Operators of equivalent sorting power and related Wilf-equivalences

Mathilde Bouvel (Institut für Mathematik, Universität Zürich)

joint work with Olivier Guibert (LaBRI, Bordeaux) Michael Albert (University of Otago, New Zealand)

Séminaire de combinatoire Philippe Flajolet décembre 2013

Outline

Definitions and some history

- Permutation patterns and partial sorting devices/algorithms
- Permutation classes and Wilf-equivalences
- 2 Some operators with equivalent sorting power
 - How many permutations can we sort with the operators S ∘ α ∘ S, where S is the *stack sorting operator* of Knuth, and α is any symmetry of the square?
- 3 Longer operators with equivalent sorting power
 - How many permutations can we sort with longer compositions of stack sorting and symmetries $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S} \circ \ldots$?
- 4 Related Wilf-equivalences
 - These are obtained from a (surprisingly little known) bijection between Av(231) and Av(132) which appears in our study.

Introduction

Operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack.

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack.

W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack.

W.I.o.g, we can impose that the stack satisfies the Hanoi condition.

This defines a stack sorting algorithm **S**.

The stack sorting algorithm ${f S}$

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm ${f S}$

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

32754

The stack sorting algorithm ${f S}$

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator $\boldsymbol{\mathsf{S}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm **S**

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator $\boldsymbol{\mathsf{S}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm **S**

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm **S**

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm **S**

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm **S**

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm **S**

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm **S**

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

The stack sorting algorithm **S**

For *i* from 1 to *n*,

- if possible, Push σ_i in the stack
- otherwise, Pop the stack as many times as necessary, and then Push
 - σ_i in the stack
- Pop the stack until it is empty

Mathilde Bouvel

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\bf S}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ 6 \ 4 \ 5 \ 7 \leftarrow \mathbf{S}(\sigma) = \mathbf{S}(\sigma) = \mathbf{S}(\sigma) + \mathbf{S}(\sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, $n = \max(LnR)$

Mathilde Bouvel

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${\boldsymbol{\mathsf{S}}}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ \mathbf{6} \ 4 \ 5 \ 7 \longleftarrow \mathbf{6} \ 1 \ 3 \ 2 \ \mathbf{7} \ \mathbf{5} \ \mathbf{4} = \sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, $n = \max(LnR)$

[Knuth ~1970]
$$\sigma$$
 is stack-sortable, i.e. $\mathbf{S}(\sigma) = 12 \dots n$
iff there are no $i < j < k$ such that $\sigma_k < \sigma_i < \sigma_j$

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

The stack sorting operator ${f S}$ of Knuth

Sort (or try to do so) a permutation using a stack. W.I.o.g, we can impose that the stack satisfies the Hanoi condition. This defines a stack sorting algorithm **S**.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ \mathbf{6} \ 4 \ 5 \ 7 \leftarrow \mathbf{6} \ 1 \ 3 \ 2 \ \mathbf{7} \ \mathbf{5} \ \mathbf{4} = \sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, $n = \max(LnR)$

[Knuth ~1970]
$$\sigma$$
 is stack-sortable, i.e. $\mathbf{S}(\sigma) = 12 \dots n$
iff there are no $i < j < k$ such that $\sigma_k < \sigma_i < \sigma_j$
iff σ avoids the pattern 231.

Mathilde Bouvel

ntroduction	Operators $S \circ \alpha \circ S$	Longer cor
00000		

Definitions of permutation patterns and permutation classes, and some history

More sorting devices

- several stacks in series
- several stacks in parallel
- networks of stacks
- a single stack used several times
- queue(s)
- double-ended queue (= deque)
- pop-stacks
- ...

Pioneers in the seventies: Knuth, Pratt, Tarjan, ...

From the nineties until today:

Albert, Atkinson, Bousquet-Mélou, Claesson, Linton, Magnusson, Murphy,

Pierrot, Rossin, Smith, Ulfarsson, Vatter, West, Zeilberger, ...

Mathilde Bouvel

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences
000000			
Definitions of peri	mutation patterns and permutat	ion classes, and some history	

- $\pi \in \mathfrak{S}_k$ is a **pattern** of $\sigma \in \mathfrak{S}_n$ when
- $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .
- $\sigma_{i_1} \dots \sigma_{i_k}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences
000000			
Definitions of peri	mutation patterns and permutat	ion classes, and some history	

- $\pi \in \mathfrak{S}_k$ is a **pattern** of $\sigma \in \mathfrak{S}_n$ when
- $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .
- $\sigma_{i_1} \dots \sigma_{i_k}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Operators of equivalent sorting power and related Wilf-equivalences

Introduction ○○●○○○	Operators S $\circ \alpha \circ S$ $\circ \circ \circ$	Longer compositions of S and symmetries	Wilf-equivalences
Definitions of permutat	ion patterns and permutation c	lasses, and some history	

- $\pi \in \mathfrak{S}_k$ is a **pattern** of $\sigma \in \mathfrak{S}_n$ when
- $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .
- $\sigma_{i_1} \dots \sigma_{i_k}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Mathilde Bouvel

Introduction Operators $S \circ \alpha \circ S$		Longer compositions of S and symmetries	Wilf-equivalences
000000			
Definitions of non	mutation nottonno and normutat	ion classes and come history.	

