Operators of equivalent sorting power and related Wilf-equivalences

Mathilde Bouvel
(Institut für Mathematik, Universität Zürich)

joint work with
Olivier Guibert (LaBRI, Bordeaux)
Michael Albert (University of Otago, New Zealand)

Séminaire de combinatoire Philippe Flajolet décembre 2013

Outline

1 Definitions and some history

- Permutation patterns and partial sorting devices/algorithms
- Permutation classes and Wilf-equivalences

2 Some operators with equivalent sorting power

- How many permutations can we sort with the operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$, where \mathbf{S} is the stack sorting operator of Knuth, and α is any symmetry of the square?

3 Longer operators with equivalent sorting power

- How many permutations can we sort with longer compositions of stack sorting and symmetries $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S} \circ \ldots$?

4 Related Wilf-equivalences

- These are obtained from a (surprisingly little known) bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$ which appears in our study.

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm S.

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm \mathbf{S}.

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm \mathbf{S}.

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm \mathbf{S}.
1

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm S.

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm \mathbf{S}.

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm \mathbf{S}.

$$
1236
$$

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm S.

$$
54
$$

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm \mathbf{S}.
1236

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm \mathbf{S}.

$$
1236457
$$

The stack sorting algorithm \mathbf{S}

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm \mathbf{S}.

$$
\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma
$$

The stack sorting algorithm S

For i from 1 to n,

- if possible, Push σ_{i} in the stack
- otherwise, Pop the stack as many times as necessary, and then Push σ_{i} in the stack
Pop the stack until it is empty

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm \mathbf{S}.

$$
\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma
$$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm \mathbf{S}.

$$
\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma
$$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
[Knuth ~1970] σ is stack-sortable, i.e. $\mathbf{S}(\sigma)=12 \ldots n$ iff there are no $i<j<k$ such that $\sigma_{k}<\sigma_{i}<\sigma_{j}$

The stack sorting operator S of Knuth

Sort (or try to do so) a permutation using a stack.
W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm \mathbf{S}.

$$
\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma
$$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
[Knuth ~1970] σ is stack-sortable, i.e. $\mathbf{S}(\sigma)=12 \ldots n$ iff there are no $i<j<k$ such that $\sigma_{k}<\sigma_{i}<\sigma_{j}$ iff σ avoids the pattern 231.

Definitions of permutation patterns and permutation classes, and some history

More sorting devices

- several stacks in series
- several stacks in parallel
- networks of stacks
- a single stack used several times
- queue(s)
- double-ended queue (= deque)
- pop-stacks

Pioneers in the seventies: Knuth, Pratt, Tarjan, ...
From the nineties until today:
Albert, Atkinson, Bousquet-Mélou, Claesson, Linton, Magnusson, Murphy,
Pierrot, Rossin, Smith, Ulfarsson, Vatter, West, Zeilberger, ...

Definitions of permutation patterns and permutation classes, and some history

Patterns in permutations

- $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ when
$\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.
- $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Definitions of permutation patterns and permutation classes, and some history

Patterns in permutations

- $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ when
$\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.
- $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

> Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Definitions of permutation patterns and permutation classes, and some history

Patterns in permutations

- $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ when
$\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.
- $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Definitions of permutation patterns and permutation classes, and some history

Patterns in permutations

- $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ when
$\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.
- $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Definitions of permutation patterns and permutation classes, and some history

Patterns in permutations

- $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ when
$\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.
- $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

> Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Definitions of permutation patterns and permutation classes, and some history

Patterns in permutations

- $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ when
$\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.
- $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

> Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Avoidance: $\operatorname{Av}(\pi, \tau, \ldots)=$ set of permutations that do not contain
 any occurrence of π or τ or ...

Patterns in permutations

- $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ when
$\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.
- $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Avoidance: $\operatorname{Av}(\pi, \tau, \ldots)=$ set of permutations that do not contain
 any occurrence of π or τ or ...

Permutation classes are sets $\operatorname{Av}(B)$ (with B finite or infinite).

