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The Ising model



The Ising model

• (planar) graph G
• spin configurations: σ : G→ ±1
• parameters: coupling constants (Je)e∈E(G) > 0
• Energy of a configuration:

H(σ) = −
∑
e=xy

Jeσxσy

• Probability of a configuration:

P(σ) =
1

Z(G, (Je))
× exp (−H(σ))
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The Ising model on the square lattice

• A single parameter to study possible phase transitions:
β 7→ J(e, β) increasing

• On a regular graph: J(e, β) = βJ (β = 1/T)

β > βc (low T) β = βc β < βc (high T)

Simulation pictures: Raphaël Cerf



The Ising model via dimers



The Ising model is free fermionic

Physics folklore: the Ising model is a model of free fermions

Kasteleyn: the partition of the Ising model on any planar graph
can be written as a Pfaffian, in connection with dimers

dimer configurations = perfect matchings = 1-factors
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Fisher: another explicit correspondence with dimers on a
decorated graph
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Fisher’s bijection

Ising spins↔ contours (separating spins)↔ dimers

This version (Dubédat) is not a bijection: 2 choices for each
decoration of a vertex



Kasteleyn’s theory of dimer models

Let G a finite planar graph.

• weights (νe) on edges of G
• probability of a dimer conf. C ∝

∏
e∈C νe

Theorem (Kasteleyn)
Let K be the weighted oriented adjacency matrix of G for an
admissible orientation. Then:

• The partition function Zdimers :=
∑

C
∏
e∈C νe is ±Pfaff K,

• The probability that e1 = (vi1 , vi2), . . . , ek = (vi2k−1 , vi2k)
occur in a random dimer configuration is∏

j

K(vi2j−1 , vi2j)

Pfaff1≤p,q≤2k K−1(vip , viq)
T

Pfaffian process



Z-invariance



Star-triangle transformation

G and G′: planar graphs differing by a Y −∇ transformation
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Coupling constants so that the Ising models are equivalent?

σ1σ2σ3 G G′

±±± 2 cosh(J1 + J2 + J3) eL1+L2+L3
±±∓ 2 cosh(−J1 − J2 + J3) e−L1−L2+L3
±∓± 2 cosh(−J1 + J2 − J3) e−L1+L2−L3
∓±± 2 cosh(J1 − J2 − J3) eL1−L2−L3
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Isoradial graphs

• quad graph : projection of a surface in Zd

• star-triangle transformation: natural flip operation

• Each edge e has a natural parameter θe = β−α
2

eiβ

eiα
e

θe



Parametrization of coupling constants with angles

If we require that for isoradial graphs:

• for any edge e, J(e) = J(θe)
• invariance under star-triangle transformations

1-parameter family of coupling constants:

sinh(2J(θ|k)) = sc(θ
2K(k)
π

|k) =
sn(θ 2K(k)π |k)
cn(θ 2K(k)π |k)

[Baxter]

The Ising model is then said to be Z-invariant



Z-invariant coupling constants

sinh(2J(θ|k)) = sc(θ
2K(k)
π

|k) =
sn(θ 2K(k)π |k)
cn(θ 2K(k)π |k)

k: elliptic modulus k′ =
√
1− k2 ∈ (0,∞) ↔ temperature

K(k) =
∫ π/2
0

dt√
1−k2 cos2(t)

elliptic integral of 1st kind

sn(·|k), cn(·|k), sc(·|k) Jacobi elliptic functions functions:
generalization of sin, cos, tan respectively.