- $\pi \in \mathfrak{S}_k$ is a **pattern** of $\sigma \in \mathfrak{S}_n$ when
- $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .
- $\sigma_{i_1} \dots \sigma_{i_k}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Mathilde Bouvel

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences
000000			
Definitions of peri	nutation patterns and permutat	ion classes, and some history	

- $\pi \in \mathfrak{S}_k$ is a **pattern** of $\sigma \in \mathfrak{S}_n$ when
- $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .
- $\sigma_{i_1} \dots \sigma_{i_k}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Mathilde Bouvel

Introduction	troduction Operators $S \circ \alpha \circ S$ Longer compositions of S and symmetries		Wilf-equivalences
000000			
Definitions of perr	nutation patterns and permutat	ion classes, and some history	

- $\pi \in \mathfrak{S}_k$ is a **pattern** of $\sigma \in \mathfrak{S}_n$ when
- $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .
- $\sigma_{i_1} \dots \sigma_{i_k}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Avoidance: $Av(\pi, \tau, ...) = set of$ permutations that do not contain any occurrence of π or τ or ...

Mathilde Bouvel

Introduction	uction Operators $S \circ \alpha \circ S$ Longer compositions of S and symmetries		Wilf-equivalences
000000			
Definitions of per	mutation patterns and permutat	ion classes and some history	

- $\pi \in \mathfrak{S}_k$ is a **pattern** of $\sigma \in \mathfrak{S}_n$ when
- $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .
- $\sigma_{i_1} \dots \sigma_{i_k}$ is an occurrence of π in σ
- Notation: $\pi \preccurlyeq \sigma$.

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Avoidance: $Av(\pi, \tau, ...) = set of$ permutations that do not contain any occurrence of π or τ or ...

Permutation classes are sets Av(B) (with B finite or infinite).

Mathilde Bouvel

 Introduction
 Operators S ο α ο S

 οοοφοο
 οοο

Wilf-equivalences

Definitions of permutation patterns and permutation classes, and some history

Some early enumeration results about permutation classes

- Av(231) is enumerated by the Catalan numbers [Knuth ~1970]
- Av(123) also is [MacMahon 1915]

Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008]

Definitions of permutation patterns and permutation classes, and some history

Some early enumeration results about permutation classes

- Av(231) is enumerated by the Catalan numbers [Knuth ~1970]
- Av(123) also is [MacMahon 1915]

Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008]

Systematic enumeration of Av(B) when B contains small excluded patterns (size 3 or 4) Simion&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West...in the nineties

Remark: the enumeration of Av(1324) is still unknown

IntroductionOperators $S \circ \alpha \circ S$ $000 \bullet 00$ 000

Definitions of permutation patterns and permutation classes, and some history

Some early enumeration results about permutation classes

- Av(231) is enumerated by the Catalan numbers [Knuth ~1970]
- Av(123) also is [MacMahon 1915]

Bijections: [Simion, Schmidt 1985] [Claesson, Kitaev 2008]

Systematic enumeration of Av(B) when B contains small excluded patterns (size 3 or 4) Simion&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West...in the nineties

Remark: the enumeration of Av(1324) is still unknown

Marcus-Tardos theorem (2004) (Stanley-Wilf ex-conjecture): For any π , there is a constant c_{π} such that $\forall n$, the number of permutations of size n in Av (π) is $\leq c_{\pi}^{n}$

Mathilde Bouvel

Introduction	Operators S $\circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences
000000	000	0000000	0000000
Definitions of permutation	tion patterns and permutation c	lasses, and some history	

• { π, π', \ldots } and { τ, τ', \ldots } are Wilf-equivalent when Av(π, π', \ldots) and Av(τ, τ', \ldots) are enumerated by the same sequence. Example: 231 and 123 are Wilf-equivalent, i.e. 231 \sim_{Wilf} 123.

Introduction	Operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$ 000	Longer compositions of S and symmetries	Wilf-equivalences
Definitions of permutat	ion patterns and permutation cl	asses, and some history	

• { π, π', \ldots } and { τ, τ', \ldots } are Wilf-equivalent when Av(π, π', \ldots) and Av(τ, τ', \ldots) are enumerated by the same sequence. Example: 231 and 123 are Wilf-equivalent, i.e. 231 \sim_{Wilf} 123.

Actually, the six permutations of size 3 are all Wilf-equivalent. Why? For every symmetry of the square $\alpha \in D_8$, $\pi \sim_{Wilf} \alpha(\pi)$.

Mathilde Bouvel

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences
000000	000	0000000	0000000
Definitions of permutat	ion patterns and permutation cl	lasses, and some history	

• { π, π', \ldots } and { τ, τ', \ldots } are Wilf-equivalent when Av(π, π', \ldots) and Av(τ, τ', \ldots) are enumerated by the same sequence. Example: 231 and 123 are Wilf-equivalent, i.e. 231 \sim_{Wilf} 123.

