
Graphon limit of random cographs

Mathilde Bouvel
(Loria, CNRS, Univ. Lorraine)

talk based on joint work with
Frédérique Bassino, Valentin Féray, Lucas Gerin,
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We have to start somewhere:
Setting the problem



Cographs

Definition: A cograph of size n is a graph G = (V ,E ) with |V | = n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.

G1 G2
G1 G2

no edge all edges

Disjoint union Join
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Cographs

Definition: A cograph of size n is a graph G = (V ,E ) with |V | = n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.

Other characterizations: Cographs are

the graphs avoiding P4 = as an induced subgraph;

the graphs whose modular decomposition does not involve any prime
graph;

the inversion graphs of separable permutations.
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Cographs

Definition: A cograph of size n is a graph G = (V ,E ) with |V | = n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.

Other characterizations: Cographs are

the graphs avoiding P4 = as an induced subgraph;

the graphs whose modular decomposition does not involve any prime
graph;

the inversion graphs of separable permutations.

Prop.: Cographs form a hereditary class,
i.e., every induced subgraph of a cograph is a cograph.

Central question for this talk:

What does a uniform random cograph of size n look like,
when n goes to infinity?
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Cographs: one of many cases

One question studied in the (huge!) random graph literature is the
following:

For F a family of graphs,
what is the typical behavior of a large graph in F?

Already studied for:

perfect graphs [McDiarmid-Yolov, 2019]

planar graphs [Noy, 2014]

graphs embeddable in a surface of given genus [Dowden-Kang-Sprüssel,

2017]

graphs in subcritical classes [Panagiotou-Stufler-Weller, 2016]

large hereditary classes [Hatami-Janson-Szegedy, 2018]

addable classes [McDiarmid-Steger-Welsh, 2006 ; Chapuy-Perarnau, 2019]
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Which model?

Which discrete objects? Graphs may be

labeled: in this case, vertices are numbered from 1 to n;

or unlabeled: vertices are indistinguishable.

Unlabeled graphs are equivalence classes of labeled graphs under the
action of relabeling the vertices.

Here, we consider both labeled and unlabeled cographs.
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Which model?

Which discrete objects? Graphs may be

labeled: in this case, vertices are numbered from 1 to n;

or unlabeled: vertices are indistinguishable.

Unlabeled graphs are equivalence classes of labeled graphs under the
action of relabeling the vertices.

Here, we consider both labeled and unlabeled cographs.

The unlabeled version of a uniform labeled cograph is not a
uniform unlabeled cograph! Indeed, the number of distinct
labelings depends on the internal symmetries of the graph.

Which continuous limit? We describe the limit in the space of graphons.
Graphons were introduced by Lovász and co-authors in 2008, and
attracted a lot of interest.
Graphons are appropriate to describe limits of dense graphs.
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Some basics on graphons



What is (informally) a graphon?

In the discrete setting:

(Unlabeled) Adjacency matrix Function
graph G −→ MG (symmetric) −→ wG : [0, 1]2 → [0, 1]


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
0 0 0 1 0



The graphon WG associated with G is the equivalence class of wG under
the action of permuting rows and columns of MG .
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graph G −→ MG (symmetric) −→ wG : [0, 1]2 → [0, 1]


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
0 0 0 1 0



The graphon WG associated with G is the equivalence class of wG under
the action of permuting rows and columns of MG .

Remarks:

WG does not depend on the order of the vertices chosen to write MG .

If G is labeled, WG is the graphon of the unlabeled version of G .
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What is (informally) a graphon?

In the discrete setting:

(Unlabeled) Adjacency matrix Function
graph G −→ MG (symmetric) −→ wG : [0, 1]2 → [0, 1]


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
0 0 0 1 0



The graphon WG associated with G is the equivalence class of wG under
the action of permuting rows and columns of MG .

Continuous extension:
In general, a graphon is obtained as above, from a symmetric matrix M,
possibly with a continuum of rows and columns, and with values in [0, 1].

It is an equivalence class of symmetric functions from [0, 1]2 → [0, 1] under
the action of permuting rows and columns of M.
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Characterization of (deterministic) graphon convergence

(Non-)definition:
The space of graphons is (up to technicalities) metric, for the cut-distance
(and in addition is compact).