Definitions of permutation patterns and permutation classes, and some history

Some early enumeration results about permutation classes

- $\operatorname{Av}(231)$ is enumerated by the Catalan numbers [Knuth ~1970]
- $\operatorname{Av}(123)$ also is [MacMahon 1915]

Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008]

Some early enumeration results about permutation classes

- $\operatorname{Av}(231)$ is enumerated by the Catalan numbers [Knuth ~1970]
- $\operatorname{Av}(123)$ also is [MacMahon 1915]

Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008]
Systematic enumeration of $\operatorname{Av}(B)$ when B contains small excluded patterns (size 3 or 4) Simion\&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West. . . in the nineties
Remark: the enumeration of $\operatorname{Av}(1324)$ is still unknown

Some early enumeration results about permutation classes

- $\operatorname{Av}(231)$ is enumerated by the Catalan numbers [Knuth ~1970]
- $\operatorname{Av}(123)$ also is [MacMahon 1915]

Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008]
Systematic enumeration of $\operatorname{Av}(B)$ when B contains small excluded patterns (size 3 or 4) Simion\&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West. . . in the nineties
Remark: the enumeration of $\operatorname{Av}(1324)$ is still unknown
Marcus-Tardos theorem (2004) (Stanley-Wilf ex-conjecture): For any π, there is a constant c_{π} such that $\forall n$, the number of permutations of size n in $\operatorname{Av}(\pi)$ is $\leq c_{\pi}^{n}$

Definitions of permutation patterns and permutation classes, and some history

Wilf-equivalences

- $\left\{\pi, \pi^{\prime}, \ldots\right\}$ and $\left\{\tau, \tau^{\prime}, \ldots\right\}$ are Wilf-equivalent when $\operatorname{Av}(\pi$, $\left.\pi^{\prime}, \ldots\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right)$ are enumerated by the same sequence. Example: 231 and 123 are Wilf-equivalent, i.e. $231 \sim$ Wilf 123.

Definitions of permutation patterns and permutation classes, and some history

Wilf-equivalences

- $\left\{\pi, \pi^{\prime}, \ldots\right\}$ and $\left\{\tau, \tau^{\prime}, \ldots\right\}$ are Wilf-equivalent when $\operatorname{Av}(\pi$, $\left.\pi^{\prime}, \ldots\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right)$ are enumerated by the same sequence. Example: 231 and 123 are Wilf-equivalent, i.e. $231 \sim$ Wilf 123.

Actually, the six permutations of size 3 are all Wilf-equivalent. Why? For every symmetry of the square $\alpha \in D_{8}, \pi \sim_{\text {Wilf }} \alpha(\pi)$.

$D_{8}:$

$\mathbf{R}(\pi)$
Reverse

C(π)
Complement

I(π)

$$
\pi
$$

Inverse

Wilf-equivalences

- $\left\{\pi, \pi^{\prime}, \ldots\right\}$ and $\left\{\tau, \tau^{\prime}, \ldots\right\}$ are Wilf-equivalent when $\operatorname{Av}(\pi$, $\left.\pi^{\prime}, \ldots\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right)$ are enumerated by the same sequence. Example: 231 and 123 are Wilf-equivalent, i.e. $231 \sim$ Wilf 123.

Actually, the six permutations of size 3 are all Wilf-equivalent. Why? For every symmetry of the square $\alpha \in D_{8}, \pi \sim_{\text {Wilf }} \alpha(\pi)$. These are called trivial Wilf-equivalences.

Wilf-equivalences

- $\left\{\pi, \pi^{\prime}, \ldots\right\}$ and $\left\{\tau, \tau^{\prime}, \ldots\right\}$ are Wilf-equivalent when $\operatorname{Av}(\pi$, $\left.\pi^{\prime}, \ldots\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right)$ are enumerated by the same sequence.
Example: 231 and 123 are Wilf-equivalent, i.e. $231 \sim$ Wilf 123.
Actually, the six permutations of size 3 are all Wilf-equivalent.
Why? For every symmetry of the square $\alpha \in D_{8}, \pi \sim$ Wilf $\alpha(\pi)$. These are called trivial Wilf-equivalences.

