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We have to start somewhere:
Setting the problem



Cographs

Definition: A cograph of size n is a graph G = (V, E) with |V| =n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.

no edge all edges

Disjoint union Join
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Cographs
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Cographs

Definition: A cograph of size n is a graph G = (V, E) with |V| =n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.

@ - @

Disjoint union Join

all edges

Example: : I
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Cographs

Definition: A cograph of size n is a graph G = (V, E) with |V| =n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.

@ - @

Disjoint union Join

([
Example: m o~ o
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Cographs

Definition: A cograph of size n is a graph G = (V, E) with |V| =n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.

Other characterizations: Cographs are
@ the graphs avoiding P4 = eees as an induced subgraph;

@ the graphs whose modular decomposition does not involve any prime
graph;

@ the inversion graphs of separable permutations.
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Definition: A cograph of size n is a graph G = (V, E) with |V| =n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.
Other characterizations: Cographs are

@ the graphs avoiding P4 = eees as an induced subgraph;

@ the graphs whose modular decomposition does not involve any prime
graph;
@ the inversion graphs of separable permutations.

Prop.: Cographs form a hereditary class,
i.e., every induced subgraph of a cograph is a cograph.
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Cographs

Definition: A cograph of size n is a graph G = (V, E) with |V| =n
which can be constructed from graphs with one vertex by taking disjoint
unions and joins.
Other characterizations: Cographs are

@ the graphs avoiding P4 = eees as an induced subgraph;

@ the graphs whose modular decomposition does not involve any prime

graph;

@ the inversion graphs of separable permutations.

Prop.: Cographs form a hereditary class,

i.e., every induced subgraph of a cograph is a cograph.

Central question for this talk:

What does a uniform random cograph of size n look like,
when n goes to infinity?
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Cographs: one of many cases

One question studied in the (huge!) random graph literature is the
following:

For F a family of graphs,
what is the typical behavior of a large graph in F7?

Already studied for:

perfect graphs [McDiarmid-Yolov, 2019]
planar graphs [Noy, 2014]

graphs embeddable in a surface of given genus [Dowden-Kang-Spriissel,
2017]

graphs in subcritical classes [Panagiotou-Stufler-Weller, 2016]
large hereditary classes [Hatami-Janson-Szegedy, 2018]
addable classes [McDiarmid-Steger-Welsh, 2006 ; Chapuy-Perarnau, 2019]
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Which model?

Which discrete objects? Graphs may be
@ labeled: in this case, vertices are numbered from 1 to n;
@ or unlabeled: vertices are indistinguishable.

Unlabeled graphs are equivalence classes of labeled graphs under the
action of relabeling the vertices.

Here, we consider both labeled and unlabeled cographs.
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Which model?

Which discrete objects? Graphs may be
@ labeled: in this case, vertices are numbered from 1 to n;
@ or unlabeled: vertices are indistinguishable.
Unlabeled graphs are equivalence classes of labeled graphs under the

action of relabeling the vertices.

Here, we consider both labeled and unlabeled cographs.

The unlabeled version of a uniform labeled cograph is not a
uniform unlabeled cograph! Indeed, the number of distinct
labelings depends on the internal symmetries of the graph.

Which continuous limit? We describe the limit in the space of graphons.
Graphons were introduced by Lovasz and co-authors in 2008, and
attracted a lot of interest.

Graphons are appropriate to describe limits of dense graphs.
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Some basics on graphons



What is (informally) a graphon?

In the discrete setting:

(Unlabeled) Adjacency matrix Function
graph G — Mg (symmetric) — wg :[0,1]*> = [0,1]

P

The graphon W associated with G is the equivalence class of wg under
the action of permuting rows and columns of Mg.

0
0
0
1
0

oOrRRRO
oOrR RO
o OR K
ROR KRR

[ |
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What is (informally) a graphon?

In the discrete setting:

(Unlabeled) Adjacency matrix Function
graph G — Mg (symmetric) — wg :[0,1]*> = [0,1]

P

The graphon W associated with G is the equivalence class of wg under
the action of permuting rows and columns of Mg.

0
0
0
1
0

oOrRRRO
oOrR RO
o OR K
ROR KRR

[ |

Remarks:
@ W does not depend on the order of the vertices chosen to write M.
o If G is labeled, W is the graphon of the unlabeled version of G.
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What is (informally) a graphon?