So, it makes sense to study convergence of a sequence of graphons
(Wn)n≥0 to a graphon W (for this cut-distance). We write Wn →W .
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Characterization of (deterministic) graphon convergence

(Non-)definition:
The space of graphons is (up to technicalities) metric, for the cut-distance
(and in addition is compact).

So, it makes sense to study convergence of a sequence of graphons
(Wn)n≥0 to a graphon W (for this cut-distance). We write Wn →W .

Typically, Wn = WGn , the graphon associated to a graph Gn, with the
sequence of graphs (Gn) such that the size of Gn grows to infinity with n.
In this case, we also write Gn →W .

Combinatorial characterization of convergence:
For (Wn) a sequence of graphons and W a graphon, Wn →W iff
for any (finite) graph g , Dens(g ,Wn)→ Dens(g ,W ).

Let us now define the density of a graph g in a graphon.
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Subgraph densities in graphs and graphons

Induced subgraph: The subgraph of G = (V ,E ) induced by V ′ ⊂ V is
the graph with vertex set V ′ and edge set E ∩ (V ′ × V ′).
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For a graph G , Dens(g ,G ) = P(SubGraphk(G ) = g),
where SubGraphk(G ) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G .

For a graphon W , Dens(g ,W ) = P(Samplek(W ) = g),
where Samplek(W ) is the (random) graph with k vertices v1, . . . , vk
such that vi and vj are connected with probability w(xi , xj),
for x1, . . . , xk i.i.d. uniform random variables in [0, 1]
and w : [0, 1]2 → [0, 1] a representative of W .
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Subgraph densities in graphs and graphons

Induced subgraph: The subgraph of G = (V ,E ) induced by V ′ ⊂ V is
the graph with vertex set V ′ and edge set E ∩ (V ′ × V ′).

Densities: Fix g a graph with k vertices, unlabeled.

For a graph G , Dens(g ,G ) = P(SubGraphk(G ) = g),
where SubGraphk(G ) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G .

For a graphon W , Dens(g ,W ) = P(Samplek(W ) = g),
where Samplek(W ) is the (random) graph with k vertices v1, . . . , vk
such that vi and vj are connected with probability w(xi , xj),
for x1, . . . , xk i.i.d. uniform random variables in [0, 1]
and w : [0, 1]2 → [0, 1] a representative of W .

Remark: For any graph G , Dens(g ,WG ) = Dens(g ,G ).
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Characterization of graphon convergence: the random case

Reminder: Gn →W iff Dens(g ,Gn)→ Dens(g ,W ) for all g , for (Gn) a
sequence of (deterministic) graphs and W a (deterministic) graphon.
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Characterization of graphon convergence: the random case

Reminder: Gn →W iff Dens(g ,Gn)→ Dens(g ,W ) for all g , for (Gn) a
sequence of (deterministic) graphs and W a (deterministic) graphon.

What if we take (Gn) random? (Dens(g ,Gn) being then a real r.v.)

Theorem [Diaconis-Janson, 2008]:
The distribution of a random graphon W is characterized by all expected
subgraph densities E[Dens(g ,W )] (for all g).

Theorem [Diaconis-Janson, 2008]:
Let (Gn) be a sequence of random graphs. TFAE:

Gn tends in distribution to some random graphon, W .

For all g , E[Dens(g ,Gn)] converges to some value ∆g ∈ [0, 1].

If this holds, in addition we have:
for all g , E[Dens(g ,W )] = ∆g , so that (∆g )g characterizes W .
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Our work in a nutshell



Main result and proof strategy

Theorem:
For all n, let Gn (resp. Gu

n ) be a uniform random labeled (resp. unlabeled)
cograph with n vertices.
We have that Gn (resp. Gu

n ) converges in distribution to a random
graphon W 1/2 called the Brownian cographon of parameter 1/2.
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n ) converges in distribution to a random
graphon W 1/2 called the Brownian cographon of parameter 1/2.