Examples of non-trivial Wilf-equivalences:

- $1342 \sim_{\text {Wilf }} 2413$ and $1234 \sim \sim_{\text {Wiff }} 1243 \sim \sim_{\text {Wilf }} 1432 \sim \sim_{\text {Wilf }} 2143$
- $12 \ldots m \oplus \beta \sim_{\text {Wilf }} m \ldots 21 \oplus \beta$
- $\{123,132\} \sim_{W_{\text {ilf }}}\{132,312\} \sim_{\text {Wilf }\{231,312\}}$
- $\{132,4312\} \sim_{\text {Wilf }}\{132,4231\}$

Outline

1 Definitions and some history

- Permutation patterns and partial sorting devices/algorithms
- Permutation classes and Wilf-equivalences

2 Some operators with equivalent sorting power

- How many permutations can we sort with the operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$, where \mathbf{S} is the stack sorting operator of Knuth, and α is any symmetry of the square?

3 Longer operators with equivalent sorting power

- How many permutations can we sort with longer compositions of stack sorting and symmetries $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S} \circ \ldots$?

4 Related Wilf-equivalences

- These are obtained from a (surprisingly little known) bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$ which appears in our study.

How many permutations can we sort with S ○ $\alpha \circ \mathbf{S}$, for any symmetry α ?

D_{8}-symmetries

π

$\mathbf{R}(\pi)$
Reverse

C (π)
Complement

$\mathrm{I}(\pi)$
Inverse

These symmetries generate an 8-element group:

$$
D_{8}=\{\mathbf{i d}, \mathbf{R}, \mathbf{C}, \mathbf{I}, \mathbf{R} \circ \mathbf{C}, \mathbf{I} \circ \mathbf{R}, \mathbf{I} \circ \mathbf{C}, \mathbf{I} \circ \mathbf{C} \circ \mathbf{R}\}
$$

D_{8}-symmetries

$\mathbf{R}(\pi)$
Reverse

C(π)
Complement

$\mathbf{I}(\pi)$
Inverse

These symmetries generate an 8-element group: $D_{8}=\{\mathbf{i d}, \mathbf{R}, \mathbf{C}, \mathbf{I}, \mathbf{R} \circ \mathbf{C}, \mathbf{I} \circ \mathbf{R}, \mathbf{I} \circ \mathbf{C}, \mathbf{I} \circ \mathbf{C} \circ \mathbf{R}\}$

Questions of [Claesson, Dukes, Steingrimsson]:
What are the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ for $\alpha \in D_{8}$?
And how many of each size n are there?
[B., Guibert 2012]

The eight symmetries of D_{8} can be paired

- The permutations that are sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ and those sortable by $\mathbf{S} \circ \beta \circ \mathbf{S}$ are the same, for the following pairs (α, β) :

$$
(\text { id }, \mathbf{I} \circ \mathbf{C} \circ \mathbf{R}) \quad(\mathbf{C}, \mathbf{I} \circ \mathbf{R}) \quad(\mathbf{R}, \mathbf{I} \circ \mathbf{C}) \quad(\mathbf{I}, \mathbf{R} \circ \mathbf{C})
$$

Such operators sort exactly the same sets of permutations.

The eight symmetries of D_{8} can be paired

- The permutations that are sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ and those sortable by $\mathbf{S} \circ \beta \circ \mathbf{S}$ are the same, for the following pairs (α, β) :

$$
(\text { id }, \mathbf{I} \circ \mathbf{C} \circ \mathbf{R}) \quad(\mathbf{C}, \mathbf{I} \circ \mathbf{R}) \quad(\mathbf{R}, \mathbf{I} \circ \mathbf{C}) \quad(\mathbf{I}, \mathbf{R} \circ \mathbf{C})
$$

Such operators sort exactly the same sets of permutations.

- Characterization of the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$: For each $\alpha \in D_{8}$, the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ may be characterized by avoidance of generalized patterns.

The eight symmetries of D_{8} can be paired

- The permutations that are sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ and those sortable by $\mathbf{S} \circ \beta \circ \mathbf{S}$ are the same, for the following pairs (α, β) :

$$
(\text { id }, \mathbf{I} \circ \mathbf{C} \circ \mathbf{R}) \quad(\mathbf{C}, \mathbf{I} \circ \mathbf{R}) \quad(\mathbf{R}, \mathbf{I} \circ \mathbf{C}) \quad(\mathbf{I}, \mathbf{R} \circ \mathbf{C}) .
$$

Such operators sort exactly the same sets of permutations.

- Characterization of the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$: For each $\alpha \in D_{8}$, the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ may be characterized by avoidance of generalized patterns.
- Some operators do not sort the same sets of permutations, but still the same number of permutations of any size.
We say that they have equivalent sorting power.