In the discrete setting:

(Unlabeled) Adjacency matrix Function
graph G — Mg (symmetric) — wg :[0,1]*> = [0,1]

P

The graphon W associated with G is the equivalence class of wg under
the action of permuting rows and columns of Mg.

oOrRRRO

0
0
0
1
0

oOrR RO
o OR K
ROR KRR

[ |

Continuous extension:

In general, a graphon is obtained as above, from a symmetric matrix M,
possibly with a continuum of rows and columns, and with values in [0, 1].
It is an equivalence class of symmetric functions from [0, 1]> — [0, 1] under
the action of permuting rows and columns of M.
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Characterization of (deterministic) graphon convergence

(Non-)definition:
The space of graphons is (up to technicalities) metric, for the cut-distance
(and in addition is compact).

So, it makes sense to study convergence of a sequence of graphons
(Wh)n>0 to a graphon W (for this cut-distance). We write W,, — W.
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Characterization of (deterministic) graphon convergence

(Non-)definition:

The space of graphons is (up to technicalities) metric, for the cut-distance
(and in addition is compact).

So, it makes sense to study convergence of a sequence of graphons
(Wh)n>0 to a graphon W (for this cut-distance). We write W,, — W.

Typically, W, = W, the graphon associated to a graph G, with the
sequence of graphs (G,) such that the size of G, grows to infinity with n.
In this case, we also write G, — W.

Combinatorial characterization of convergence:
For (W,) a sequence of graphons and W a graphon, W, — W iff
for any (finite) graph g, Dens(g, W,,) — Dens(g, W).

Let us now define the density of a graph g in a graphon.
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Subgraph densities in graphs and graphons

Induced subgraph: The subgraph of G = (V/, E) induced by V' C V' is
the graph with vertex set V'’ and edge set E N (V' x V’).
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Densities: Fix g a graph with k vertices, unlabeled.

e For a graph G, Dens(g, G) = P(SubGraph,(G) = g),
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the graph with vertex set V'’ and edge set E N (V' x V’).

Densities: Fix g a graph with k vertices, unlabeled.

e For a graph G, Dens(g, G) = P(SubGraph,(G) = g),
where SubGraph,(G) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G.
e For a graphon W, Dens(g, W) = P(Sample, (W) = g),
where Sample, (W) is the (random) graph with k vertices vy, ..., vk
such that v; and v; are connected with probability w(x;, x;),
for x1,...,xk i.i.d. uniform random variables in [0, 1]
and w : [0,1]? — [0, 1] a representative of W.
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Subgraph densities in graphs and graphons

Induced subgraph: The subgraph of G = (V/, E) induced by V' C V' is
the graph with vertex set V'’ and edge set E N (V' x V’).

Densities: Fix g a graph with k vertices, unlabeled.

e For a graph G, Dens(g, G) = P(SubGraph,(G) = g),
where SubGraph,(G) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G.
e For a graphon W, Dens(g, W) = P(Sample, (W) = g),
where Sample, (W) is the (random) graph with k vertices vy, ..., vk
such that v; and v; are connected with probability w(x;, x;),
for x1,...,xk i.i.d. uniform random variables in [0, 1]
and w : [0,1]? — [0, 1] a representative of W.

Remark: For any graph G, Dens(g, W) = Dens(g, G).
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Characterization of graphon convergence: the random case

Reminder: G, — W iff Dens(g, G,) — Dens(g, W) for all g, for (G,) a
sequence of (deterministic) graphs and W a (deterministic) graphon.
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Characterization of graphon convergence: the random case

Reminder: G, — W iff Dens(g, G,) — Dens(g, W) for all g, for (G,) a
sequence of (deterministic) graphs and W a (deterministic) graphon.

What if we take (G,) random? (Dens(g, G,,) being then a real r.v.)

Theorem [Diaconis-Janson, 2008]:
The distribution of a random graphon W is characterized by all expected
subgraph densities E[Dens(g, W)] (for all g).

Theorem [Diaconis-Janson, 2008]:
Let (G,) be a sequence of random graphs. TFAE:

@ G, tends in distribution to some random graphon, W.
e For all g, E[Dens(g, G,)] converges to some value Az € [0, 1].

If this holds, in addition we have:
for all g, E[Dens(g, W)] = A, so that (A,), characterizes W.
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Our work in a nutshell



Main result and proof strategy

Theorem:

For all n, let G, (resp. G}/) be a uniform random labeled (resp. unlabeled)
cograph with n vertices.

