# The Z-invariant Ising model on isoradial graphs

Cédric Boutillier Séminaire Flajolet, IHP, 30 March 2017

LPMA, UPMC joint work with Béatrice de Tilière (Créteil), Kilian Raschel (Tours)

# Outline

The Ising model

The Ising model via dimers

Z-invariance

Z-invariant Ising model out of criticality

The Ising model

# The Ising model

- (planar) graph G
- spin configurations:  $\sigma: G \to \pm 1$
- parameters: coupling constants  $(J_e)_{e \in E(G)} > 0$
- Energy of a configuration:

$$\mathcal{H}(\sigma) = -\sum_{e=xy} J_e \sigma_x \sigma_y$$

• Probability of a configuration:

$$\mathbb{P}(\sigma) = \frac{1}{Z(G,(J_e))} \times \exp\left(-\mathcal{H}(\sigma)\right)$$



#### The Ising model on the square lattice

- A single parameter to study possible phase transitions:  $\beta \mapsto J(e, \beta)$  increasing
- On a regular graph:  $J(e, \beta) = \beta J$   $(\beta = 1/T)$



Simulation pictures: Raphaël Cerf

The Ising model via dimers

# The Ising model is free fermionic

Physics folklore: the Ising model is a model of free fermions

**Kasteleyn**: the partition of the Ising model on any planar graph can be written as a Pfaffian, in connection with dimers

dimer configurations = perfect matchings = 1-factors



# The Ising model is free fermionic

Physics folklore: the Ising model is a model of free fermions

**Kasteleyn**: the partition of the Ising model on any planar graph can be written as a Pfaffian, in connection with dimers

dimer configurations = perfect matchings = 1-factors



**Fisher**: another explicit correspondence with dimers on a decorated graph

#### $\mathsf{Ising spins} \leftrightarrow \mathsf{contours} \ (\mathsf{separating spins}) \leftrightarrow \mathsf{dimers}$



This version (Dubédat) is not a bijection: 2 choices for each decoration of a vertex

# Kasteleyn's theory of dimer models

Let  $\mathcal G$  a finite planar graph.

- $\cdot$  weights ( $u_e$ ) on edges of  ${\cal G}$
- probability of a dimer conf.  $\mathcal{C} \propto \prod_{e \in \mathcal{C}} \nu_e$

#### Theorem (Kasteleyn)

Let K be the weighted oriented adjacency matrix of G for an admissible orientation. Then:

- The partition function  $Z_{dimers} := \sum_{\mathcal{C}} \prod_{e \in \mathcal{C}} \nu_e$  is  $\pm$  Pfaff K,
- The probability that  $e_1 = (v_{i_1}, v_{i_2}), \dots, e_k = (v_{i_{2k-1}}, v_{i_{2k}})$ occur in a random dimer configuration is

$$\left(\prod_{j} K(\mathsf{v}_{i_{2j-1}},\mathsf{v}_{i_{2j}})\right) \mathsf{Pfaff}_{1 \le p,q \le 2k} \, K^{-1}(\mathsf{v}_{i_p},\mathsf{v}_{i_q})^{\mathsf{T}}$$

Pfaffian process

# Z-invariance

#### Star-triangle transformation

G and G': planar graphs differing by a Y  $- \nabla$  transformation



Coupling constants so that the Ising models are equivalent?

#### Star-triangle transformation

*G* and *G*': planar graphs differing by a  $Y - \nabla$  transformation



Coupling constants so that the Ising models are equivalent?

| $\sigma_1 \sigma_2 \sigma_3$ | G                           | G'                 |
|------------------------------|-----------------------------|--------------------|
| $\pm \pm \pm$                | $2 \cosh(J_1 + J_2 + J_3)$  | $e^{L_1+L_2+L_3}$  |
| $\pm \pm \mp$                | $2 \cosh(-J_1 - J_2 + J_3)$ | $e^{-L_1-L_2+L_3}$ |
| $\pm \mp \pm$                | $2\cosh(-J_1+J_2-J_3)$      | $e^{-L_1+L_2-L_3}$ |
| $\mp \pm \pm$                | $2 \cosh(J_1 - J_2 - J_3)$  | $e^{L_1-L_2-L_3}$  |









# Isoradial graphs

- quad graph : projection of a surface in  $\mathbb{Z}^d$
- star-triangle transformation: natural flip operation