Proof strategy (labeled case):

Compute ∆g = E[Dens(g ,W 1/2)] for all cographs g

Express E[Dens(g ,Gn)] as a quotient of coefficients of generating
functions, starting from

E[Dens(g ,Gn)] =

∣∣∣{(G , I ) : G=(V ,E) labeled cograph of size n,
I∈V k which induces g

}∣∣∣
|{G labeled cograph of size n}| · nk

Estimate numerator and denominator using analytic combinatorics, in
order to prove convergence to ∆g
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Theorem:
For all n, let Gn (resp. Gu

n ) be a uniform random labeled (resp. unlabeled)
cograph with n vertices.
We have that Gn (resp. Gu

n ) converges in distribution to a random
graphon W 1/2 called the Brownian cographon of parameter 1/2.

Proof strategy (labeled case):

Compute ∆g = E[Dens(g ,W 1/2)] for all cographs g

Express E[Dens(g ,Gn)] as a quotient of coefficients of generating
functions, starting from

E[Dens(g ,Gn)] =

∣∣∣{(G , I ) : G=(V ,E) labeled cograph of size n,
I∈V k which induces g

}∣∣∣
|{G labeled cograph of size n}| · nk

Estimate numerator and denominator using analytic combinatorics, in
order to prove convergence to ∆g

Essential tool: encoding of cographs by cotrees.
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Outline of (the rest of) the talk

About the main theorem:

Cographs and cotrees

Combinatorial proof of convergence in the labeled case

Description of the Brownian cographon

Corollary: average degree distribution in cographs

How to deal with the unlabeled case

Additional results, questions, comments:

Vertex connectivity distinguishes between the labeled and the
unlabeled settings

A parallel with permutations, yielding new problems to work on

Independence number of cographs
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Cotrees and how to use them to compute
lim
n→∞

E[Dens(g ,Gn)]



Cographs and cotrees

A labeled cotree of size n is a rooted tree t with leaves {1, . . . , n} s.t.

t is not plane (i.e. the children of every internal node are not ordered);

every internal node has at least two children;

every internal node carries a decoration 0 or 1.

t is canonical if 0 and 1 alternate on every branch from the root to a leaf.

1

2
3

4

5
6

7

8

1 8

24

35

67

0

11

0

(Not one-to-one)

Mapping
from cotrees to cographs:
0 indicates disjoint union and
1 indicates join.
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A labeled cotree of size n is a rooted tree t with leaves {1, . . . , n} s.t.

t is not plane (i.e. the children of every internal node are not ordered);

every internal node has at least two children;

every internal node carries a decoration 0 or 1.

t is canonical if 0 and 1 alternate on every branch from the root to a leaf.
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1 8
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67

0

11

0 (Not one-to-one) Mapping
from cotrees to cographs:
0 indicates disjoint union and
1 indicates join.

Prop.: Vertices i and j are connected iff the first common ancestor of
leaves i and j carries a 1.

Prop.: This mapping restricted to canonical cotrees is a bijection.
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Induced subgraphs in cographs on their cotrees

t a canonical cotree ↔ G the corresponding cograph
a k-tuple ` = (`1, . . . , `k) of leaves ↔ a k-tuple I of vertices

Subtree of t induced by (`1, . . . , `k) = the cotree labeled from ` whose
leaves are (`1, . . . , `k) and whose internal structure is inherited from t.

`8

`4

`1

`2

14

3

1

1

1

0

0

0
10

00

1

1

1
0

0

9 25

7

8

`7

`5 6`9
`3

`6
11
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Subtree of t induced by (`1, . . . , `k) = the cotree labeled from ` whose
leaves are (`1, . . . , `k) and whose internal structure is inherited from t.
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Prop.: Forgetting the labelings, the subgraph of G induced by I is the
cograph corresponding to the subtree of t induced by (`1, . . . , `k)
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Variations on E[Dens(g ,Gn)]

Reminder: Dens(g ,G ) = P(SubGraphk(G ) = g),
where SubGraphk(G ) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G .
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Variant: Densinj(g ,G ) = P(SubGraphinj
k (G ) = g),

where SubGraphinj
k (G ) is the (random) subgraph of G

induced by a uniform random k-tuple of distinct vertices of G .
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Variations on E[Dens(g ,Gn)]

Reminder: Dens(g ,G ) = P(SubGraphk(G ) = g),
where SubGraphk(G ) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G .

Variant: Densinj(g ,G ) = P(SubGraphinj
k (G ) = g),

where SubGraphinj
k (G ) is the (random) subgraph of G

induced by a uniform random k-tuple of distinct vertices of G .