We have that G, (resp. GY) converges in distribution to a random
graphon W1/ called the Brownian cographon of parameter 1/2.
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Main result and proof strategy

Theorem:

For all n, let G, (resp. G}/) be a uniform random labeled (resp. unlabeled)
cograph with n vertices.

We have that G, (resp. GY) converges in distribution to a random
graphon W1/ called the Brownian cographon of parameter 1/2.

Proof strategy (labeled case):
o Compute A, = E[Dens(g, W/?)] for all cographs g

o Express E[Dens(g, G,)] as a quotient of coefficients of generating

functions, starting from

(G I) . G=(V,E) labeled cograph of size n,
) 1€V which induces g

E[Dens(g, G,)] = {G labeled cograph of size n}| - nk

o Estimate numerator and denominator using analytic combinatorics, in
order to prove convergence to A,
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Main result and proof strategy

Theorem:

For all n, let G, (resp. G}/) be a uniform random labeled (resp. unlabeled)
cograph with n vertices.

We have that G, (resp. GY) converges in distribution to a random
graphon W1/ called the Brownian cographon of parameter 1/2.

Proof strategy (labeled case):
o Compute A, = E[Dens(g, W/?)] for all cographs g

o Express E[Dens(g, G,)] as a quotient of coefficients of generating

functions, starting from

(G I) . G=(V,E) labeled cograph of size n,
) 1€V which induces g

E[Dens(g, G,)] = {G labeled cograph of size n}| - nk

o Estimate numerator and denominator using analytic combinatorics, in
order to prove convergence to A,

Essential tool: encoding of cographs by cotrees.
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Outline of (the rest of) the talk

About the main theorem:

Cographs and cotrees

Combinatorial proof of convergence in the labeled case
Description of the Brownian cographon

Corollary: average degree distribution in cographs

How to deal with the unlabeled case

Additional results, questions, comments:

@ Vertex connectivity distinguishes between the labeled and the
unlabeled settings

@ A parallel with permutations, yielding new problems to work on

@ Independence number of cographs

Mathilde Bouvel Random cographs
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Cotrees and how to use them to compute
lim E[Dens(g, G,)]
n—o0



Cographs and cotrees

A labeled cotree of size n is a rooted tree t with leaves {1,...,n} s.t.
@ tis not plane (i.e. the children of every internal node are not ordered);
@ every internal node has at least two children;

@ every internal node carries a decoration O or 1.

8. ® . Mapping
N 5 from cotrees to cographs:
9 7 0 indicates disjoint union and
®eo 1 indicates join.
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Cographs and cotrees

A labeled cotree of size n is a rooted tree t with leaves {1,...,n} s.t.
@ tis not plane (i.e. the children of every internal node are not ordered);
@ every internal node has at least two children;
@ every internal node carries a decoration O or 1.

t is canonical if 0 and 1 alternate on every branch from the root to a leaf.
1

8. ® . (Not one-to-one) Mapping
PENIN 5& from cotrees to cographs:
9 7 0 indicates disjoint union and
®eo 1 indicates join.

Prop.: Vertices i and j are connected iff the first common ancestor of
leaves i and j carries a 1.

Prop.: This mapping restricted to canonical cotrees is a bijection.
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Induced subgraphs in cographs on their cotrees

t a canonical cotree < G the corresponding cograph
a k-tuple € = (¢1,...,0x) of leaves <> a k-tuple | of vertices

Subtree of t induced by (1, ...,¢x) = the cotree labeled from £ whose
leaves are ({1, ...,£Lx) and whose internal structure is inherited from t.
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Induced subgraphs in cographs on their cotrees

t a canonical cotree < G the corresponding cograph
a k-tuple € = (¢1,...,0x) of leaves <> a k-tuple | of vertices

Subtree of t induced by (1, ...,¢x) = the cotree labeled from £ whose
leaves are ({1, ...,£Lx) and whose internal structure is inherited from t.