How many permutations can we sort with $\mathrm{S} \circ \alpha \circ \mathbf{S}$, for any symmetry α ?

Enumeration of permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$

$\alpha=\mathbf{i d}$	$\frac{2(3 n)!}{(n+1)!(2 n+1)!}$	[West, Zeilberger]
$\alpha=\mathbf{R}$	$\frac{2(3 n)!}{(n+1)!(2 n+1)!}$	$[$ B., Guibert]
$\alpha=\mathbf{C}$	Catalan numbers	$[$ B., Guibert]
$\alpha=\mathbf{I}$	Baxter numbers	$[$ B., Guibert]

Enumeration of permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$

$\alpha=\mathbf{i d}$	$\frac{2(3 n)!}{(n+1)!(2 n+1)!}$	[West, Zeilberger]
$\alpha=\mathbf{R}$	$\frac{2(3 n)!}{(n+1)!(2 n+1)!}$	$[$ B., Guibert]
$\alpha=\mathbf{C}$	Catalan numbers	$[$ B., Guibert]
$\alpha=\mathbf{I}$	Baxter numbers	$[$ B., Guibert]

$■ \mathbf{S} \circ \mathbf{C} \circ \mathbf{S}$ sorts exactly the permutations of $\operatorname{Av}(231)$ (like \mathbf{S})

- Bijection between the permutations sortable by $\mathbf{S} \circ \mathbf{S}$ and by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$
■ Bijection between the permutations sortable by $\mathbf{S} \circ \mathbf{I} \circ \mathbf{S}$ and (twisted-)Baxter permutations

Both bijections are via common generating trees

Enumeration of permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$

$\alpha=\mathbf{i d}$	$\frac{2(3 n)!}{(n+1)!(2 n+1)!}$	[West, Zeilberger]
$\alpha=\mathbf{R}$	$\frac{2(3 n)!}{(n+1)!(2 n+1)!}$	$[$ B., Guibert]
$\alpha=\mathbf{C}$	Catalan numbers	$[$ B., Guibert]
$\alpha=\mathbf{I}$	Baxter numbers	$[$ B., Guibert]

$■ \mathbf{S} \circ \mathbf{C} \circ \mathbf{S}$ sorts exactly the permutations of $\operatorname{Av}(231)$ (like \mathbf{S})

- Bijection between the permutations sortable by $\mathbf{S} \circ \mathbf{S}$ and by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$ preserving 20 statistics
■ Bijection between the permutations sortable by $\mathbf{S} \circ \mathbf{I} \circ \mathbf{S}$ and (twisted-)Baxter permutations preserving 3 statistics

Both bijections are via common generating trees in which it is possible to plug many permutation statistics

Why don't we try more stacks and symmetries?

Theorem (B., Guibert)

There are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$. Moreover, many permutation statistics are equidistributed across these two sets.

Mathilde Bouvel

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

Why don't we try more stacks and symmetries?

Abstract

Theorem (B., Guibert) There are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$. Moreover, many permutation statistics are equidistributed across these two sets.

After some computer experiments, counting permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S}, \quad \mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S} \circ \gamma \circ \mathbf{S}, \ldots$ Olivier Guibert formulated a conjecture:

Conjecture

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

$\mathbf{S} \circ \mathbf{A}$ and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$ have equivalent sorting power

Theorem (B., Albert)

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

$\mathbf{S} \circ \mathbf{A}$ and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$ have equivalent sorting power

Theorem (B., Albert)

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

Mathilde Bouvel

$\mathbf{S} \circ \mathbf{A}$ and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$ have equivalent sorting power

Theorem (B., Albert)

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

Main ingredients for the proof:

- the characterization of preimages of permutations by \mathbf{S}; [Bousquet-Mélou, 2000]
- the little known bijection P between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$. [Dokos, Dwyer, Johnson, Sagan, Selsor, 2012]

$\mathbf{S} \circ \mathbf{A}$ and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$ have equivalent sorting power

Theorem (B., Albert)

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

Main ingredients for the proof:

- the characterization of preimages of permutations by \mathbf{S}; [Bousquet-Mélou, 2000]
- the little known bijection P between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$. [Dokos, Dwyer, Johnson, Sagan, Selsor, 2012]

But... How does the theorem relate to these ingredients?