Fact: E[Dens(g ,Gn)]→ ∆g iff E[Densinj(g ,Gn)]→ ∆g .

Notation: for all n, and all k ≤ n,
t(n) is a uniform random labeled canonical cotree of size n, and
t(n)k is the subtree of t(n) induced by a uniform k-tuple of distinct leaves.

For any cograph g , we have:

E[Densinj(g ,Gn)] = P(SubGraphinj
k (Gn) = g)=

∑
P(t(n)k = t0),

where the sum runs over all cotrees t0 corresponding to g .
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Combinatorics of the labeled case:
Finding lim

n→∞
P(t(n)

k = t0)



Expressing P(t(n)
k = t0)

Notation:

M: the set of labeled canonical cotrees

for any cotree t0 with k leaves, Mt0 : the set of labeled canonical
cotrees with a marked k-tuple of distinct leaves, which induce t0.

L: the set of non-plane rooted trees, labeled on their leaves, where
internal nodes have ≥ 2 children.
Trees of L are just like cotrees without the decorations on internal
nodes.

with corresponding exponential generating series M(z), Mt0(z),

L(z)
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M: the set of labeled canonical cotrees

for any cotree t0 with k leaves, Mt0 : the set of labeled canonical
cotrees with a marked k-tuple of distinct leaves, which induce t0.

L: the set of non-plane rooted trees, labeled on their leaves, where
internal nodes have ≥ 2 children.
Trees of L are just like cotrees without the decorations on internal
nodes.

with corresponding exponential generating series M(z), Mt0(z),

L(z)

P(t(n)k = t0) =
n![zn]Mt0(z)

n![zn]M(z)× n(n − 1) . . . (n − k + 1)

Estimate the limit as n→∞ using analytic combinatorics,

on L(z) and variants, relating M(z) and Mt0(z) to L(z)
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Behavior of L(z) and M(z)

Study of L(z):
From [Flajolet-Sedgewick] (rather a variant on trees counted by leaves):

L(z) satisfies L(z) = z + exp(L(z))− 1− L(z).
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L(z) has radius of convergence ρ = 2 log(2)− 1 and is ∆-analytic.

Near z = ρ, L(z) = log(2)−√ρ
√

1− z/ρ+O(1− z/ρ).
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Study of M(z):

M(z) = 2L(z)− z , since all decorations in a canonical cotree (of
size 6= 1) are determined by the decoration of the root (alternation).
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Behavior of L(z) and M(z)

Study of L(z):
From [Flajolet-Sedgewick] (rather a variant on trees counted by leaves):

L(z) satisfies L(z) = z + exp(L(z))− 1− L(z).

L(z) has radius of convergence ρ = 2 log(2)− 1 and is ∆-analytic.

Near z = ρ, L(z) = log(2)−√ρ
√

1− z/ρ+O(1− z/ρ).

Study of M(z):

M(z) = 2L(z)− z , since all decorations in a canonical cotree (of
size 6= 1) are determined by the decoration of the root (alternation).

M(z) has radius of convergence ρ = 2 log(2)− 1 and is ∆-analytic.

Near z = ρ, M(z) = 1− 2
√
ρ
√

1− z/ρ+O(1− z/ρ).

From the transfer theorem,

n(n − 1) . . . (n − k + 1)[zn]M(z) ∼
n→+∞

nk−3/2

ρn−1/2
√
π

.
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Relating Mt0(z) to variations on L(z) (1/2)

Recall: Trees of Mt0 are trees of L with k marked leaves inducing t0, and
in addition a decoration on the root
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in addition a decoration on the root

Terminology:

Marked leaf: carries a label (hence contributes 1 to the size)

Blossom: similar to a marked leaf, but does not carry a label
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Recall: Trees of Mt0 are trees of L with k marked leaves inducing t0, and
in addition a decoration on the root

Terminology:

Marked leaf: carries a label (hence contributes 1 to the size)

Blossom: similar to a marked leaf, but does not carry a label

Series to consider:

L′(z): counts trees of L with a blossom

L•(z) = zL′(z): counts trees of L with a marked leaf

Lodd: counts trees of L with a blossom at odd distance from the root

Leven: same for even distance
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Recall: Trees of Mt0 are trees of L with k marked leaves inducing t0, and
in addition a decoration on the root