Actually, the six permutations of size 3 are all Wilf-equivalent. Why? For every symmetry of the square $\alpha \in D_8$, $\pi \sim_{Wilf} \alpha(\pi)$. These are called trivial Wilf-equivalences.

		ompositions of S and symmetries	vvilf-equivalences
Definitions of permutation pattern	erns and permutation classes, an	d some history	

• { π, π', \ldots } and { τ, τ', \ldots } are Wilf-equivalent when Av(π, π', \ldots) and Av(τ, τ', \ldots) are enumerated by the same sequence. Example: 231 and 123 are Wilf-equivalent, i.e. 231 \sim_{Wilf} 123.

Actually, the six permutations of size 3 are all Wilf-equivalent. Why? For every symmetry of the square $\alpha \in D_8$, $\pi \sim_{Wilf} \alpha(\pi)$. These are called trivial Wilf-equivalences.

Examples of non-trivial Wilf-equivalences:

- 1342 \sim_{Wilf} 2413 and 1234 \sim_{Wilf} 1243 \sim_{Wilf} 1432 \sim_{Wilf} 2143
- $12 \dots m \oplus \beta \sim_{Wilf} m \dots 21 \oplus \beta$
- $\{123, 132\} \sim_{Wilf} \{132, 312\} \sim_{Wilf} \{231, 312\}$
- $\{132, 4312\} \sim_{Wilf} \{132, 4231\}$

Mathilde Bouvel

Outline

Definitions and some history

- Permutation patterns and partial sorting devices/algorithms
- Permutation classes and Wilf-equivalences
- 2 Some operators with equivalent sorting power
 - How many permutations can we sort with the operators S ∘ α ∘ S, where S is the *stack sorting operator* of Knuth, and α is any symmetry of the square?
- 3 Longer operators with equivalent sorting power
 - How many permutations can we sort with longer compositions of stack sorting and symmetries $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S} \circ \ldots$?
- 4 Related Wilf-equivalences
 - These are obtained from a (surprisingly little known) bijection between Av(231) and Av(132) which appears in our study.

Introduction	Operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$ • OO	Longer compositions of S and symmetries	Wilf-equivalences	
How many permutations can we sort with S \circ $lpha$ \circ S, for any symmetry $lpha$?				

D₈-symmetries

These symmetries generate an 8-element group:

 $\textit{D}_8 = \{ \textit{id}, \textit{R}, \textit{C}, \textit{I}, \textit{R} \circ \textit{C}, \textit{I} \circ \textit{R}, \textit{I} \circ \textit{C}, \textit{I} \circ \textit{C} \circ \textit{R} \}$

Mathilde Bouvel

Introduction	Operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$ • $\circ \circ$	Longer compositions of S and symmetries	Wilf-equivalences	
How many permutations can we sort with S \circ $lpha$ \circ S, for any symmetry $lpha$?				

D₈-symmetries

These symmetries generate an 8-element group:

 $D_8 = \{ \mathsf{id}, \mathsf{R}, \mathsf{C}, \mathsf{I}, \mathsf{R} \circ \mathsf{C}, \mathsf{I} \circ \mathsf{R}, \mathsf{I} \circ \mathsf{C}, \mathsf{I} \circ \mathsf{C} \circ \mathsf{R} \}$

Questions of [Claesson, Dukes, Steingrimsson]: What are the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ for $\alpha \in D_8$? And how many of each size *n* are there? [B., Guibert 2012]

Mathilde Bouvel
Introduction	Operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$	Longer compositions of S and symmetries	Wilf-equivalences
How many permutation	is can we sort with $S \circ \alpha \circ S$. f	for any symmetry α ?	0000000

The eight symmetries of D_8 can be paired

The permutations that are sortable by S ∘ α ∘ S and those sortable by S ∘ β ∘ S are the same, for the following pairs (α, β): (id, I ∘ C ∘ R) (C, I ∘ R) (R, I ∘ C) (I, R ∘ C).
 Such operators sort exactly the same sets of permutations.

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences		
	000				
How many permutations can we sort with S $\circ \alpha \circ$ S. for any symmetry α ?					

The eight symmetries of D_8 can be paired

• The permutations that are sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ and those sortable by $\mathbf{S} \circ \beta \circ \mathbf{S}$ are the same, for the following pairs (α, β) : (id, $\mathbf{I} \circ \mathbf{C} \circ \mathbf{R}$) ($\mathbf{C}, \mathbf{I} \circ \mathbf{R}$) ($\mathbf{R}, \mathbf{I} \circ \mathbf{C}$) ($\mathbf{I}, \mathbf{R} \circ \mathbf{C}$). Such operators sort exactly the same sets of permutations.

• Characterization of the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$: For each $\alpha \in D_8$, the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ may be characterized by avoidance of generalized patterns.