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

An equivalent statement

Mathilde Bouvel
Operators of equivalent sorting power and related Wilf-equivalences

An equivalent statement

Theorem

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, P is a size-preserving bijection between

- permutations of $\operatorname{Av}(231)$ that belong to the image of \mathbf{A}, and
- permutations of $\operatorname{Av}(132)$ that belong to the image of \mathbf{A}, that preserves the number of preimages under \mathbf{A}.

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

A simple remark about stack sorting and trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathrm{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

A simple remark about stack sorting and trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathbf{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

Example: $\theta=58196237$ 4, giving $\mathbf{S}(\theta)=518236479$.

A simple remark about stack sorting and trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathbf{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

Example: $\theta=581962374$, giving $\mathbf{S}(\theta)=518236479$.

Proof: \mathbf{S} and Post $\circ \mathbf{T}_{\text {in }}$ are defined by the same recursive equation: $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$.

A simple remark about stack sorting and trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathbf{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

Example: $\theta=581962374$, giving $\mathbf{S}(\theta)=518236479$.

Proof: \mathbf{S} and Post $\circ \mathrm{T}_{\text {in }}$ are defined by the same recursive equation: $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$.

Consequence:
For π in the image of $\mathbf{S}, \theta \in \mathbf{S}^{-1}(\pi)$ iff $\operatorname{Post}\left(\mathrm{T}_{\text {in }}(\theta)\right)=\pi$.
Preimages of π correspond to in-order trees T s.t. $\operatorname{Post}(T)=\pi$.

A canonical representative $\mathbf{S}^{-1}(\pi)$

Lemma (Bousquet-Mélou, 2000)

For any permutation π in the image of \mathbf{S}, there is a unique canonical tree \mathcal{T}_{π} whose post-order reading is π.

Example: For $\pi=518236479$,

Canonical tree:
For every edge ${ }_{\text {there exists }}^{\text {, }}$ and y such that

A canonical representative $\mathbf{S}^{-1}(\pi)$

Lemma (Bousquet-Mélou, 2000)

For any permutation π in the image of \mathbf{S}, there is a unique canonical tree \mathcal{T}_{π} whose post-order reading is π.

Example: For $\pi=518236479$,

Canonical tree:
For every edge ${ }_{\text {there exists }}^{\text {, }}$ and y such that

Theorem (Bousquet-Mélou, 2000)

\mathcal{T}_{π} determines $\mathbf{S}^{-1}(\pi)$.
Moreover $\left|\mathbf{S}^{-1}(\pi)\right|$ is determined only by the shape of \mathcal{T}_{π}.

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

Bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$

Representing permutations as diagrams, we have
$\operatorname{Av}(231)=\varepsilon+\underset{\operatorname{Av}(231)}{\stackrel{\bullet}{\operatorname{Av}(231)}}$ and $\operatorname{Av}(132)=\varepsilon+{ }^{\operatorname{Avv}(132)}$.

Example:

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power Bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$

Representing permutations as diagrams, we have
$\operatorname{Av}(231)=\varepsilon+\underset{\operatorname{Av(231)}}{\stackrel{\operatorname{Av}(231)}{a}}$ and $\operatorname{Av}(132)=\varepsilon+\frac{\sqrt{\operatorname{Avv}(132)^{\circ}}}{\sqrt{\operatorname{Av(132)}}}$.

Definition

We define $P: \operatorname{Av}(231) \rightarrow \operatorname{Av}(132)$ recursively as follows:

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortables

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortables

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortables

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.
Theorem
Φ_{A} is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

A

$$
\begin{aligned}
& 12 \ldots n \mathbf{S}_{\leftarrow}^{\leftarrow}{\underset{\lambda}{\pi}} \circ \pi \\
& =P(\pi)
\end{aligned}
$$

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

A

$$
\begin{aligned}
& 12 \ldots n \underset{=}{\underset{=}{\lambda_{\pi}} \circ \pi(\pi)} \underset{\sim}{\leftarrow} \lambda_{\pi} \circ \tau
\end{aligned}
$$

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

A

$$
\begin{aligned}
& 12 \ldots n \mathbf{S} \mathbf{R}_{\lambda_{\pi} \circ \pi}^{\leftarrow} \stackrel{\mathbf{S}}{\leftarrow} \lambda_{\pi} \circ \tau \\
& =P(\pi) \\
& \lambda_{\pi}\left(\mathcal{T}_{\pi}\right)=\mathcal{T}_{\lambda_{\pi} \circ \pi}
\end{aligned}
$$

