p) _
modulus (for which 1 = T+ 5(0) 0).

e The number w(n) of weakly directed bridges of length n satisfies

w(n) ~ p",
with u ~ 2.54 (the current record).



T he number of irreducible bridges

e [ he generating function of weakly directed bridges, counted by the length
and the number of irreducible bridges, is

1

e Let NN, denote the number N, of irreducible bridges in a random weakly
directed bridge of length n. Then

W(t,x) =

E(Np) ~mn, V(Ny) ~ s°n,
where
m~ 0.318 and s°~0.7,

and the random variable Ng;\/%‘” converges in law to a standard normal distribu-
tion. In particular, the average end-to-end distance, being bounded from below
by E(Ny), grows linearly with n.



Random weakly directed bridges



Random weakly directed bridges

e Use a recursive Boltzmann sampler to sample non-

negative NES-walks:




Random weakly directed bridges

e Use a recursive Boltzmann sampler to sample non-
negative NES-walks:

=

e If the first irreducible factor is a bridge, keep it, oth-
erwise, discard the whole walk.

e Form a sequence of irreducible NES- or NWS-bridges.



II. 2. Prudent self-avoiding walks

Self-directed walks [Turban-Debierre 86]
Exterior walks [Préa 97]

Outwardly directed SAW [Santra-Seitz-Klein 01]
Prudent walks [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08]



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.
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Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

not prudent!



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

. prudent



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.
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Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Remark: Partially directed walks are prudent




A property of prudent walks




A property of prudent walks

The box of a prudent walk

The endpoint of a prudent walk is always on the border of the box



Recursive construction of prudent walks

Each new step either inflates the box or walks (prudently) along the border.




Recursive construction of prudent walks

e [ hree more parameters

(catalytic parameters)

\ <

e Generating function of prudent walks ending on the top of their box:

Tt w,v,w) = Zt|w\u’i(w)vj(w)wh(w)

w

Series with three catalytic variables uw, v, w



Recursive construction of prudent walks

e [ hree more parameters

(catalytic parameters)

\ <

e Generating function of prudent walks ending on the top of their box:

(1 B vowt(1 — t2)
(u —tv)(v — tu)

) Tt u,v,w) =
T v,w) tuT(t; U, w)

u — tu v — tu

L+ 7@ w,u)+ T w,v) —tv

with 7 (¢; u,v) = tvT'(t; u, tu,v).

e Generating function of all prudent walks, counted by the length and the
half-perimeter of the box:

Ptiu)=14+4T(; u,u,uw) —4T(t; 0, u,uw)



Simpler families of prudent walks [Préa 97]

j B
:4 _>.< >: ’_I_I -
_LL T ol
N I L o
3-sided 2-sided 1-sided

e The endpoint of a 3-sided walk lies always on the top, right or left side of
the box

e T he endpoint of a 2-sided walk lies always on the top or right side of the box
e The endpoint of a 1-sided walk lies always on the top side of the box (=
partially directed!)



Functional equations for prudent walks:
The more general the class, the more additional variables

(Walks ending on the top of the box)

e General prudent walks: three catalytic variables
T(w,w)  T(u,w)
—tu

u — tu v — tu

(1 B vowt(1 — t2)
(u — tv) (v — tu)
with 7 (u,v) = tvT(t; u, tu, v).

) T u,v,w) =14+T(w,u)+T (w,v)—tv

e [ hree-sided walks: two catalytic variables
2 2

wot(1 — t2) t<v t<u
1— T(t,u,v) =1 cee — T(t, tv,v) — T(t; u,tu
( (u—tv)(v—tu)) ( ) + u — tv ( ) v —tu ( )
e Two-sided walks: one catalytic variable
tu(1l — t2) u — 2t
1 — T(t; = t T(t;t
( (1—tu)(u—t)> (t;w) 1—tu+ u—t (&)



Two- and three-sided walks: exact enumeration

Proposition
1. The generating function of 2-sided walks is algebraic:

1 1 — ¢4

Pr(t) =

1 — 2t —t2

1 — 2t — 212 + 243 1+t_t3+t(1_t>J

[Duchi 05]

2. The generating function of 3-sided prudent walks is...



Two- and three-sided walks: exact enumeration

2. The generating function of 3-sided prudent walks is:

B 1 14 3t 4+ tq(1 — 3t — 2t2) 5 |
P3(t)—1_2t_t2< T — 10 + 2t qT(t,lat)>
where
T(t:1,t) = Z(_l)kH,’gé (e —U@th) (1 U(q") —t 4 U(gh 1) —¢ >
S0 o (2% — Ug)) t(1 —tU(q")) (1 —tU(gk 1))
with
1—tw =+ 12 4+ 3w — /(1 = 2) (1 + t — tw + 2w) (1 — t — tw — t2w)
Ulw) = 2t ’
and

1—t 4124+ 83 /(1 —tH(1 -2t —12)

q="U(1) = >

A series with infinitely many poles.

