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Contexte

Le contexte général de notre travail est celui des processus de Schur
[Okounkov ’01, O.-Reshetikhin ’03-’06, Johansson ’0x, Borodin-Rains ’05...].

Nous nous intéressons particulièrement au cas des conditions aux limites
périodiques [Borodin ’07] et libres [Betea-Bouttier-Nejjar-Vuletić ’18].

Avec Dan Betea, nous avons compris comment reformuler le processus de
Schur périodique en termes de fermions libres, qui ont récemment fait
l’objet de plusieurs travaux en lien avec les matrices aléatoires
[Dean-Le Doussal-Majumdar-Schehr ’15-’18, Cunden-Mezzadri-O’Connell ’17,

Liechty-Wang ’17, Stéphan ’19...].

Dans cet exposé je présenterai certains aspects de notre travail dans le
cadre combinatoire le plus simple, qui se formule en termes de partitions
aléatoires.
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Random partitions

Pictures by courtesy of Dan Betea
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Integer partitions
An integer partition λ is a nonincreasing sequence of integers

λ1 ě λ2 ě λ3 ě ¨ ¨ ¨

that vanishes eventually. Its size is |λ| :“
ř

λi . It is commonly represented
by a Young diagram.

The Young diagram of λ “ p4, 2, 1q in “Russian” convention.

The boundary may be viewed as a piecewise linear curve with slope ˘1.

It may also be viewed as a 1D particle configuration (“fermions”).
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Random partitions

Let us fix a size N. There are two contenders for the title of the “most
natural” probability distribution on the set of partitions of size N.

The uniform measure: Probpλq “ 1{ppNq
with ppNq “the” partition function.

The Plancherel measure: Probpλq “ dimpλq2{N!
with dimpλq the number of Standard Young Tableaux of shape λ
(dimension of irrep of SN , hook-length formula...).

Pictures by courtesy of Dan Betea, N “ 10000. Note the scales are different!
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Limit shape

In both cases there is a limit shape phenomenon: the suitably rescaled
boundary of the Young diagram converges to a deterministic curve as
N Ñ8.
(The natural scale factor is N´1{2 so that the rescaled area of the Young
diagram is 1.)
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Limit shape
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The analytical expression for the limit shape is most easily expressed
through the local density ρ of particles, giving the local slope (1´ 2ρ):

uniform: ρpxq “ 1

1`eπx{
?

6
(Fermi-Dirac distribution) [Vershik 1996]

Plancherel: ρpxq “

$

’

&

’

%

arccospx{2q
π if x P p´2, 2q,

1 if x ď ´2,

0 if x ě 2.
[Logan-Shepp, Vershik-Kerov 1977]
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Beyond the limit shape

But, at a “microscopic” or “mesoscopic” level, uniform and Plancherel
random partitions look quite different:

bulk limit: locally around a point of density ρ, particles form a
discrete point process

:
§ in the uniform case, particle occupation numbers are i.i.d. Bernoulli(ρ)

(“the partition is locally a random walk”) [Okounkov 2001]
§ in the Plancherel case, we observe a determinantal point process with

the discrete sine kernel Kdspi , jq :“ sinpρpi´jqq
πpi´jq
[Borodin-Okounkov-Olshanski 2000]

edge limit: we look at the position of the rightmost particle(s), which
corresponds to the largest part(s) λ1 (λ2, . . .) of the partition.
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Edge limit/extreme value statistics

We consider λ1, the first (largest) part of λ.

Uniform case: λ1 “

b

3N
2π2 lnN ` XN1{2 ` ¨ ¨ ¨

with X a Gumbel-distributed random variable.
[Erdős-Lehner 1941]

Plancherel case: λ1 “ 2
?
N ` YN1{6 ` ¨ ¨ ¨

with Y following the Tracy-Widom GUE (β “ 2) distribution.
[Baik-Deift-Johansson 1999, Borodin-Okounkov-Olshanski 2000]
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Canonical ensemble/Poissonization

It is easier to study ensembles of partitions where the size is allowed to
fluctuate.

“Uniform” (canonical) measure:

Probpλq “
u|λ|

Z puq
, u P p0, 1q.