Prop.: Forgetting the labelings, the subgraph of G induced by / is the
cograph corresponding to the subtree of t induced by (¢1,..., /)
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Variations on E[Dens(g, G,)]

e Reminder: Dens(g, G) = P(SubGraph,(G) = g),
where SubGraph,(G) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G.
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Variations on E[Dens(g, G,)]

e Reminder: Dens(g, G) = P(SubGraph,(G) = g),
where SubGraph,(G) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G.
e Variant: Dens™(g, G) = IP’(SubGraphZ’j(G) =g),
where SubGraphZ’j(G) is the (random) subgraph of G
induced by a uniform random k-tuple of distinct vertices of G.
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e Reminder: Dens(g, G) = P(SubGraph,(G) = g),
where SubGraph,(G) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G.
e Variant: Dens™(g, G) = IP’(SubGraphZ’j(G) =g),
where SubGrapth(G) is the (random) subgraph of G
induced by a uniform random k-tuple of distinct vertices of G.
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Variations on E[Dens(g, G,)]

e Reminder: Dens(g, G) = P(SubGraph,(G) = g),
where SubGraph,(G) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G.
e Variant: Dens™(g, G) = IP’(SubGraphZ’j(G) =g),
where SubGraphZU(G) is the (random) subgraph of G
induced by a uniform random k-tuple of distinct vertices of G.

Fact: E[Dens(g, G,)] — A, iff E[Dens™ (g, G,)] — Ag.
Notation: for all n, and all kK < n,

t(") is a uniform random labeled canonical cotree of size n, and
t,((") is the subtree of (" induced by a uniform k-tuple of distinct leaves.

For any cograph g, we have:
E[Dens™ (g, G,)] = P(SubGraph{”(G ZIP’ = tp),
where the sum runs over all cotrees t correspondlng to g.
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Combinatorics of the labeled case:
Finding lim P(t\"” = t,)

n—oo



Expressing P(£\" = t,)

Notation:
@ M: the set of labeled canonical cotrees

o for any cotree tp with k leaves, M, the set of labeled canonical
cotrees with a marked k-tuple of distinct leaves, which induce ty.

with corresponding exponential generating series M(z), M, (z),
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Expressing P(£\" = t,)

Notation:
@ M: the set of labeled canonical cotrees

o for any cotree tp with k leaves, M, the set of labeled canonical
cotrees with a marked k-tuple of distinct leaves, which induce ty.

with corresponding exponential generating series M(z), M, (z),
n![z"|My,(z)
nl[z"M(z) x n(n—1)...(n—k+1)

Estimate the limit as n — oo using analytic combinatorics,

P(t)"” = to) =
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Expressing P(£\" = t,)

Notation:
@ M: the set of labeled canonical cotrees
o for any cotree tp with k leaves, M, the set of labeled canonical

cotrees with a marked k-tuple of distinct leaves, which induce ty.

@ L: the set of non-plane rooted trees, labeled on their leaves, where
internal nodes have > 2 children.

Trees of L are just like cotrees without the decorations on internal
nodes.

with corresponding exponential generating series M(z), My,(z), L(z)
n[z"|My,(z)
nl[z"M(z) x n(n—1)...(n—k+1)

Estimate the limit as n — oo using analytic combinatorics,
on L(z) and variants, relating M(z) and My,(z) to L(z)

P(t" = to) =
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Behavior of L(z) and M(z)

Study of L(z):
From [Flajolet-Sedgewick] (rather a variant on trees counted by leaves):
o [(z) satisfies L(z) = z+ exp(L(z)) — 1 — L(2).
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Study of L(z):

From [Flajolet-Sedgewick] (rather a variant on trees counted by leaves):
o [(z) satisfies L(z) = z+ exp(L(z)) — 1 — L(2).
@ L(z) has radius of convergence p = 2log(2) — 1 and is A-analytic.

o Near z = p, L(z) = log(2) — \/p\/1—2z/p+ O(1 - z/p).
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Behavior of L(z) and M(z)

Study of L(z):

From [Flajolet-Sedgewick] (rather a variant on trees counted by leaves):
o [(z) satisfies L(z) = z+ exp(L(z)) — 1 — L(2).
@ L(z) has radius of convergence p = 2log(2) — 1 and is A-analytic.

o Near z = p, L(z) = log(2) — \/p\/1—2z/p+ O(1 - z/p).
Study of M(z):

e M(z) = 2L(z) — z, since all decorations in a canonical cotree (of
size # 1) are determined by the decoration of the root (alternation).
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Behavior of L(z) and M(z)

Study of L(z):

From [Flajolet-Sedgewick] (rather a variant on trees counted by leaves):
o [(z) satisfies L(z) = z+ exp(L(z)) — 1 — L(2).
@ L(z) has radius of convergence p = 2log(2) — 1 and is A-analytic.
o Near z = p, L(z) = log(2) — \/p\/1—2z/p+ O(1 - z/p).

Study of M(z):
e M(z) = 2L(z) — z, since all decorations in a canonical cotree (of

size # 1) are determined by the decoration of the root (alternation).