Terminology:

Marked leaf: carries a label (hence contributes 1 to the size)

Blossom: similar to a marked leaf, but does not carry a label

Series to consider:

L′(z): counts trees of L with a blossom

L•(z) = zL′(z): counts trees of L with a marked leaf

Lodd: counts trees of L with a blossom at odd distance from the root

Leven: same for even distance

Simple combinatorial arguments give Leven = 1
eL(2−eL) and Lodd = eL−1

eL(2−eL) .
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Relating Mt0(z) to variations on L(z) (1/2)

Recall: Trees of Mt0 are trees of L with k marked leaves inducing t0, and
in addition a decoration on the root

Terminology:

Marked leaf: carries a label (hence contributes 1 to the size)

Blossom: similar to a marked leaf, but does not carry a label

Series to consider:

L′(z): counts trees of L with a blossom

L•(z) = zL′(z): counts trees of L with a marked leaf

Lodd: counts trees of L with a blossom at odd distance from the root

Leven: same for even distance

Simple combinatorial arguments give Leven = 1
eL(2−eL) and Lodd = eL−1

eL(2−eL) .

Thus, the singular behavior of L(z) determines the one of these four series.
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Relating Mt0(z) to variations on L(z) (2/2)

Prop.: If t0 with k leaves has nv internal vertices, n= edges of the form
0− 0 or 1− 1, and n 6= edges of the form 0− 1 or 1− 0, then

Mt0 = (L′)(exp(L))nv (L•)k(Lodd)n=(Leven)n6= .
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Relating Mt0(z) to variations on L(z) (2/2)

Prop.: If t0 with k leaves has nv internal vertices, n= edges of the form
0− 0 or 1− 1, and n 6= edges of the form 0− 1 or 1− 0, then

Mt0 = (L′)(exp(L))nv (L•)k(Lodd)n=(Leven)n6= .
Proof:

?

. . .

. . .

odd even

even

10

0

0

0

1

0

0

1 1

0

Counted by Leven

Counted by Lodd

Counted by eL

Counted by L′

Counted by L•

`5 `1

`4 `2

`3

5 1

2 4

3
. . .

. . .1 1

111 1
0 0 0

1 1 1 1

r
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Prop.: If t0 with k leaves has nv internal vertices, n= edges of the form
0− 0 or 1− 1, and n 6= edges of the form 0− 1 or 1− 0, then

Mt0 = (L′)(exp(L))nv (L•)k(Lodd)n=(Leven)n6= .
Proof:
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. . .

. . .

odd even
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1
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0

1 1

0

Counted by Leven

Counted by Lodd

Counted by eL

Counted by L′

Counted by L•

`5 `1

`4 `2

`3

5 1

2 4

3
. . .

. . .1 1

111 1
0 0 0

1 1 1 1

r

Corollary: Like before, we obtain

the behavior at ρ of Mt0(z),

and the asymptotic estimate of [zn]Mt0(z).
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Prop.: If t0 with k leaves has nv internal vertices, n= edges of the form
0− 0 or 1− 1, and n 6= edges of the form 0− 1 or 1− 0, then

Mt0 = (L′)(exp(L))nv (L•)k(Lodd)n=(Leven)n6= .
Proof:
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Counted by Leven

Counted by Lodd

Counted by eL

Counted by L′

Counted by L•

`5 `1

`4 `2

`3

5 1
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3
. . .

. . .1 1

111 1
0 0 0

1 1 1 1

r

Corollary: Like before, we obtain

the behavior at ρ of Mt0(z),

and the asymptotic estimate of [zn]Mt0(z).

More precisely, we have

[zn]Mt0(z) ∼
n→+∞

(k − 1)!

(2k − 2)!

nk−3/2

ρn−1/2
√
π

,

if t0 is binary (which implies nv = k − 1 and n= + n6= = k − 2).
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Conclusion of the combinatorial study (labeled case)

Notation (reminder):

t(n): uniform random labeled canonical cotree of size n

t(n)k : subtree of t(n) induced by a uniform k-tuple of distinct leaves

t0: cotree with k leaves

What we proved: If t0 is binary, then lim
n→∞

P(t(n)k = t0) = (k−1)!
(2k−2)! .
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What we proved: If t0 is binary, then lim
n→∞

P(t(n)k = t0) = (k−1)!
(2k−2)! .