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

$$
\begin{aligned}
& 12 \ldots n \underset{\leftarrow}{\mathbf{S}} \underset{\lambda_{\pi} \circ \pi}{ } \stackrel{\mathbf{S}}{\longleftarrow} \lambda_{\pi} \circ \tau \underset{\mathbf{S} \text { or } \mathbf{R}}{\longleftarrow} \lambda_{\pi} \circ \gamma \\
& =P(\pi) \\
& \lambda_{\pi}\left(\mathcal{T}_{\pi}\right)=\mathcal{T}_{\lambda_{\pi} \circ \pi}
\end{aligned}
$$

For any composition \mathbf{A} of \mathbf{S} and \mathbf{R}, the operators $\mathbf{S} \circ \mathbf{A}$ and $S \circ \mathbf{R} \circ \mathbf{A}$ have the same sorting power

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

For any composition \mathbf{A} of \mathbf{S} and \mathbf{R}, the operators $\mathbf{S} \circ \mathbf{A}$ and $S \circ \mathbf{R} \circ \mathbf{A}$ have the same sorting power

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

$$
\begin{aligned}
& 12 \ldots n \longleftarrow \stackrel{\mathbf{R}}{\leftarrow} \lambda_{\pi} \circ \pi \stackrel{\mathbf{S}}{\longleftarrow} \lambda_{\pi} \circ \tau \stackrel{\mathbf{S} \text { or } \mathbf{R}}{\longleftarrow} \lambda_{\pi} \circ \gamma \stackrel{\mathbf{S}}{\longleftarrow} \cdots \lambda_{\pi} \circ \rho \stackrel{\mathbf{S}}{\longleftarrow} \lambda_{\pi} \circ \theta \\
& =P(\pi) \quad=\Phi_{\mathbf{A}}(\theta) \\
& \lambda_{\pi}\left(\mathcal{T}_{\pi}\right)=\mathcal{T}_{\lambda_{\pi} \circ \pi} \lambda_{\pi}\left(\mathcal{T}_{\tau}\right)=\mathcal{T}_{\lambda_{\pi} \circ \tau} \quad \lambda_{\pi}\left(\mathcal{T}_{\rho}\right)=\mathcal{T}_{\lambda_{\pi} \circ \rho}
\end{aligned}
$$

Who is Φ_{S} ?

- Φ_{S} provides a bijection between the set of permutations sortable by $\mathbf{S} \circ \mathbf{S}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$.
- With O. Guibert, we gave a common generating tree for those two sets, providing a bijection between them.

Question

Are these two bijections the same one?

P and Wilf-equivalences

$$
\begin{aligned}
& \left\{\pi, \pi^{\prime}, \ldots\right\} \text { and }\left\{\tau, \tau^{\prime}, \ldots\right\} \text { are Wilf-equivalent when } \operatorname{Av}\left(\pi, \pi^{\prime}, \ldots\right) \\
& \text { and } \operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right) \text { are enumerated by the same sequence. }
\end{aligned}
$$

P and Wilf-equivalences

$\left\{\pi, \pi^{\prime}, \ldots\right\}$ and $\left\{\tau, \tau^{\prime}, \ldots\right\}$ are Wilf-equivalent when $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right)$ are enumerated by the same sequence.

Theorem

Description of the patterns $\pi \in \operatorname{Av}(231)$ such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$
\Rightarrow Many Wilf-equivalences (most of them not trivial)

P and Wilf-equivalences

$\left\{\pi, \pi^{\prime}, \ldots\right\}$ and $\left\{\tau, \tau^{\prime}, \ldots\right\}$ are Wilf-equivalent when $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right)$ are enumerated by the same sequence.

Theorem

Description of the patterns $\pi \in \operatorname{Av}(231)$ such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$
\Rightarrow Many Wilf-equivalences (most of them not trivial)

Theorem

Computation of the generating function of such classes $\operatorname{Av}(231, \pi)$... and it depends only on $|\pi|$.
\Rightarrow Even more Wilf-equivalences!