@ M(z) has radius of convergence p = 2log(2) — 1 and is A-analytic.

® Near z=p, M(z) =1-2,/p\/1—2z/p+ O(1 - z/p).

@ From the transfer theorem,

nk—3/2
n(n—1)...(n— k +1)[z"|M(2)

n—-+00 p”*l/zﬁ'
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Relating M;,(z) to variations on L(z) (1/2)

Recall: Trees of My, are trees of £ with k marked leaves inducing tp, and
in addition a decoration on the root
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Relating M;,(z) to variations on L(z) (1/2)

Recall: Trees of My, are trees of £ with k marked leaves inducing tp, and
in addition a decoration on the root

Terminology:

@ Marked leaf: carries a label (hence contributes 1 to the size)

@ Blossom: similar to a marked leaf, but does not carry a label
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Relating M;,(z) to variations on L(z) (1/2)

Recall: Trees of My, are trees of £ with k marked leaves inducing tp, and
in addition a decoration on the root

Terminology:
@ Marked leaf: carries a label (hence contributes 1 to the size)

@ Blossom: similar to a marked leaf, but does not carry a label

Series to consider:

L’(z): counts trees of £ with a blossom
L*(z) = zL'(z): counts trees of £ with a marked leaf
L°4d: counts trees of £ with a blossom at odd distance from the root

LeVe": same for even distance
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Relating M;,(z) to variations on L(z) (1/2)

Recall: Trees of My, are trees of £ with k marked leaves inducing tp, and
in addition a decoration on the root

Terminology:
@ Marked leaf: carries a label (hence contributes 1 to the size)

@ Blossom: similar to a marked leaf, but does not carry a label

Series to consider:

L’(z): counts trees of £ with a blossom
L*(z) = zL'(z): counts trees of £ with a marked leaf

@ [°49: counts trees of £ with a blossom at odd distance from the root
@ [®V®": same for even distance

and Lodd _ el

. . . : even __ 1 e -1
Simple combinatorial arguments give L = dp_el) = e
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Relating M;,(z) to variations on L(z) (1/2)

Recall: Trees of My, are trees of £ with k marked leaves inducing tp, and
in addition a decoration on the root

Terminology:
@ Marked leaf: carries a label (hence contributes 1 to the size)

@ Blossom: similar to a marked leaf, but does not carry a label

Series to consider:

L’(z): counts trees of £ with a blossom

L*(z) = zL'(z): counts trees of £ with a marked leaf
@ [°49: counts trees of £ with a blossom at odd distance from the root
@ L[®V€": same for even distance

and Lodd _ el

. . . : even __ 1 e -1
Simple combinatorial arguments give L = dp_el) = e

Thus, the singular behavior of L(z) determines the one of these four series.
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Relating M;,(z) to variations on L(z) (2/2)

Prop.: If ty with k leaves has n, internal vertices, n— edges of the form
0—0or1—1, and n. edges of the form 0 — 1 or 1 — 0, then

My = (L')(exp( L))" (L) (Lo%4) (L),
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Relating M;,(z) to variations on L(z) (2/2)

Prop.: If ty with k leaves has n, internal vertices, n— edges of the form
0—0or1—1, and n. edges of the form 0 — 1 or 1 — 0, then

My = (L')(exp(L))™ (L) (L) (L2v*n) .
Proof:

(]
(o {7
ounted by L'
)
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Relating M;,(z) to variations on L(z) (2/2)

Prop.: If ty with k leaves has n, internal vertices, n— edges of the form
0—0or1—1, and n. edges of the form 0 — 1 or 1 — 0, then

My = (L')(exp(L))™ (L) (L) (L2v*n) .
Proof:

Corollary: Like before, we obtain
e the behavior at p of My, (z),
e and the asymptotic estimate of [z"|My,(z).
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Relating M;,(z) to variations on L(z) (2/2)

Prop.: If ty with k leaves has n, internal vertices, n— edges of the form
0—0or1—1, and n. edges of the form 0 — 1 or 1 — 0, then

My = (L')(exp(L))™ (L) (L) (L2v*n) .
Proof: »

Corollary: Like before, we obtain
e the behavior at p of My, (z),
e and the asymptotic estimate of [z"|My,(z).

More precisely, we have

n (k—1)! nk=3/2
[Z ]Mto(Z) n;\«‘#oo (2k _ 2)' p”71/2\/7>1"
if to is binary (which implies n, = k —1 and n— + ny = k —2).