• Each edge *e* has a natural parameter  $\theta_e = \frac{\beta - \alpha}{2}$ 



#### Parametrization of coupling constants with angles

If we require that for isoradial graphs:

- for any edge e,  $J(e) = J(\theta_e)$
- invariance under star-triangle transformations

1-parameter family of coupling constants:

$$\sinh(2J(\theta|k)) = \operatorname{sc}(\theta \frac{2K(k)}{\pi}|k) = \frac{\operatorname{sn}(\theta \frac{2K(k)}{\pi}|k)}{\operatorname{cn}(\theta \frac{2K(k)}{\pi}|k)} \qquad [\text{Baxter}]$$

The Ising model is then said to be Z-invariant

#### Z-invariant coupling constants

$$\sinh(2J(\theta|k)) = \operatorname{sc}(\theta \frac{2K(k)}{\pi}|k) = \frac{\operatorname{sn}(\theta \frac{2K(k)}{\pi}|k)}{\operatorname{cn}(\theta \frac{2K(k)}{\pi}|k)}$$

k: elliptic modulus  $k' = \sqrt{1 - k^2} \in (0, \infty) \leftrightarrow$  temperature  $K(k) = \int_0^{\pi/2} \frac{dt}{\sqrt{1 - k^2 \cos^2(t)}}$  elliptic integral of 1st kind  $sn(\cdot|k), cn(\cdot|k), sc(\cdot|k)$  Jacobi elliptic functions functions: generalization of sin, cos, tan respectively.

Bonus: Kramers-Wannier duality built-in

$$\sinh(2J(\theta|k)) \times \sinh(2J(\frac{\pi}{2} - \theta|k^*)) = 1$$
 with  $k' \times (k^*)' = 1$ 

Critical Z-invariant Ising model (k = 0)

Self-duality:  $k^* = k \Leftrightarrow k = 0$ 

- Elliptic functions  $\curvearrowright$  trigonometric:  $\sinh(2J(\theta|0)) = \tan(\theta)$
- really critical [Li, Cimasoni–Duminil-Copin]
- · discrete harmonic fermionic observable
- conformally invariant scaling limit [Mercat, Chelkak-Smirnov...]

Critical Z-invariant Ising model (k = 0)

Self-duality:  $k^* = k \Leftrightarrow k = 0$ 

- Elliptic functions  $\sim$  trigonometric:  $\sinh(2J(\theta|0)) = \tan(\theta)$
- really critical [Li, Cimasoni-Duminil-Copin]
- · discrete harmonic fermionic observable
- conformally invariant scaling limit [Mercat, Chelkak-Smirnov...]
- construction of probability measure in infinite volume on isoradial graphs (dimers, Fisher correspondence)
  [B.-de Tilière]
- · locality of dimers (and thus spin) correlations
- related to local expr. for Green function on isoradial graphs for conductances  $tan(\theta)$  [Kenyon]

Critical Z-invariant Ising model (k = 0)

Self-duality:  $k^* = k \Leftrightarrow k = 0$ 

- Elliptic functions  $\sim$  trigonometric:  $\sinh(2J(\theta|0)) = \tan(\theta)$
- really critical [Li, Cimasoni-Duminil-Copin]
- · discrete harmonic fermionic observable
- conformally invariant scaling limit [Mercat, Chelkak-Smirnov...]
- construction of probability measure in infinite volume on isoradial graphs (dimers, Fisher correspondence)
  [B.-de Tilière]
- · locality of dimers (and thus spin) correlations
- related to local expr. for Green function on isoradial graphs for conductances  $tan(\theta)$  [Kenyon]

Question: does locality still holds out of criticality?

# Z-invariant Ising model out of criticality

#### Inverse Kasteleyn operator

Consider the dimer model on the Fisher graph G coming from a Z-invariant Ising model on an isoradial graph G:

$$\nu_e = \begin{cases} \frac{\operatorname{sn}(\frac{2K\theta}{\pi}|k)}{1+\operatorname{cn}(\frac{2K\theta}{\pi}|k)} & \text{if } e \text{ is an edge coming from } G \\ 1 & \text{otherwise} \end{cases}$$