Bonus: Kramers-Wannier duality built-in

sinh(2J(θ|k))× sinh(2J(π
2
− θ|k∗)) = 1 with k′ × (k∗)′ = 1



Critical Z-invariant Ising model (k = 0)

Self-duality: k∗ = k⇔ k = 0

• Elliptic functionsy trigonometric: sinh(2J(θ|0)) = tan(θ)

• really critical [Li, Cimasoni–Duminil-Copin]
• discrete harmonic fermionic observable
• conformally invariant scaling limit [Mercat, Chelkak-Smirnov…]

• construction of probability measure in infinite volume on
isoradial graphs (dimers, Fisher correspondence)
[B.–de Tilière]

• locality of dimers (and thus spin) correlations
• related to local expr. for Green function on isoradial
graphs for conductances tan(θ) [Kenyon]

Question: does locality still holds out of criticality?
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Z-invariant Ising model out of
criticality



Inverse Kasteleyn operator

Consider the dimer model on the Fisher graph G coming from a
Z-invariant Ising model on an isoradial graph G:

νe =


sn( 2Kθ

π
|k)

1+cn( 2Kθ
π

|k) if e is an edge coming from G

1 otherwise

Let K the corresponding (infinite) Kasteleyn matrix on G

Theorem (B.–de Tilière – Raschel)

• For k 6= 0, the Kasteleyn operator on the Fisher graph has
a unique inverse with bounded coefficients K−1x,y .

• These coefficients have a local expression

K−1x,y =
k′

8π

∫
Γx,y

fx(u+2K)fy(u) Expx,y(u|k)du



K−1x,y =
k′

8π

∫
Γx,y

fx(u+2K)fy(u) Expx,y(u|k)du

Definition (massive exponential functions)

Expx,y(u|k) =
∏
j

i
√
k′ sc(

u− αj
2

|k), u ∈ Tk

Definition (function f )

• If x internal to a decoration fx(u) = ± cn(u−α
2 |k)−1, where

eiα edge of the quad-graph
• If x connected to an edge of G, fx is the sum of two such
terms



K−1x,y =
k′

8π

∫
Γx,y

fx(u+2K)fy(u) Expx,y(u|k)du

• This expression is local: K−1x,y depends on the geometry of
the graph only along a path from x to y

• It can be used to define a Gibbs measure on dimer
configurations of the Fisher graph, and thus on Ising
contours (without assumption on periodicity of the graph)

• Dimer statistics are local



On periodic isoradial graphs: spectral curve

• If G is periodic, the Kasteleyn operator K is also periodic
• K(z,w) Fourier transform of K : matrix with rows/columns
indexed by vertices in a fund. domain with extra z±1 or
w±1 weight for edges crossing its boundary

• P(z,w) = det K(z,w) characteristic polynomial
• Fourier formula for K−1:

K−1x,y+(m,n) =

∫∫
|z|=|w|=1

z−mw−nQx,y(z,w)
P(z,w)

dz
2iπz

dw
2iπw

where Qx,y cofactor of K(z,w).

Asymptotics depends on the zeros of P.
C = {(z,w) : P(z,w) = 0} is called the spectral curve



Theorem (B–de Tilière–Raschel)

spectral curve of a Z-invariant
Ising model on isoradial graph

m
Harnack curve of genus 1 with symmetry

(z,w) ↔ ( 1z ,
1
w )
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• Parametrization: u 7→ (Expx,x+(1,0)(u|k),Expx,x+(0,1)(u|k))
• Area of the hole as a function of k and the local geom. of G
• Same curve for the Ising model with param. k and k∗



On periodic isoradial graphs: free energy

free energy FIsing: normalized log of the partition function

Theorem

FIsing(k) = − log 2
2

|V1| − |V1|
∫ K

0
2H′(θ) log sc(θ)dθ+

∑
e∈E1

(
−H(2θ) log sc(θ) +

∫ θe

0
2H′(θ) log sc(θ)dθ

)
.

As k goes to 0,

FIsing(k) = FIsing(0)−
|V1|
2
k2 log k−1 + O(k2)



Z-invariant Ising model and rooted spanning forests

• This free energy is half the free energy of rooted spanning
forests, “counted” by the determinant of a massive
Laplacian on isoradial graphs, with conductances
sc(2Kθ/π|k) we introduced.

• Same phase transition in Ising as from spanning forests to
spanning trees

• Massive exponential functions: harmonic for this massive
Laplacian (elliptic generalisation of Mercat’s harmonic
exponential functions)



Phase transition in the Ising model
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