Poissonized Plancherel measure:

Probpλq “

˜

ϑ|λ| dimpλq

|λ|!

¸2

e´ϑ
2
, ϑ P p0,8q.

Large partitions are obtained by taking u Ñ 1 or ϑÑ8. In both cases |λ|
concentrates around its expected value, so we have (or expect)
“equivalence of ensembles”.
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Integer partitions and fermionic configurations

To a partition λ we associate the fermionic configuration

Spλq “

"

λ1 ´
1

2
, λ2 ´

3

2
, λ3 ´

5

2
, ¨ ¨ ¨

*

that gives the position of particles (‚), here Spλq “ t7
2 ,

1
2 ,´

3
2 , ¨ ¨ ¨ u.
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Fermionic configurations

A fermionic configuration is a subset of Z1 :“ Z` 1
2 which:

has a maximal element,

and whose complement has a minimal element.

The mapping λ ÞÑ Spλq is injective but not surjective because the charge
of Spλq is zero.
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Charged partitions

To fix this, we consider charged partitions, i.e. pairs pλ, cq with λ a
partition and c an integer. To such pair we associate

Spλq ` c “

"

λ1 ´
1

2
` c , λ2 ´

3

2
` c , λ3 ´

5

2
` c , ¨ ¨ ¨

*

and the mapping is now bijective.
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Charged partitions

If pλ, cq ÞÑ S , we have

|λ| `
c2

2
“ E pSq

where the energy E pSq is defined by

E pSq :“
ÿ

sPS
są0

s ´
ÿ

sRS
să0

s

C pSq :“
ÿ

sPS
są0

1´
ÿ

sRS
să0

1 “ c

Jérémie Bouttier (CEA/ENS de Lyon) Partitions uniformes et de Plancherel 4 avril 2019 17 / 40



Charged partitions

If pλ, cq ÞÑ S , we have

|λ| `
c2

2
“ E pSq

where the energy E pSq is defined by

E pSq :“
ÿ

sPS
są0

s ´
ÿ

sRS
să0

s C pSq :“
ÿ

sPS
są0

1´
ÿ

sRS
să0

1 “ c

Jérémie Bouttier (CEA/ENS de Lyon) Partitions uniformes et de Plancherel 4 avril 2019 17 / 40



Jacobi triple product identity

If pλ, cq ÞÑ S , we have

|λ| `
c2

2
“

ÿ

sPS
są0

s ´
ÿ

sRS
să0

s c “
ÿ

sPS
są0

1´
ÿ

sRS
să0

1

From this we deduce the identity

ÿ

pλ,cq

zcq|λ|`
c2

2 “
ź

sPZ1
są0

p1` zqsq
ź

sPZ1
să0

p1` z´1q´sq.

It yields the Jacobi triple product identity

ÿ

cPZ
zcq

c2

2 “

8
ź

n“1

p1´ qnqp1` zqn´
1
2 qp1` z´1qn´

1
2 q.
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Fermi-Dirac statistics

The probabilistic meaning is the following: consider the probability

distribution Probpλ, cq “ 1
Z z

cq|λ|`
c2

2 over charged partitions with
0 ď q ă 1 and z ą 0.

Then, in the corresponding fermionic configuration
S , there is a particle at position s with probability

Probps P Sq “
zqs

1` zqs

independently of all the other positions.
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Asymptotics

Now we let q “ e´r Ñ 1 and take z “ 1 (without loss of generality).
R :“ r´1 is the length scale.

For s „ xR, x fixed, we find that

Probps P Sq Ñ
e´x

1` e´x
“

1

1` ex
.

We recover Vershik’s limit shape!

Since different positions are independent, we also recover Okounkov’s
result that a “partition is locally a random walk”.

And since the density of particles decays exponentially for x Ñ `8,
we deduce that the rightmost particle is around position R lnR with
Gumbel fluctuations, consistently with Erdős-Lehner.

(Technical details: cR´1{2 is asymptotically normal so the charge shift

may be neglected, and |λ| concentrates around π2

6 R2...)
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The cylindric Plancherel measure

The cylindric Plancherel measure (CPM) interpolates between the two
measures:

Probpλq9
ÿ

µĂλ

u|µ|

˜

ϑ|λ{µ| dimpλ{µq

|λ{µ|!