Mathilde Bouvel Random cographs
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Conclusion of the combinatorial study (labeled case)

Notation (reminder):
o t(M: uniform random labeled canonical cotree of size n
° t,(("): subtree of (") induced by a uniform k-tuple of distinct leaves

@ ty: cotree with k leaves

What we proved: If g is binary, then lim P(t,((") =1tp) = (k=D)L
n—o0 .
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Conclusion of the combinatorial study (labeled case)

Notation (reminder):
o t(M: uniform random labeled canonical cotree of size n
° t,(("): subtree of (") induced by a uniform k-tuple of distinct leaves

@ ty: cotree with k leaves

NP (M _ oy (k1)

What we proved: If ty is binary, then nI|_>n;o P(t,” = to) = k=)
L (k=) 1

Remark: (2k—2)!' 7 number of binary cotrees with k leaves"

Consequence: If tg is not binary, then lim IP’(t,((”) =tp) =0.
n—oo

Mathilde Bouvel Random cographs 23/34



Conclusion of the combinatorial study (labeled case)

Notation (reminder):
e t(™: uniform random labeled canonical cotree of size n
° t,(("): subtree of (" induced by a uniform k-tuple of distinct leaves
@ ty: cotree with k leaves

) . . (n) _ (k=1)!
What we proved: If g is binary, then nI|_>n;o P(t,” = to) = k=)
) L 1
Remark: (2k—2)!' 7 number of binary cotrees with k leaves"

Consequence: If tg is not binary, then lim IP’(t,((”) =tp) =0.

n—o0

Remark /reminder:
Summing over all ty encoding a cograph g, this gives lim E[Dens(g, G,)].
n—o0
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The Brownian cographon
and its expected subgraph densities
(or something close to it)



Defining the Brownian cographon

Decorated Brownian excursion: .

@ e: Brownian excursion of length 1. '
@ (bj)i>1: enumeration of the locations of the ol p kP N
local minima of e (which exists). of Y T
e SP =(s1,...): sequence of i.i.d. r.v. in {0,1},
independent from e, with P(s; = 0) = p.
In the decorated Brownian excursion (e, SP), we think of the decorations
s; as attached to the local minimum at b;.
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Defining the Brownian cographon

Decorated Brownian excursion: |
N A

f r\ A

! ““"i I “\ ’” M"f‘ ( \IA

local minima of e (which exists). i Y v

o Al
@ e: Brownian excursion of length 1. - [t
W i
@ (bj)i>1: enumeration of the locations of the "
e SP =(s1,...): sequence of i.i.d. r.v. in {0,1},
independent from e, with P(s; = 0) = p.

In the decorated Brownian excursion (e, SP), we think of the decorations
s; as attached to the local minimum at b;.
Brownian cographon of parameter p € [0, 1], WP:
e for any x,y € [0,1], Dec(x, y;e, SP) € {0,1} = decoration of the
local minimum of e on [x, y] (or [y,x]) (a.s. unique and # x, y)

o WP = graphon associated with the function
wP: 0,17 — {0,1};
(x,y) +— Dec(x,y;e,SP).
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This is actually the adjacency matrix of a uniform random labeled cograph
of size 4482, where the order of the vertices to plot the matrix is the
depth-first search on the associated cotree.
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Distribution of induced subgraphs of WP

Notation:
@ WP: Brownian cographon of parameter p
e Sample, (W): subgraph of W induced by k i.i.d. uniform "vertices”
X1y..., Xk € [0,1]
o bY: uniform labeled binary tree with k leaves, where internal vertices
carry {0,1} decorations with P(0) = p.

Prop.: Samplek(WP)(i) the unlabeled version of Cograph(b}).
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Distribution of induced subgraphs of WP

Notation:
@ WP: Brownian cographon of parameter p
e Sample,(W): subgraph of W induced by k i.i.d. uniform “vertices”
X1y..., Xk € [0,1]
o bY: uniform labeled binary tree with k leaves, where internal vertices
carry {0,1} decorations with P(0) = p.

Prop.: Samplek(WP)(i) the unlabeled version of Cograph(b}).

Proof idea:

o bl is the cotree extracted from (e, SP)
and xi, ..., Xk. o T

e Sample, (WP) is the associated cograph
since decorations indicate edges similarly in WP and in Cograph(by).
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Characterization of convergence to W1/2

Prop.: For (t(”)),, a sequence of random cotrees s.t. size(t(”)) = n,

let t,((") be the subtree of (") induced by a unif. k-tuple of distinct leaves.