Remark: (k−1)!
(2k−2)! = 1

number of binary cotrees with k leaves .

Consequence: If t0 is not binary, then lim
n→∞

P(t(n)k = t0) = 0.
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Conclusion of the combinatorial study (labeled case)

Notation (reminder):

t(n): uniform random labeled canonical cotree of size n

t(n)k : subtree of t(n) induced by a uniform k-tuple of distinct leaves

t0: cotree with k leaves

What we proved: If t0 is binary, then lim
n→∞

P(t(n)k = t0) = (k−1)!
(2k−2)! .

Remark: (k−1)!
(2k−2)! = 1

number of binary cotrees with k leaves .

Consequence: If t0 is not binary, then lim
n→∞

P(t(n)k = t0) = 0.

Remark/reminder:
Summing over all t0 encoding a cograph g , this gives lim

n→∞
E[Dens(g ,Gn)].
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The Brownian cographon
and its expected subgraph densities

(or something close to it)



Defining the Brownian cographon

Decorated Brownian excursion:

e: Brownian excursion of length 1.

(bi )i≥1: enumeration of the locations of the
local minima of e (which exists).

Sp = (s1, . . .): sequence of i.i.d. r.v. in {0, 1},
independent from e, with P(s1 = 0) = p.

In the decorated Brownian excursion (e,Sp), we think of the decorations
si as attached to the local minimum at bi .
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Defining the Brownian cographon

Decorated Brownian excursion:

e: Brownian excursion of length 1.

(bi )i≥1: enumeration of the locations of the
local minima of e (which exists).

Sp = (s1, . . .): sequence of i.i.d. r.v. in {0, 1},
independent from e, with P(s1 = 0) = p.

In the decorated Brownian excursion (e,Sp), we think of the decorations
si as attached to the local minimum at bi .

Brownian cographon of parameter p ∈ [0, 1], W p:

for any x , y ∈ [0, 1], Dec(x , y ; e,Sp) ∈ {0, 1} = decoration of the
local minimum of e on [x , y ] (or [y , x ]) (a.s. unique and 6= x , y)

W p = graphon associated with the function
wp : [0, 1]2 → {0, 1};

(x , y) 7→ Dec(x , y ; e,Sp).
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“Here is” W 1/2

This is actually the adjacency matrix of a uniform random labeled cograph
of size 4482, where the order of the vertices to plot the matrix is the
depth-first search on the associated cotree.
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Distribution of induced subgraphs of W p

Notation:

W p: Brownian cographon of parameter p

Samplek(W ): subgraph of W induced by k i.i.d. uniform “vertices”
x1, . . . , xk ∈ [0, 1]

bp
k : uniform labeled binary tree with k leaves, where internal vertices

carry {0, 1} decorations with P(0) = p.

Prop.: Samplek(W p)
(d)
= the unlabeled version of Cograph(bp

k ).
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Distribution of induced subgraphs of W p

Notation:

W p: Brownian cographon of parameter p

Samplek(W ): subgraph of W induced by k i.i.d. uniform “vertices”
x1, . . . , xk ∈ [0, 1]

bp
k : uniform labeled binary tree with k leaves, where internal vertices

carry {0, 1} decorations with P(0) = p.

Prop.: Samplek(W p)
(d)
= the unlabeled version of Cograph(bp

k ).

Proof idea:

bp
k is the cotree extracted from (e,Sp)

and x1, . . . , xk . → 0

1

Samplek(W p) is the associated cograph
since decorations indicate edges similarly in W p and in Cograph(bp

k ).
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Characterization of convergence to W 1/2

Prop.: For (t(n))n a sequence of random cotrees s.t. size(t(n)) = n,

let t(n)k be the subtree of t(n) induced by a unif. k-tuple of distinct leaves.

If for any binary cotree t0 we have P(t(n)k = t0) −−−→
n→∞

(k−1)!
(2k−2)! , (?)

then (Cograph(t(n)))n converges to W 1/2.
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Prop.: For (t(n))n a sequence of random cotrees s.t. size(t(n)) = n,

let t(n)k be the subtree of t(n) induced by a unif. k-tuple of distinct leaves.