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences		
	000				
How many permutations can we sort with S $\circ \alpha \circ$ S. for any symmetry α ?					

The eight symmetries of D_8 can be paired

• The permutations that are sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ and those sortable by $\mathbf{S} \circ \beta \circ \mathbf{S}$ are the same, for the following pairs (α, β) : (id, $\mathbf{I} \circ \mathbf{C} \circ \mathbf{R}$) ($\mathbf{C}, \mathbf{I} \circ \mathbf{R}$) ($\mathbf{R}, \mathbf{I} \circ \mathbf{C}$) ($\mathbf{I}, \mathbf{R} \circ \mathbf{C}$). Such operators sort exactly the same sets of permutations.

• Characterization of the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$: For each $\alpha \in D_8$, the permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ may be characterized by avoidance of generalized patterns.

• Some operators do not sort the same sets of permutations, but still the same number of permutations of any size.

We say that they have equivalent sorting power.

Mathilde Bouvel

ntroduction	Operators $S \circ \alpha \circ S$
	000

Wilf-equivalences

How many permutations can we sort with $S \circ \alpha \circ S$, for any symmetry α ?

Enumeration of permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$

$\alpha = \mathrm{id}$	$\frac{2(3n)!}{(n+1)!(2n+1)!}$	[West, Zeilberger]
$\alpha = \mathbf{R}$	$\frac{2(3n)!}{(n+1)!(2n+1)!}$	[B., Guibert]
$\alpha = \mathbf{C}$	Catalan numbers	[B., Guibert]
$\alpha = \mathbf{I}$	Baxter numbers	[B., Guibert]

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wi
	000		

Wilf-equivalences

How many permutations can we sort with $S \circ \alpha \circ S$, for any symmetry α ?

Enumeration of permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$

$\alpha = \mathrm{id}$	$\frac{2(3n)!}{(n+1)!(2n+1)!}$	[West, Zeilberger]
$\alpha = \mathbf{R}$	$\frac{2(3n)!}{(n+1)!(2n+1)!}$	[B., Guibert]
$\alpha = \mathbf{C}$	Catalan numbers	[B., Guibert]
$\alpha = \mathbf{I}$	Baxter numbers	[B., Guibert]

- **S** \circ **C** \circ **S** sorts exactly the permutations of Av(231) (like S)
- \blacksquare Bijection between the permutations sortable by $\bm{S} \circ \bm{S}$ and by $\bm{S} \circ \bm{R} \circ \bm{S}$
- Bijection between the permutations sortable by $\bm{S} \circ \bm{I} \circ \bm{S}$ and (twisted-)Baxter permutations

Both bijections are via common generating trees

Mathilde Bouvel

Introduction	Operators $S \circ lpha \circ S$	Longer compositions of S and symmetries	w
	000		

Wilf-equivalences

How many permutations can we sort with $S \circ \alpha \circ S$, for any symmetry α ?

Enumeration of permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S}$

$\alpha = \mathrm{id}$	$\frac{2(3n)!}{(n+1)!(2n+1)!}$	[West, Zeilberger]
$\alpha = \mathbf{R}$	$\frac{2(3n)!}{(n+1)!(2n+1)!}$	[B., Guibert]
$\alpha = \mathbf{C}$	Catalan numbers	[B., Guibert]
$\alpha = \mathbf{I}$	Baxter numbers	[B., Guibert]

S \circ **C** \circ **S** sorts exactly the permutations of Av(231) (like S)

- Bijection between the permutations sortable by $\bm{S} \circ \bm{S}$ and by $\bm{S} \circ \bm{R} \circ \bm{S}$ preserving 20 statistics
- Bijection between the permutations sortable by **S** ∘ **I** ∘ **S** and (twisted-)Baxter permutations preserving 3 statistics

Both bijections are *via* common generating trees in which it is possible to plug many permutation statistics

Mathilde Bouvel

 Introduction
 Operators S ∘ α ∘ S

 000000
 000

Longer compositions of S and symmetries

Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

Why don't we try more stacks and symmetries?

Theorem (B., Guibert)

There are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$. Moreover, many permutation statistics are equidistributed across these two sets.

 Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

Why don't we try more stacks and symmetries?

Theorem (B., Guibert)

There are as many permutations of size n sortable by $S \circ S$ as permutations of size n sortable by $S \circ R \circ S$. Moreover, many permutation statistics are equidistributed across these two sets.