¸2

dimpλ{µq is the number of Standard Young Tableaux of skew shape λ{µ.

It reduces to uniform for ϑ “ 0, and to Plancherel for u “ 0.

It is the simplest instance of a periodic Schur process. [Borodin 2007]
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Schur processes

The Schur process was originally introduced to study plane partitions.

[Okounkov-Reshetikhin 2003]

2

1
1 2 12

2
2

2 2
3 3

3
4

4

1

The periodic Schur process is its analogue for studying cylindric partitions.

[Borodin 2007]
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The cylindric Plancherel process

By taking a certain “poissonian” limit of a measure on cylindric partitions,
we obtain the cylindric Plancherel process (CPP) (to be defined later).

b = 0 b = β

0

λ1 − 1

λ2 − 2

λ3 − 3

λ4 − 4

λ5 − 5

λ6 − 6

· · ·

1

2

3

4

5

6

−1

−2

−3

−4

−5

−6

−7

7

The CPM is the fixed-time marginal of the CPP.
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Bulk limit of the CPM

Bulk limits of periodic Schur processes were studied in great generality by
Borodin. In the context of the CPM it amounts to letting u “ e´r with
r Ñ 0, keeping ϑ fixed and looking at the particles around position xr´1:

the limit density reads

ρpxq “
1

2π

ż π

´π

dt

1` ex´2ϑ cos t

the bulk limit kernel reads

Kbulkpi , jq “
1

2π

ż π

´π

cosppi ´ jqtqdt

1` ex´2ϑ cos t
.

These expressions indeed interpolate between those for uniform (ϑ “ 0)
and Plancherel (ϑÑ8, x „ yθ).
(We can check that for ϑÑ8 and u ă 1 fixed we obtain the same limits
up to a scale factor as for u “ 0.)
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Towards the edge limit

We now analyze the edge behavior (which Borodin did not consider). Note
that 0 ă ρpxq ă 1 for all x . For x Ñ8 we have

ρpxq „ I0p2ϑqe
´x

with I0 the modified Bessel function.

Naively we expect to find the rightmost particle where ρpxq „ r , i.e.

λ1 „ r´1 ln
I0p2ϑq

r
.

This turns out to be essentially correct even for ϑÑ8, where we have

λ1 „ 2L, L :“ r´1ϑ.

But what is the order of magnitude of fluctuations?
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Edge limit: thermal vs quantum fluctuations

Intuitively, we expect to have a competition between two types of
fluctuations:

thermal fluctuations of order r´1 (as in the uniform case ϑ “ 0),

quantum fluctuations of order L1{3 (as in the Plancherel case u “ 0).

So, in fact, there are three possible regimes:

the high-temperature regime r´1 " L1{3 i.e. ϑ ! r´2: thermal
fluctuations win, we expect Gumbel,

the low-temperature regime r´1 ! L1{3 i.e. ϑ " r´2: quantum
fluctuations win, we expect Tracy-Widom,

the crossover regime r´19L1{3 i.e. ϑ9r´2: we expect a new
behaviour.

Note that the edge crossover regime is not the same as that in the bulk!
In the intermediate regime 1 ! ϑ ! r´2 the bulk behaves as at zero
temperature, and the edge as at infinite temperature.
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Edge limit: main theorem

Theorem [Betea-B. 2018]

Consider the cylindric Plancherel measure with u “ e´r and
L :“ ϑ{p1´ uq. Then, the largest part λ1 has the following limiting
distributions:

(High-temperature) For r Ñ 0 and rL1{3 Ñ 0, we have

P
ˆ

rλ1 ´ ln
I0p2Lrq

r
ď s

˙

Ñ e´e
´s
, s P R

(Crossover and low-temperature) For LÑ8 and rL1{3 Ñ α P p0,8s,
we have

P
ˆ

λ1 ´ 2L

L1{3
ď s

˙

Ñ Fαpsq, s P R

where Fα is Johansson’s “interpolating” distribution (which reduces
to the Tracy-Widom GUE distribution for α “ 8).
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Johansson’s interpolating distribution
When studying the Moshe-Neuberger-Shapiro random matrix model,
Johansson encountered the distribution

Fαpsq :“ detpI ´MαqL2ps,8q

with Mα the “finite-temperature Airy kernel”

Mαpx , yq “

ż 8

´8

eαs

1` eαs
Aipx ` sqAipy ` sqds.