[mbm 08]



Two- and three-sided walks: asymptotic enumeration

e T he numbers of 2-sided and 3-sided n-step prudent walks satisfy
po(n) ~ ko, pa(n)~ k3 p”
where pu ~ 2.48... is such that

,u3—2,u2—2,u—|—2=O.
Compare with 2.41... for partially directed walks, 2.54... for weakly directed
bridges, but 2.64... for general SAW.

e Conjecture: for general prudent walks

pa(n) ~ kg p"

with the same value of u as above [Dethridge, Guttmann, Jensen 07].



Two-sided walks: properties of large random walks
(uniform distribution)

e T he random variables X,,, Y, and ¢,, satisfy

E(Xy) =E(Yy,) ~n E((Xn — Yn)?) ~ n, E(8,) ~ 4.15. ..

—~

= IV ]|,
\



Two-sided walks: random generation (uniform distribution)

500 steps 730 steps 1354 steps 3148 steps

e Recursive step-by-step construction a la Wilf = 500 steps
(precomputation of O(n?) large numbers)

e Boltzmann sampling via a context-free grammar
[Duchon-Flajolet-Louchard-Schaeffer 02]

E(X,) = E(Yy) ~n E((Xp — Yn)?) ~ n, E(5,) ~ 4.15 ...



T hree-sided prudent walks:
random dgeneration and asymptotic properties

e Asymptotic properties: The average width of the box is ~ kn

e Random generation: Recursive method a la Wilf = 400 steps
(pre-computation of O(n3) numbers)




Four-sided (i.e. general) prudent walks

e An equation with 3 catalytic variables:
vowt(1 — t2)
1 _
(u — tv) (v — tu)
with T (u,v) = tvT (u, tu,v).

T (v, w) B tuT(u, w)

u — tu v — tu

) T(u,v,w) =14+T(w,u)+T(w,v) —tv

e Conjecture:

pa(n) ~ kg p'
where p ~ 2.48 satisfies pu3 —2p2 — 24 +2 = 0.

e Random prudent walks: recursive generation, 195 steps (sic! O(n*) numbers)

I O I i =]

_s50
40 3o 30 o [—40
—60 1
[ 10 F-s0
701
50 —40 30 —20 10




II.3. Another distribution: Kinetic prudent walks

At time n, the walk chooses one of the admissible steps with uniform probability.

[An admissible step is one that gives a prudent walk]




Another distribution: Kinetic prudent walks

e Kinetic model: recursive generation with no precomputation

500 steps 1000 steps 10000 steps 20000 steps

e [ heorem: The walk chooses uniformly one quadrant, say the NE one, and
then its scaling limit is given by

3u/7
Z(’U,) — /O (1W(8)20 €1 —I— 1W(S)<O 62) ds

where ey, e> form the canonical basis of R2 and W(s) is a brownian motion.
[Beffara, Friedli, Velenik 10]



A Kinetic, continuous space version: The rancher’s walk

At time n, the walk takes a uniform unit step in IR%Q, conditioned so that the
new step does not intersect the convex hull of the walk.

‘/‘%{

Theorem: the end-to-end distance is linear. More precisely, there exists a
constant a > 0 such that

i inf 1<nll > a.
n

[Angel, Benjamini, Virag 03], [Zerner 05]

Conjectures
e Linear speed: There exists a > 0 such that “w—?f” — a a.s.

e Angular convergence: IIZ—nII converges a.s.
n



What'’s next?
e Exact enumeration: General prudent walks on the square lattice — Growth
constant?

e Uniform random generation: better algorithms (maximal length 200 for gen-
eral prudent walks...) S

e A mixture of both models: walks formed of a sequence of prudent irreducible
bridges?



Triangular prudent walks

The length generating function of triangular prudent walks is

P(t; 1) = 16_75(31?;'__ ;)tQ(l + ¢t (1 + 2t) R(¢; 1,t))
with
("3 (v(1 —2t2)>k V42
R(t’l’t):(“ry)(l“y)kgo (Y(1 —2t2); )41 (1—2t2' >k
and
1—2t— 12— /(1 —t)(1 =3t — 12 —13)
Y =
22
Notation:

(a;)n=(1—a)(1 —aq)--- (1 —ag" ).

e The series P(t; 1) is neither algebraic, nor even D-finite (infinitely many poles
at Y¢F(1 — 2¢t2) = 0)