After some computer experiments, counting permutations sortable by $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S}$, $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S} \circ \gamma \circ \mathbf{S}$, ... Olivier Guibert formulated a conjecture:

Conjecture

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Mathilde Bouvel

 Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

$\boldsymbol{S} \circ \boldsymbol{A}$ and $\boldsymbol{S} \circ \boldsymbol{R} \circ \boldsymbol{A}$ have equivalent sorting power

Theorem (B., Albert)

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

$\boldsymbol{S} \circ \boldsymbol{A}$ and $\boldsymbol{S} \circ \boldsymbol{R} \circ \boldsymbol{A}$ have equivalent sorting power

Theorem (B., Albert)

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

$S \circ A$ and $S \circ R \circ A$ have equivalent sorting power

Theorem (B., Albert)

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

Main ingredients for the proof:

the characterization of preimages of permutations by S;

[Bousquet-Mélou, 2000]

the little known bijection P between Av(231) and Av(132). [Dokos, Dwyer, Johnson, Sagan, Selsor, 2012]

Mathilde Bouvel

Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

$\boldsymbol{S} \circ \boldsymbol{A}$ and $\boldsymbol{S} \circ \boldsymbol{R} \circ \boldsymbol{A}$ have equivalent sorting power

Theorem (B., Albert)

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of size n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of size n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

Main ingredients for the proof:

the characterization of preimages of permutations by S;

[Bousquet-Mélou, 2000]

the little known bijection P between Av(231) and Av(132). [Dokos, Dwyer, Johnson, Sagan, Selsor, 2012]

But... How does the theorem relate to these ingredients?

Mathilde Bouvel

000000	000	0000000
Four course contracted and	A SEC and D the succession	

An equivalent statement

Introduction	Operators $S \circ lpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalence
000000	000	0000000	0000000
For any composition	A of S and P the enerators	$S \cap A$ and $S \cap P \cap A$ have the same conting neuron	

An equivalent statement

Theorem

For any operator **A** which is a composition of operators **S** and **R**, P is a size-preserving bijection between

- permutations of Av(231) that belong to the image of **A**, and
- permutations of Av(132) that belong to the image of A,

that preserves the number of preimages under A.

Mathilde Bouvel

Introduction	Operators S $\circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalence
For any composition A	of S and R, the operators S o	A and $S \circ R \circ A$ have the same sorting power	0000000

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivale
		0000000	
For one compositi	an A of C and D the encyclose	C o A and C o D o A have the same sorting nerver	

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Example: $\theta = 581962374$, giving $S(\theta) = 518236479$.

$$T_{in}(\theta) = 5^{-8} 1^{-9} 6^{-7}_{-2} 4$$
 and $Post(T_{in}(\theta)) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9.$

Mathilde Bouvel

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivale
		0000000	
East and assumption	an A of S and D the encuetors	C o A and C o D o A have the same sorting neuron	

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Example: $\theta = 581962374$, giving $S(\theta) = 518236479$.

$$T_{in}(\theta) = 5^{-8} 1^{-9} 6^{-7} 4$$
 and $Post(T_{in}(\theta)) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9.$

Proof: S and **Post** \circ T_{in} are defined by the same recursive equation: **S**(*LnR*) = **S**(*L*)**S**(*R*)*n*.

Mathilde Bouvel

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equival
		000000	
For one compositi	an A of C and D the energy area	C o A and C o D o A have the same sorting nerver	

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Example: $\theta = 5 \ 8 \ 1 \ 9 \ 6 \ 2 \ 3 \ 7 \ 4$, giving $\mathbf{S}(\theta) = 5 \ 1 \ 8 \ 2 \ 3 \ 6 \ 4 \ 7 \ 9$.

$$T_{in}(\theta) = 5^{4} \frac{9}{6} \frac{7}{2^{-3}} 4$$
 and $Post(T_{in}(\theta)) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9.$

Proof: S and **Post** \circ T_{in} are defined by the same recursive equation: **S**(*LnR*) = **S**(*L*)**S**(*R*)*n*.

Consequence:

For π in the image of **S**, $\theta \in \mathbf{S}^{-1}(\pi)$ iff $\mathbf{Post}(\mathsf{T}_{in}(\theta)) = \pi$. Preimages of π correspond to in-order trees T s.t. $\mathbf{Post}(T) = \pi$.

Mathilde Bouvel

 Introduction
 Operators S ∘ α ∘ S

 000000
 000

Longer compositions of S and symmetries

Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

A canonical representative $S^{-1}(\pi)$

Lemma (Bousquet-Mélou, 2000)

For any permutation π in the image of **S**, there is a unique canonical tree \mathcal{T}_{π} whose post-order reading is π .

6<'~4.

Example: For
$$\pi = 518236479$$
,

 $\mathcal{T}_{\pi} = 5^{\frown}1$

Mathilde Bouvel

 $\mathcal{T}_{\pi} = 5^{\checkmark}$

Operators $S \circ \alpha \circ S$

Longer compositions of S and symmetries 00000000

Wilf-equivalences

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

A canonical representative $S^{-1}(\pi)$

Lemma (Bousquet-Mélou, 2000)

For any permutation π in the image of **S**, there is a unique canonical tree \mathcal{T}_{π} whose post-order reading is π .

Example: For
$$\pi = 518236479$$
,

<u> Theorem (Bousquet-Mélou, 2000)</u>

$$\mathcal{T}_{\pi}$$
 determines $\mathbf{S}^{-1}(\pi)$.
Moreover $|\mathbf{S}^{-1}(\pi)|$ is determined only by the shape of \mathcal{T}_{π} .