It interpolates between the Gumbel and Tracy-Widom GUE distributions:

lim
αÑ8

Fαpsq “ FGUE psq

lim
αÑ0

Fα

˜

s ´ 1
2 lnp4πα3q

α

¸

“ e´e
´s
.

[Johansson 2007]
see also [Dean-Le Doussal-Majumdar-Schehr 2015 and Liechty-Wang 2017]
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Ideas of the proof

We use the fact that the grand canonical particle configuration is
determinantal (i.e. we have free fermions). The correlation kernel for the
CPM is the discrete finite-temperature Bessel kernel

KdftBpa, bq “
ÿ

`PZ`1{2

Ja``p2LqJb``p2Lq

1` u`

with Jnp¨q a Bessel function.
We need to show that, upon suitable rescalings, this kernel converges to:

the finite-temperature Airy kernel Mαpx , yq in the
crossover/low-temperature regime,

the (degenerate) Poisson kernel e´xδx ,y in the high-temperature
regime.

The theorem follows from standard arguments on Fredholm determinants.
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Ideas of the proof
We may prove such convergences directly from the sum representation for
KdftB , or alternatively by analyzing the integral representation

KdftBpa, bq “
1

p2iπq2

£

|z|“1`

|w |“1´

dzdw

za`1w´b`1

eLpz´z
´1q

eLpw´w´1q
κpz ,wq

where κpz ,wq is the “fermionic finite-temperature propagator”

κpz ,wq “ xψpzqψ˚pwqyu “
ÿ

`PZ`1{2

pz{wq`

1` u´`
.

This propagator is an elliptic function. For u “ e´r and z{w “ eζ we have
by Poisson summation

κpz ,wq “
ÿ

`PZ
p´1q`

π

r sinπ ζ´2iπ`
r

.

For r Ñ 0 and |argpζq| ď π the term ` “ 0 is exponentially dominant.

Jérémie Bouttier (CEA/ENS de Lyon) Partitions uniformes et de Plancherel 4 avril 2019 31 / 40



Ideas of the proof
We may prove such convergences directly from the sum representation for
KdftB , or alternatively by analyzing the integral representation

KdftBpa, bq “
1

p2iπq2

£

|z|“1`

|w |“1´

dzdw

za`1w´b`1

eLpz´z
´1q

eLpw´w´1q
κpz ,wq

where κpz ,wq is the “fermionic finite-temperature propagator”

κpz ,wq “ xψpzqψ˚pwqyu “
ÿ

`PZ`1{2

pz{wq`

1` u´`
.

This propagator is an elliptic function. For u “ e´r and z{w “ eζ we have
by Poisson summation

κpz ,wq “
ÿ

`PZ
p´1q`

π

r sinπ ζ´2iπ`
r

.

For r Ñ 0 and |argpζq| ď π the term ` “ 0 is exponentially dominant.
Jérémie Bouttier (CEA/ENS de Lyon) Partitions uniformes et de Plancherel 4 avril 2019 31 / 40



Ideas of the proof

Thus we get

KdftBpa, bq »
1

p2iπq2

£

|z|“1`

|w |“1´

dzdw

za`1w´b`1

eLpz´z
´1q

eLpw´w´1q

π

r sinπ ζr
.