If for any binary cotree ty we have IP’(t( " _ 0) —— ((k—il)' (%)
n—

2k—2)1"
then (Cograph(t(")), converges to W/2,
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Characterization of convergence to W1/2

Prop.: For (t(")), a sequence of random cotrees s.t. size(t(") = n,
let t,((") be the subtree of t(" induced by a unif. k-tuple of distinct leaves.

If for any binary cotree ty we have IP’(t( ") = 0) — %, (%)

then (Cograph(t(")), converges to W/2,

Proof idea:

() is asymptotically uniform on labeled binary cotrees with

1/2

o (x) says t,
k leaves, which is distributed like b
@ Take cographs and forget labels

= SubGraph;”(Cograph(t(")) @ Sample, (W?'/?)
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Characterization of convergence to W1/2

Prop.: For (t(")), a sequence of random cotrees s.t. size(t(") = n,

let t,((") be the subtree of t(" induced by a unif. k-tuple of distinct leaves.
If for any binary cotree ty we have IP’(t( ") = 0) — %, (%)
then (Cograph(t(")), converges to W/2,

Proof idea:

o (%) says t(") is asymptotically uniform on labeled binary cotrees with

k leaves, which is distributed like bl/2
@ Take cographs and forget labels
= SubGraph;”(Cograph(t(")) @ Sample, (W?'/?)
Corollary: (G,) converges to W1/2,
Uniform random labeled cographs converge to the Brownian cographon.

apply the prop. to (" = unif. random canonical labeled cotree of size n
y
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Additional results



Average degree distribution

Degree distribution of graphs and graphons:
o (Rescaled) degree distribution of G: Dg =1% Odeg(v)/n
o It generalizes to graphons: for w representing W, Dy is defined by
f[o,l] f(x)Dw (dx) = ‘[[071] (f[o W (u, v)dv) du,Vf cont. bounded

e D and Dy are probability measures on [0, 1]

Lemma: If (G,), converges to W, then (Dg,) converges (weakly) to Dy .
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Average degree distribution

Degree distribution of graphs and graphons:
o (Rescaled) degree distribution of G: Dg = £ 3" \rrex Odeg(v)/n
@ It generalizes to graphons: for w representing W, Dy is defined by
f[o,l] f(x)Dw(dx) = ‘[[071] (f[o g w(u, v)dv) du,Vf cont. bounded
e D and Dy are probability measures on [0, 1]
Lemma: If (G,), converges to W, then (Dg,) converges (weakly) to Dy .
With W random: Dy is a random measure.

Its intensity measure I[Dy] is the “averaged” degree distribution of W/,
where we average on all realizations of W
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Average degree distribution

Degree distribution of graphs and graphons:
o (Rescaled) degree distribution of G: Dg = £ 3" \rrex Odeg(v)/n
@ It generalizes to graphons: for w representing W, Dy is defined by
f[o,l] f(x)Dw (dx) = ‘[[071] (f[o W (u, v)dv) du,Vf cont. bounded
e D and Dy are probability measures on [0, 1]

Lemma: If (G,), converges to W, then (Dg,) converges (weakly) to Dy .

With W random: Dy is a random measure.
Its intensity measure I[Dy] is the “averaged” degree distribution of W/,
where we average on all realizations of W

Prop.: For the Brownian cographon, /[D\y1/2] is uniform on [0, 1].

Corollary: The rescaled degree of a uniform random vertex v, in G, is
asymptotically uniform in [0, 1].
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The unlabeled case

Same results:
@ Definition: G} = uniform random unlabeled cograph with n vertices
o Theorem: (GY), converges to the Brownian cographon W1/2

@ Consequence: The rescaled degree of a uniform random vertex v, in
G/ is asymptotically uniform in [0, 1].
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The unlabeled case

Same results:
@ Definition: G} = uniform random unlabeled cograph with n vertices
o Theorem: (GY), converges to the Brownian cographon W1/2
@ Consequence: The rescaled degree of a uniform random vertex v, in
G/ is asymptotically uniform in [0, 1].
How to modify the proof:
@ Same strategy of analytic combinatorics, using unlabeled cotrees.

o With Pdlya operators, it is difficult to count objects with marked
leaves (inducing a given subtree tp).

@ Instead of L as before, we study
U ={(t,a): t € L,a a root-preserving automorphism of t}.