Mathilde Bouvel

Operators $S \circ \alpha \circ S$

Longer compositions of S and symmetries 00000000

Wilf-equivalences

For any composition A of S and R, the operators $S \circ A$ and $S \circ R \circ A$ have the same sorting power

$\mathsf{Bijection} \ \mathsf{Av}(231) \xleftarrow{P} \mathsf{Av}(132)$

Representing permutations as diagrams, we have

$$\mathsf{Av}(231) = \varepsilon + \underbrace{\mathsf{Av}(231)}_{\mathsf{Av}(231)} \text{ and } \mathsf{Av}(132) = \varepsilon + \underbrace{\mathsf{Av}(132)}_{\mathsf{Av}(132)}^{\bullet}$$

Mathilde Bouvel

Introduction Operat

Operators S $\circ \alpha \circ S$

Longer compositions of S and symmetries

Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

$\text{Bijection } \mathsf{Av}(231) \xleftarrow{P} \mathsf{Av}(132)$

Representing permutations as diagrams, we have

$$\mathsf{Av}(231) = \varepsilon + \underbrace{\mathsf{Av}(231)}_{\mathsf{Av}(231)} \text{ and } \mathsf{Av}(132) = \varepsilon + \underbrace{\mathsf{Av}(132)}_{\mathsf{Av}(132)}^{\bullet}$$

Definition

We define $P : \operatorname{Av}(231) \to \operatorname{Av}(132)$ recursively as follows: $\begin{array}{c} & & & \\ & & \\ & & \\ & & \end{array} \xrightarrow{P(\alpha)} & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$, with $\alpha, \beta \in \operatorname{Av}(231)$ Example: For $\pi = \left[\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}\right]$, we obtain $P(\pi) = \left[\begin{array}{c} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & &$

Mathilde Bouvel

 Introduction
 Operators S ∘ α ∘ S

 000000
 000

Longer compositions of S and symmetries 00000000

Wilf-equivalences

For any composition A of S and R, the operators S \circ A and S \circ R \circ A have the same sorting power

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For $\pi \in Av(231)$, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

Mathilde Bouvel Operators of equivalent sorting power and related Wilf-equivalences

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences
		00000000	
_			

Bijection Φ_A between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$ -sortables

For $\pi \in Av(231)$, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$. For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Introduction	Operators $S \circ \alpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalences
		00000000	
_			

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Introduction	Operators $S \circ lpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalence
		00000000	

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Introduction	Operators $S \circ lpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalence
		00000000	

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Introduction	Operators $S \circ lpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalence
		00000000	

For any composition A of 5 and K, the operators 5 ° A and 5 ° K ° A have the same sorting power

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Introduction	Operators $S \circ lpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalence
		00000000	

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

$$12...n \underbrace{\underset{n}{\overset{\mathbf{S}}{\leftarrow}} \mathbf{S}}_{12...n} \underbrace{\underset{n}{\overset{\mathbf{S}}{\leftarrow}} \mathbf{S}}_{=P(\pi)} \underbrace{\underset{\lambda_{\pi} \circ \pi}{\overset{\mathbf{S}}{\leftarrow}} \tau}_{\lambda_{\pi} \circ \tau} \underbrace{\underset{n}{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\overleftarrow{}}} \gamma}_{\lambda_{\pi} \circ \gamma} \underbrace{\underset{\lambda_{\pi} \circ \gamma}{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\overleftarrow{}}} \gamma}_{\lambda_{\pi} \circ \gamma}$$

Mathilde Bouvel

Introduction	Operators $S \circ lpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalence
		00000000	

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

$$12...n \underbrace{\overset{\mathbf{S}}{\underset{n}{\leftarrow}} \pi \underbrace{\overset{\mathbf{S}}{\underset{n}{\leftarrow}} \pi}_{= P(\pi)} \tau \underbrace{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\underset{n}{\leftarrow}} \gamma \underbrace{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\underset{\lambda_{\pi} \circ \gamma \xleftarrow{\mathbf{S}}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}{\underset{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \sim \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \circ \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \sim \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \sim \rho \xleftarrow{\mathbf{S}}}} \prod_{\substack{\lambda_{\pi} \sim \rho$$

Mathilde Bouvel

Introduction	Operators $S \circ lpha \circ S$	Longer compositions of S and symmetries	Wilf-equivalence
		00000000	

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

$$12...n \underbrace{\overset{\mathbf{S}}{\leftarrow} \overset{\mathbf{S}}{\tau} \underbrace{\overset{\mathbf{S}}{\leftarrow} \overset{\mathbf{S}}{\bullet} \overset{\mathbf{S}}{\tau}}_{= P(\pi)} \underbrace{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\tau} \overset{\mathbf{Y}}{\leftarrow} \underbrace{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\bullet} \overset{\mathbf{Y}}{\bullet} \underbrace{\overset{\mathbf{Y} \text{ or } \mathbf{Y}}{\bullet} \underbrace{\overset{\mathbf{Y}$$

Mathilde Bouvel

Introduction	Operators S $\circ \alpha \circ \mathbf{S}$ $\circ \circ \circ$	Longer compositions of S and symmetries 0000000●	Wilf-equivalences
For any composition A	of S and R, the operators S \circ A	A and S \circ R \circ A have the same sorting power	

Who is $\Phi_{\mathbf{S}}$?