Let K the corresponding (infinite) Kasteleyn matrix on  $\mathcal G$ 

#### Theorem (B.-de Tilière – Raschel)

- For  $k \neq 0$ , the Kasteleyn operator on the Fisher graph has a unique inverse with bounded coefficients  $K_{x,y}^{-1}$ .
- These coefficients have a local expression

$$K_{\mathbf{x},\mathbf{y}}^{-1} = \frac{k'}{8\pi} \int_{\Gamma_{\mathbf{x},\mathbf{y}}} f_{\mathbf{x}}(u+2K) f_{\mathbf{y}}(u) \operatorname{Exp}_{\mathbf{x},\mathbf{y}}(u|k) du$$



$$K_{x,y}^{-1} = \frac{k'}{8\pi} \int_{\Gamma_{x,y}} f_x(u+2K) f_y(u) \operatorname{Exp}_{x,y}(u|k) du$$



Definition (massive exponential functions)

$$\mathsf{Exp}_{x,y}(u|k) = \prod_{j} i\sqrt{k'} \operatorname{sc}(\frac{u-\alpha_{j}}{2}|k), \ u \in T_{k}$$



# Definition (function f)

- If x internal to a decoration  $f_x(u) = \pm \operatorname{cn}(\frac{u-\alpha}{2}|k)^{-1}$ , where  $e^{i\alpha}$  edge of the quad-graph
- If *x* connected to an edge of *G*, *f*<sub>*x*</sub> is the sum of two such terms

$$\mathcal{K}_{\mathbf{x},\mathbf{y}}^{-1} = \frac{k'}{8\pi} \int_{\Gamma_{\mathbf{x},\mathbf{y}}} f_{\mathbf{x}}(u+2\mathcal{K}) f_{\mathbf{y}}(u) \operatorname{Exp}_{\mathbf{x},\mathbf{y}}(u|k) du$$



- This expression is local:  $K_{x,y}^{-1}$  depends on the geometry of the graph only along a path from x to y
- It can be used to define a Gibbs measure on dimer configurations of the Fisher graph, and thus on Ising contours (without assumption on periodicity of the graph)
- Dimer statistics are local

# On periodic isoradial graphs: spectral curve

- If G is periodic, the Kasteleyn operator K is also periodic
- K(z, w) Fourier transform of K: matrix with rows/columns indexed by vertices in a fund. domain with extra z<sup>±1</sup> or w<sup>±1</sup> weight for edges crossing its boundary
- $P(z, w) = \det K(z, w)$  characteristic polynomial
- Fourier formula for  $K^{-1}$ :

$$K_{x,y+(m,n)}^{-1} = \iint_{|z|=|w|=1} z^{-m} w^{-n} \frac{Q_{x,y}(z,w)}{P(z,w)} \frac{dz}{2i\pi z} \frac{dw}{2i\pi w}$$

where  $Q_{x,y}$  cofactor of K(z, w).

Asymptotics depends on the zeros of *P*.  $C = \{(z, w) : P(z, w) = 0\}$  is called the spectral curve





- Parametrization:  $u \mapsto (\operatorname{Exp}_{x,x+(1,0)}(u|k), \operatorname{Exp}_{x,x+(0,1)}(u|k))$
- $\cdot$  Area of the hole as a function of k and the local geom. of G
- Same curve for the Ising model with param. k and  $k^*$

# On periodic isoradial graphs: free energy

#### free energy F<sub>Ising</sub>: normalized log of the partition function

#### Theorem

$$F_{Ising}(k) = -\frac{\log 2}{2}|V_1| - |V_1| \int_0^K 2H'(\theta) \log \operatorname{sc}(\theta) d\theta + \sum_{e \in E_1} \left( -H(2\theta) \log \operatorname{sc}(\theta) + \int_0^{\theta_e} 2H'(\theta) \log \operatorname{sc}(\theta) d\theta \right).$$

As k goes to 0,

$$F_{Ising}(k) = F_{Ising}(0) - \frac{|V_1|}{2}k^2 \log k^{-1} + O(k^2)$$

# Z-invariant Ising model and rooted spanning forests

This free energy is half the free energy of rooted spanning forests, "counted" by the determinant of a massive Laplacian on isoradial graphs, with conductances sc(2Kθ/π|k) we introduced.



- Same phase transition in Ising as from spanning forests to spanning trees
- Massive exponential functions: harmonic for this massive Laplacian (elliptic generalisation of Mercat's harmonic exponential functions)

# Phase transition in the Ising model