The families of patterns $\left(\lambda_{n}\right)$ and $\left(\rho_{n}\right)$

Sum:
$\alpha \oplus \beta=\alpha(\beta+a)=\alpha^{\beta}$

Skew sum:

$$
\alpha \ominus \beta=(\alpha+b) \beta={ }_{\beta}^{\alpha}
$$

where α and β are permutations of size a and b, respectively

The families of patterns $\left(\lambda_{n}\right)$ and $\left(\rho_{n}\right)$

Sum:

$$
\alpha \oplus \beta=\alpha(\beta+a)=\alpha^{\beta}
$$

Skew sum:

$$
\alpha \ominus \beta=(\alpha+b) \beta={ }_{\beta}^{\alpha}
$$

where α and β are permutations of size a and b, respectively

$$
\begin{aligned}
& \text { - } \lambda_{0}=\rho_{0}=\varepsilon \quad\left(\text { or } \lambda_{1}=\rho_{1}=1\right) \\
& \text { - } \lambda_{n}=1 \ominus \rho_{n-1} \\
& \rho_{n}=\lambda_{n-1} \oplus 1
\end{aligned}
$$

$$
\lambda_{n}=\stackrel{\bullet}{\rho_{n-1}}, \rho_{n}={\lambda_{n-1}}^{\bullet} ; \quad \lambda_{6}=\begin{array}{|}
\bullet \bullet
\end{array}, \rho_{6}=\begin{array}{|}
\bullet \\
\bullet
\end{array}
$$

Patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.

$$
\pi=\bar{\lambda}^{\sqrt{\rho_{n-k}-1}} \quad \text { hence } P(\pi)=\stackrel{\lambda_{k}}{\rho_{n-k-1}}
$$

Patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.

$$
\pi=\bar{\lambda}^{\stackrel{\bullet}{\rho_{n-k}-1}} \quad \text { hence } P(\pi)={\stackrel{\lambda_{k}}{ }}^{\rho_{n-k-1}}
$$

Consequence: For all $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$, $\{231, \pi\}$ and $\{132, P(\pi)\}$ are Wilf-equivalent.

Patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.

$$
\pi={\overline{\lambda_{k}}}^{\stackrel{\bullet}{\rho_{n-k-1}}} \quad \text { hence } P(\pi)={\stackrel{\lambda_{k}}{ }}_{\rho_{n-k-1}}
$$

Consequence: For all $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$, $\{231, \pi\}$ and $\{132, P(\pi)\}$ are Wilf-equivalent.
Example: $\lambda_{3} \oplus\left(1 \ominus \rho_{1}\right)=31254 \in \operatorname{Av}(231)$ and $P(31254)=42351$ $\Rightarrow P$ is a bijection between $\operatorname{Av}(231,31254)$ and $\operatorname{Av}(132,42351)$ $\Rightarrow\{231,31254\}$ and $\{132,42351\}$ are Wilf-equivalent

Known Wilf-equivalences that we recover (or not)

© We recover

- for $\pi=312,\{231,312\} \sim$ Wilf $\{132,312\}$,

■ for $\pi=3124,\{231,3124\} \sim \sim_{\text {Wilf }}\{132,3124\}$,
■ for $\pi=1423$, $\{231,1423\} \sim \sim_{\text {Wilf }}\{132,3412\}$, which are (up to symmetry) referenced in Wikipedia.

Known Wilf-equivalences that we recover (or not)

© We recover

- for $\pi=312,\{231,312\} \sim$ Wilf $\{132,312\}$,

■ for $\pi=3124,\{231,3124\} \sim \sim_{\text {Wilf }}\{132,3124\}$,
■ for $\pi=1423,\{231,1423\} \sim$ Wilf $^{\text {a }}\{132,3412\}$, which are (up to symmetry) referenced in Wikipedia.

With $|\pi|=3$ or 4 , there are five more non-trivial Wilf-equivalence of the form $\{231, \pi\} \sim W_{\text {Wilf }}\left\{132, \pi^{\prime}\right\}$ (up to symmetry).
(3) We do not recover them.