- Φ_S provides a bijection between the set of permutations sortable by $S \circ S$ and those sortable by $S \circ R \circ S$.
- With O. Guibert, we gave a common generating tree for those two sets, providing a bijection between them.

Question

Are these two bijections the same one?

Mathilde Bouvel

000000	000	0000000	000000
More properties of the bijection between $Av(231)$ and $Av(132)$, and related Wilf-equivalences			

P and Wilf-equivalences

 $\{\pi, \pi', \ldots\}$ and $\{\tau, \tau', \ldots\}$ are Wilf-equivalent when Av (π, π', \ldots) and Av (τ, τ', \ldots) are enumerated by the same sequence.

 Introduction
 Operators S o α o S
 Longer compositions of S and symmetries

 000000
 000
 0000000

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

P and Wilf-equivalences

 $\{\pi, \pi', \ldots\}$ and $\{\tau, \tau', \ldots\}$ are Wilf-equivalent when Av (π, π', \ldots) and Av (τ, τ', \ldots) are enumerated by the same sequence.

Theorem

Description of the patterns $\pi \in Av(231)$ such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$

 \Rightarrow Many Wilf-equivalences (most of them not trivial)

 Introduction
 Operators S ο α ο S
 Longer compositions of S and symmetries

 000000
 000
 0000000

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

P and Wilf-equivalences

 $\{\pi, \pi', \ldots\}$ and $\{\tau, \tau', \ldots\}$ are Wilf-equivalent when Av (π, π', \ldots) and Av (τ, τ', \ldots) are enumerated by the same sequence.

Theorem

Description of the patterns $\pi \in Av(231)$ such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$

 \Rightarrow Many Wilf-equivalences (most of them not trivial)

Theorem

Computation of the generating function of such classes Av(231, π) ... and it depends only on $|\pi|$.

 \Rightarrow Even more Wilf-equivalences!

Mathilde Bouvel

IntroductionOperators $S \circ \alpha \circ S$ 000000000

Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

The families of patterns (λ_n) and (ρ_n)

Sum:

Skew sum:

$$\alpha \oplus \beta = \alpha \left(\beta + \mathbf{a} \right) = \alpha$$

$$\alpha \ominus \beta = (\alpha + b) \beta = \frac{\alpha}{\beta}$$

where α and β are permutations of size *a* and *b*, respectively
Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

The families of patterns (λ_n) and (ρ_n)

Sum:

Skew sum:

$$\alpha \oplus \beta = \alpha \left(\beta + \mathbf{a} \right) = \boxed{\alpha}$$

$$\alpha \ominus \beta = (\alpha + b) \beta = \frac{\alpha}{\beta}$$

where α and β are permutations of size *a* and *b*, respectively

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Patterns π such that Av(231, π) $\stackrel{P}{\longleftrightarrow}$ Av(132, $P(\pi)$)

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$.

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Patterns π such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$.

Consequence: For all $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$, $\{231, \pi\}$ and $\{132, P(\pi)\}$ are Wilf-equivalent.

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Patterns π such that Av(231, π) $\stackrel{P}{\longleftrightarrow}$ Av(132, $P(\pi)$)

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$.

Consequence: For all $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$, $\{231, \pi\}$ and $\{132, P(\pi)\}$ are Wilf-equivalent.

Example: $\lambda_3 \oplus (1 \ominus \rho_1) = 31254 \in Av(231)$ and P(31254) = 42351

- \Rightarrow *P* is a bijection between Av(231, 31254) and Av(132, 42351)
- $\Rightarrow~\{231,31254\}$ and $\{132,42351\}$ are Wilf-equivalent

Mathilde Bouvel

 Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Known Wilf-equivalences that we recover (or not)

We recover

- for $\pi = 312$, $\{231, 312\} \sim_{Wilf} \{132, 312\}$,
- for $\pi = 3124$, $\{231, 3124\} \sim_{Wilf} \{132, 3124\}$,
- for $\pi = 1423$, $\{231, 1423\} \sim_{Wilf} \{132, 3412\}$,

which are (up to symmetry) referenced in Wikipedia.

 Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Known Wilf-equivalences that we recover (or not)

We recover

- for $\pi = 312$, $\{231, 312\} \sim_{Wilf} \{132, 312\}$,
- for $\pi = 3124$, $\{231, 3124\} \sim_{Wilf} \{132, 3124\}$,
- for $\pi = 1423$, $\{231, 1423\} \sim_{Wilf} \{132, 3412\}$,

which are (up to symmetry) referenced in Wikipedia.

With $|\pi| = 3$ or 4, there are five more non-trivial Wilf-equivalence of the form $\{231, \pi\} \sim_{Wilf} \{132, \pi'\}$ (up to symmetry). ③ We do not recover them.