From there the analysis depends on the regime we consider:

in the crossover/low-temperature regime (r “ OpL1{3q), we perform a
saddle-point analysis very similar to that for the usual poissonized
Plancherel measure (i.e. zero temperature) [see e.g. Okounkov 2002],

the high-temperature regime (r " L1{3) requires a new analysis, we
can see that the integral is dominated by the contribution of the pole
at z “ w{u i.e. ζ “ r .
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Outline

1 Introduction: uniform vs Plancherel random partitions

2 Combinatorial warm-up: uniform partitions and Fermi-Dirac statistics

3 Interpolating between the two cases: the cylindric Plancherel measure

4 A periodic dynamics on partitions
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The cylindric Plancherel process
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The cylindric Plancherel process

We now provide a definition for the CPP. For L, t ě 0 and λ, µ two
partitions, we define a transition kernel by

TLptqλ,µ :“ eL
2pe´t´1q

ÿ

ν

e´t|ν|
pLp1´ e´tqq|λ{ν|`|µ{ν| dimpλ{νq dimpµ{νq

|λ{ν|!|µ{ν|!
.

It satisfies the semi-group property

TLptqTLpt
1q “ TLpt ` t 1q

and is in fact related to a Markov process introduced by Borodin and
Olshanski, which leaves the poissonized Plancherel measure invariant.
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The cylindric Plancherel process

Fix an intensity L and a period β. We define the cylindric Plancherel
process (CPP) as the partition-valued continuous-time β-periodic process
λp¨q whose finite-dimensional marginals are given by

Probpλpb1q, λpb2q, . . . , λpbnqq “
ÿ

λp0q

TLpb1qλp0q,λpb1q
TLpb2 ´ b1qλpb1q,λpb2q

¨ ¨ ¨TLpβ ´ bnqλpbnq,λp0q

where 0 ď b1 ď b2 ď ¨ ¨ ¨ ď bn ď β.
At any fixed time b, the law of λpbq is the cylindric Plancherel measure of
parameters u “ e´β, ϑ “ Lp1´ e´βq.
We believe the process admits a more natural PNG-type definition (work
in progress).

Jérémie Bouttier (CEA/ENS de Lyon) Partitions uniformes et de Plancherel 4 avril 2019 36 / 40



The cylindric Plancherel process

b = 0 b = β

0

λ1 − 1

λ2 − 2

λ3 − 3

λ4 − 4

λ5 − 5

λ6 − 6

· · ·

1

2

3

4

5

6

−1

−2

−3

−4

−5

−6

−7

7

Jérémie Bouttier (CEA/ENS de Lyon) Partitions uniformes et de Plancherel 4 avril 2019 37 / 40



Extended discrete finite-temperature Bessel kernel
The associated grand canonical particle configurations is still
determinantal, and is described by the extended kernel

KedftBpb, k ; b1, k 1q “

#

ř

` Jk``p2LqJk 1``p2Lq
epb´b1q`

1`eβ`
if b ď b1,

´
ř

` Jk``p2LqJk 1``p2Lq
epb´b1q`

1`e´β`
if b ą b1.

Theorem [BB18]

In the edge crossover or low-temperature regime LÑ8, β Ñ 0,
L1{3β Ñ α P p0,8s, b “ βτ{α, k “ t2L` xL1{3u (and similarly for b1, k 1)

L1{3KedftBpb, k ; b1, k 1q Ñ

#

ş8

´8
epτ´τ

1qv

1`e´αv
Aipx ` vqAipx 1 ` vqdv if τ ď τ 1,

´
ş8

´8
epτ´τ

1qv

1`eαv Aipx ` vqAipx 1 ` vqdv if τ ą τ 1

which is the extended finite-temperature Airy kernel of Le
Doussal-Majumdar-Schehr (2017).

Work in progress for the high-temperature regime.
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Summary and conclusion
We have analyzed a measure on random partitions which interpolates
between the uniform and Plancherel partitions.

We have a complete picture of the transition from one case to another in
the thermodynamic limit. It is quite nontrivial as the transition takes place
in different regimes for the bulk and the edge. (Is this universal?)

Open questions/future directions:

finite-temperature analogues of other limiting kernels? (Pearcey,
multicritical potentials...)

applications to last-passage percolation and TASEP?

connection with finite-time solutions of the KPZ equation?

analysis of Johansson’s interpolating distribution?
connected with the “lower tail of the KPZ equation” [Corwin-Ghosal 2018]

what about the free boundary Schur process?
[Betea-B.-Nejjar-Vuletić 2018, 2019 + work in progress]
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Thanks !

Questions ?
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