Using U, we can interpret Pdélya operators combinatorially, in a way
that allows to keep track of marked leaves.
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Vertex connectivity

Remark: For their graphon limit (and average degree distribution),
labeled and unlabeled cographs display the same behavior.

Question: Are there some statistics which behave differently in the
labeled and unlabeled case?
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Vertex connectivity

Remark: For their graphon limit (and average degree distribution),
labeled and unlabeled cographs display the same behavior.

Question: Are there some statistics which behave differently in the
labeled and unlabeled case?
Example of the vertex connectivity:

@ x(G) = minimal number of vertices whose removal disconnects G

@ For a connected cograph G with canonical cotree T (with root 1),
K(G) = |G| — | Tmax|, where | Tpax| is the largest component of T

@ Using again analytic combinatorics, we express, for all j > 1,
lim P(1(Gn) =) using L(z) as 1/2 p [#/] (! — 1)
lim P(s(Gy) =) using U(z) as 1/2- o, 2] (2U(2) - 2)
(the limiting probability of having k(G,) or x(G}) = 0 being 1/2).

@ These limit distributions are different.
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A parallel with permutations via inversion graphs

Separable permutations Cographs
@ encoding by decomposition trees @ encoding by cotrees
@ convergence to the Brownian @ convergence to the Brownian
separable permuton (BSP) Cographon (BCG)
@ [BBFGP18, Maazoun16, BBFS20] @ [this talk, Stufler21]
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A parallel with permutations via inversion graphs

Separable permutations Cographs
@ encoding by decomposition trees @ encoding by cotrees
@ convergence to the Brownian @ convergence to the Brownian
separable permuton (BSP) Cographon (BCG)
@ [BBFGP18, Maazounl16, BBFS20] @ [this talk, Stufler21]

Substitution-closed classes
@ encoding by decomposition trees
o Universality of the BSP
e [BBFGMP20]

Beyond these families

@ encoding by decomposition trees
@ BSP VS X-permuton
o [BBFGMP21+]
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A parallel with permutations via inversion graphs

Separable permutations Cographs
@ encoding by decomposition trees @ encoding by cotrees
@ convergence to the Brownian @ convergence to the Brownian
separable permuton (BSP) Cographon (BCG)
@ [BBFGP18, Maazounl16, BBFS20] @ [this talk, Stufler21]
Substitution-closed classes Classes of graphs closed

e encoding by decomposition trees ~ for the substitution operation

o Universality of the BSP of the modular decomposition

e [BBFGMP20] @ encoding by modular

decomposition trees

Beyond these families e Expected universality of the

@ encoding by decomposition trees BCG for “small” classes
@ BSP VS X-permuton
o [BBFGMP21+]

Beyond these families

@ Other graph decompositions?
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Independence number and longest increasing subsequences

(Spoiler: The next result of the (extended) team [BBDFGMP])
Results:

@ The size of the largest independent set of a uniform random cograph
is sublinear.

(hence P4 does not have the asymptotic linear Erd3s-Hajnal property)

@ The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.
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Independence number and longest increasing subsequences

(Spoiler: The next result of the (extended) team [BBDFGMP])
Results:

@ The size of the largest independent set of a uniform random cograph
is sublinear.

(hence P4 does not have the asymptotic linear Erd3s-Hajnal property)

@ The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.

Main proof ingredients:
@ Convergence to the Brownian cographon

@ The independence number of the Brownian cographon W1/2 is 0
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Independence number and longest increasing subsequences

(Spoiler: The next result of the (extended) team [BBDFGMP])
Results:

@ The size of the largest independent set of a uniform random cograph
is sublinear.

(hence P4 does not have the asymptotic linear Erd3s-Hajnal property)

@ The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.

Main proof ingredients:
@ Convergence to the Brownian cographon

@ The independence number of the Brownian cographon W1/2 is 0

Bonus: The sublinearity result applies to all classes with
graphon/permuton limit WP or a Brownian separable permuton.
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Independence number and longest increasing subsequences

(Spoiler: The next result of the (extended) team [BBDFGMP])
Results:

@ The size of the largest independent set of a uniform random cograph
is sublinear.

(hence P4 does not have the asymptotic linear Erd3s-Hajnal property)

@ The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.

Main proof ingredients:
@ Convergence to the Brownian cographon

@ The independence number of the Brownian cographon W1/2 is 0

Bonus: The sublinearity result applies to all classes with
graphon/permuton limit WP or a Brownian separable permuton.

Thank you for being there!
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