 Introduction
 Operators S ο α ο S
 Longer compositions of S and symmetries

 000000
 000
 00000000

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

More Wilf-equivalences that we obtain

Patterns π such that $\{231, \pi\} \sim_{Wilf} \{132, P(\pi)\}$ and Av $(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$ i.e. $\pi = \lambda_k \oplus (1 \oplus \rho_{n-k-1})$:

π	$P(\pi)$	π	$P(\pi)$	π	$P(\pi)$	π	$P(\pi)$
42135	42135	216435	546213	6421357	6421357	31286457	75683124
21534	43512	531246	531246	3127546	6457213	75312468	75312468
53124	53124	312645	534612	7531246	7531246	64213587	75324681
31254	42351	642135	642135	4213756	6435712	53124867	75346812
15324	45213	421365	532461	1753246	6742135	86421357	86421357
		164235	563124	5312476	6423571	21864357	76842135
				2175346	6573124	42138657	75468213
						18642357	78531246

Except two they are non-trivial.

Mathilde Bouvel

 Introduction
 Operators S ο α ο S
 Longer compositions of S and symmetries

 000000
 000
 00000000

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

More Wilf-equivalences that we obtain

Patterns π such that $\{231, \pi\} \sim_{Wilf} \{132, P(\pi)\}$ and Av $(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$ i.e. $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$:

π	$P(\pi)$	π	$P(\pi)$	π	$P(\pi)$	π	$P(\pi)$
42135	42135	216435	546213	6421357	6421357	31286457	75683124
21534	43512	531246	531246	3127546	6457213	75312468	75312468
53124	53124	312645	534612	7531246	7531246	64213587	75324681
31254	42351	642135	642135	4213756	6435712	53124867	75346812
15324	45213	421365	532461	1753246	6742135	86421357	86421357
		164235	563124	5312476	6423571	21864357	76842135
				2175346	6573124	42138657	75468213
						18642357	78531246

Except two they are non-trivial.

But because of symmetries, there are some redundancies.

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Common generating function when $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

Definition:
$$F_1(t) = 1$$
 and $F_{n+1}(t) = \frac{1}{1 - tF_n(t)}$.

Theorem

For $\pi \in Av(231)$ such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$, denoting $n = |\pi|$, the generating function of $Av(231, \pi)$ is F_n .

Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Common generating function when $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

Definition:
$$F_1(t) = 1$$
 and $F_{n+1}(t) = \frac{1}{1 - tF_n(t)}$.

Theorem

For $\pi \in Av(231)$ such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$, denoting $n = |\pi|$, the generating function of $Av(231, \pi)$ is F_n .

Example: The common generating function of Av(231, 31254) and Av(132, 42351) is $F_5(t) = \frac{t^2 - 3t + 1}{3t^2 - 4t + 1}.$

Mathilde Bouvel

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Common generating function when $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

Definition:
$$F_1(t) = 1$$
 and $F_{n+1}(t) = \frac{1}{1 - tF_n(t)}$.

Theorem

For $\pi \in Av(231)$ such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$, denoting $n = |\pi|$, the generating function of $Av(231, \pi)$ is F_n .

Example: The common generating function of Av(231, 31254) and Av(132, 42351) is $F_5(t) = \frac{t^2 - 3t + 1}{3t^2 - 4t + 1}.$

 F_5 is also the generating function of Av(231, π) for $\pi = 53124$ or 15324 or 21534 or 42135.

Mathilde Bouvel

Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Many Wilf-equivalent classes

Theorem

{231, π } and {132, $P(\pi)$ } are all Wilf-equivalent when $|\pi| = |\pi'| = n$ and π and π' are of the form $\lambda_k \oplus (1 \ominus \rho_{n-k-1})$. Moreover, their generating function is F_n . Introduction

Operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$ 000 Longer compositions of S and symmetries

Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Many Wilf-equivalent classes ... and even more?

Theorem

{231, π } and {132, $P(\pi)$ } are all Wilf-equivalent when $|\pi| = |\pi'| = n$ and π and π' are of the form $\lambda_k \oplus (1 \ominus \rho_{n-k-1})$. Moreover, their generating function is F_n .

In future: For classes recursively described (like Av(231) and Av(132), define recursive bijections (like P), to find or explain more Wilf-equivalences.

Mathilde Bouvel

Introduction

Operators $\mathbf{S} \circ \alpha \circ \mathbf{S}$ 000 Wilf-equivalences

More properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Many Wilf-equivalent classes ... and even more?

Theorem

{231, π } and {132, $P(\pi)$ } are all Wilf-equivalent when $|\pi| = |\pi'| = n$ and π and π' are of the form $\lambda_k \oplus (1 \ominus \rho_{n-k-1})$. Moreover, their generating function is F_n .

In future: For classes recursively described (like Av(231) and Av(132), define recursive bijections (like P), to find or explain more Wilf-equivalences.

Merci !

Mathilde Bouvel