If for any binary cotree t0 we have P(t(n)k = t0) −−−→
n→∞

(k−1)!
(2k−2)! , (?)

then (Cograph(t(n)))n converges to W 1/2.

Proof idea:

(?) says t(n)k is asymptotically uniform on labeled binary cotrees with

k leaves, which is distributed like b1/2
k

Take cographs and forget labels

⇒ SubGraphinj
k (Cograph(t(n)))

(d)→ Samplek(W 1/2)
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Characterization of convergence to W 1/2

Prop.: For (t(n))n a sequence of random cotrees s.t. size(t(n)) = n,

let t(n)k be the subtree of t(n) induced by a unif. k-tuple of distinct leaves.

If for any binary cotree t0 we have P(t(n)k = t0) −−−→
n→∞

(k−1)!
(2k−2)! , (?)

then (Cograph(t(n)))n converges to W 1/2.

Proof idea:

(?) says t(n)k is asymptotically uniform on labeled binary cotrees with

k leaves, which is distributed like b1/2
k

Take cographs and forget labels

⇒ SubGraphinj
k (Cograph(t(n)))

(d)→ Samplek(W 1/2)

Corollary: (Gn) converges to W 1/2.
Uniform random labeled cographs converge to the Brownian cographon.

(apply the prop. to t(n) = unif. random canonical labeled cotree of size n)
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Additional results



Average degree distribution

Degree distribution of graphs and graphons:

(Rescaled) degree distribution of G : DG = 1
n

∑
v vertex δdeg(v)/n

It generalizes to graphons: for w representing W , DW is defined by∫
[0,1] f (x)DW (dx) =

∫
[0,1] f

(∫
[0,1] w(u, v)dv

)
du, ∀f cont. bounded

DG and DW are probability measures on [0, 1]

Lemma: If (Gn)n converges to W , then (DGn) converges (weakly) to DW .
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Average degree distribution

Degree distribution of graphs and graphons:

(Rescaled) degree distribution of G : DG = 1
n

∑
v vertex δdeg(v)/n

It generalizes to graphons: for w representing W , DW is defined by∫
[0,1] f (x)DW (dx) =

∫
[0,1] f

(∫
[0,1] w(u, v)dv

)
du, ∀f cont. bounded

DG and DW are probability measures on [0, 1]

Lemma: If (Gn)n converges to W , then (DGn) converges (weakly) to DW .

With W random: DW is a random measure.
Its intensity measure I [DW ] is the “averaged” degree distribution of W ,
where we average on all realizations of W
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Average degree distribution

Degree distribution of graphs and graphons:

(Rescaled) degree distribution of G : DG = 1
n

∑
v vertex δdeg(v)/n

It generalizes to graphons: for w representing W , DW is defined by∫
[0,1] f (x)DW (dx) =

∫
[0,1] f

(∫
[0,1] w(u, v)dv

)
du, ∀f cont. bounded

DG and DW are probability measures on [0, 1]

Lemma: If (Gn)n converges to W , then (DGn) converges (weakly) to DW .

With W random: DW is a random measure.
Its intensity measure I [DW ] is the “averaged” degree distribution of W ,
where we average on all realizations of W

Prop.: For the Brownian cographon, I [DW 1/2 ] is uniform on [0, 1].

Corollary: The rescaled degree of a uniform random vertex vn in Gn is
asymptotically uniform in [0, 1].
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The unlabeled case

Same results:

Definition: Gu
n = uniform random unlabeled cograph with n vertices

Theorem: (Gu
n )n converges to the Brownian cographon W 1/2

Consequence: The rescaled degree of a uniform random vertex vn in
Gu

n is asymptotically uniform in [0, 1].
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The unlabeled case

Same results:

Definition: Gu
n = uniform random unlabeled cograph with n vertices

Theorem: (Gu
n )n converges to the Brownian cographon W 1/2

Consequence: The rescaled degree of a uniform random vertex vn in
Gu

n is asymptotically uniform in [0, 1].

How to modify the proof:

Same strategy of analytic combinatorics, using unlabeled cotrees.

With Pólya operators, it is difficult to count objects with marked
leaves (inducing a given subtree t0).