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

More Wilf-equivalences that we obtain

Patterns π such that $\{231, \pi\} \sim_{\text {Wilf }}\{132, P(\pi)\}$ and $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$ i.e. $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right):$

π	$P(\pi)$	π	$P(\pi)$
42135	42135	216435	546213
21534	43512	531246	531246
53124	53124	312645	534612
31254	42351	642135	642135
15324	45213	421365	532461
		164235	563124

π	$P(\pi)$
6421357	6421357
3127546	6457213
7531246	7531246
4213756	6435712
1753246	6742135
5312476	6423571
2175346	6573124

π	$P(\pi)$
31286457	75683124
75312468	75312468
64213587	75324681
53124867	75346812
86421357	86421357
21864357	76842135
42138657	75468213
18642357	78531246

Except two they are non-trivial.

More Wilf-equivalences that we obtain

Patterns π such that $\{231, \pi\} \sim_{W \text { ilf }}\{132, P(\pi)\}$ and $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$ i.e. $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right):$

π	$P(\pi)$	π	$P(\pi)$
42135	42135	216435	546213
21534	43512	531246	531246
53124	53124	312645	534612
31254	42351	642135	642135
15324	45213	421365	532461
		164235	563124

π	$P(\pi)$
6421357	6421357
3127546	6457213
7531246	7531246
4213756	6435712
1753246	6742135
5312476	6423571
2175346	6573124

π	$P(\pi)$
31286457	75683124
75312468	75312468
64213587	75324681
53124867	75346812
86421357	86421357
21864357	76842135
42138657	75468213
18642357	78531246

Except two they are non-trivial.
But because of symmetries, there are some redundancies.

Mathilde Bouvel
Operators of equivalent sorting power and related Wilf-equivalences

Common generating function when $\operatorname{Av}(231, \pi) \stackrel{P}{\longrightarrow} \operatorname{Av}(132, P(\pi))$

$$
\text { Definition: } F_{1}(t)=1 \text { and } F_{n+1}(t)=\frac{1}{1-t F_{n}(t)} .
$$

Theorem

For $\pi \in \operatorname{Av}(231)$ such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$, denoting $n=|\pi|$, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}.

Common generating function when $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Definition: $F_{1}(t)=1$ and $F_{n+1}(t)=\frac{1}{1-t F_{n}(t)}$.

Theorem

For $\pi \in \operatorname{Av}(231)$ such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$, denoting $n=|\pi|$, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}.

Example: The common generating function of $\operatorname{Av}(231,31254)$ and $\operatorname{Av}(132,42351)$ is

$$
F_{5}(t)=\frac{t^{2}-3 t+1}{3 t^{2}-4 t+1}
$$

Common generating function when $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

$$
\text { Definition: } F_{1}(t)=1 \text { and } F_{n+1}(t)=\frac{1}{1-t F_{n}(t)} .
$$

Theorem

For $\pi \in \operatorname{Av}(231)$ such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$, denoting $n=|\pi|$, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}.

Example: The common generating function of $\operatorname{Av}(231,31254)$ and $\operatorname{Av}(132,42351)$ is

$$
F_{5}(t)=\frac{t^{2}-3 t+1}{3 t^{2}-4 t+1}
$$

F_{5} is also the generating function of $\operatorname{Av}(231, \pi)$ for $\pi=53124$ or 15324 or 21534 or 42135.

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

Many Wilf-equivalent classes

Theorem

$\{231, \pi\}$ and $\{132, P(\pi)\}$ are all Wilf-equivalent when $|\pi|=\left|\pi^{\prime}\right|=n$ and π and π^{\prime} are of the form $\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.
Moreover, their generating function is F_{n}.

Many Wilf-equivalent classes . . . and even more?

Theorem

$\{231, \pi\}$ and $\{132, P(\pi)\}$ are all Wilf-equivalent when $|\pi|=\left|\pi^{\prime}\right|=n$ and π and π^{\prime} are of the form $\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$. Moreover, their generating function is F_{n}.

In future: For classes recursively described (like Av (231) and Av(132), define recursive bijections (like P), to find or explain more Wilf-equivalences.

Many Wilf-equivalent classes . . . and even more?

Theorem

$\{231, \pi\}$ and $\{132, P(\pi)\}$ are all Wilf-equivalent when $|\pi|=\left|\pi^{\prime}\right|=n$ and π and π^{\prime} are of the form $\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$. Moreover, their generating function is F_{n}.

In future: For classes recursively described (like Av (231) and Av(132), define recursive bijections (like P), to find or explain more Wilf-equivalences.

Merci !