Instead of L as before, we study

U = {(t, a) : t ∈ L, a a root-preserving automorphism of t}.
Using U , we can interpret Pólya operators combinatorially, in a way
that allows to keep track of marked leaves.
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Vertex connectivity

Remark: For their graphon limit (and average degree distribution),
labeled and unlabeled cographs display the same behavior.

Question: Are there some statistics which behave differently in the
labeled and unlabeled case?
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Vertex connectivity

Remark: For their graphon limit (and average degree distribution),
labeled and unlabeled cographs display the same behavior.

Question: Are there some statistics which behave differently in the
labeled and unlabeled case?

Example of the vertex connectivity:

κ(G ) = minimal number of vertices whose removal disconnects G

For a connected cograph G with canonical cotree T (with root 1),
κ(G ) = |G | − |Tmax |, where |Tmax | is the largest component of T

Using again analytic combinatorics, we express, for all j ≥ 1,
lim
n→∞

P(κ(Gn) = j) using L(z) as 1/2 · ρjL [z j ] (eL(z) − 1)

lim
n→∞

P(κ(Gu
n ) = j) using U(z) as 1/2 · ρjU [z j ] (2U(z)− z)

(the limiting probability of having κ(Gn) or κ(Gu
n ) = 0 being 1/2).

These limit distributions are different.
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A parallel with permutations via inversion graphs

Separable permutations

encoding by decomposition trees

convergence to the Brownian
separable permuton (BSP)

[BBFGP18, Maazoun16, BBFS20]

Cographs

encoding by cotrees

convergence to the Brownian
Cographon (BCG)

[this talk, Stufler21]
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Separable permutations

encoding by decomposition trees

convergence to the Brownian
separable permuton (BSP)

[BBFGP18, Maazoun16, BBFS20]

Substitution-closed classes

encoding by decomposition trees

Universality of the BSP

[BBFGMP20]

Beyond these families

encoding by decomposition trees

BSP VS X-permuton

[BBFGMP21+]

Cographs

encoding by cotrees

convergence to the Brownian
Cographon (BCG)

[this talk, Stufler21]
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A parallel with permutations via inversion graphs

Separable permutations

encoding by decomposition trees

convergence to the Brownian
separable permuton (BSP)

[BBFGP18, Maazoun16, BBFS20]

Substitution-closed classes

encoding by decomposition trees

Universality of the BSP

[BBFGMP20]

Beyond these families

encoding by decomposition trees

BSP VS X-permuton

[BBFGMP21+]

Cographs

encoding by cotrees

convergence to the Brownian
Cographon (BCG)

[this talk, Stufler21]

Classes of graphs closed
for the substitution operation
of the modular decomposition

encoding by modular
decomposition trees

Expected universality of the
BCG for “small” classes

Beyond these families

Other graph decompositions?
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Independence number and longest increasing subsequences

(Spoiler: The next result of the (extended) team [BBDFGMP])
Results:

The size of the largest independent set of a uniform random cograph
is sublinear.
(hence P4 does not have the asymptotic linear Erdős-Hajnal property)

The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.
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Results:

The size of the largest independent set of a uniform random cograph
is sublinear.
(hence P4 does not have the asymptotic linear Erdős-Hajnal property)

The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.

Main proof ingredients:

Convergence to the Brownian cographon

The independence number of the Brownian cographon W 1/2 is 0
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Results:

The size of the largest independent set of a uniform random cograph
is sublinear.
(hence P4 does not have the asymptotic linear Erdős-Hajnal property)

The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.

Main proof ingredients:

Convergence to the Brownian cographon

The independence number of the Brownian cographon W 1/2 is 0

Bonus: The sublinearity result applies to all classes with
graphon/permuton limit W p or a Brownian separable permuton.
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Independence number and longest increasing subsequences

(Spoiler: The next result of the (extended) team [BBDFGMP])
Results:

The size of the largest independent set of a uniform random cograph
is sublinear.
(hence P4 does not have the asymptotic linear Erdős-Hajnal property)

The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.

Main proof ingredients:

Convergence to the Brownian cographon

The independence number of the Brownian cographon W 1/2 is 0

Bonus: The sublinearity result applies to all classes with
graphon/permuton limit W p or a Brownian separable permuton.

Thank you for being there!
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