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April 12, 2018



Pipe dreams

Fill a triangular shape with crosses and elbows :
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A pipe dream P ∈ Π4 where ωP = [4, 3, 1, 2].

Conditions:

I pipes entering on the left exit on the top.

I two pipes cross at most once.

I the top left corner is an elbow .
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A pipe dream P ∈ Π4 where ωP = [4, 3, 1, 2].

Introduced and studied by:
I S. Fomin and A. N. Kirillov. The Yang-Baxter equation, symmetric functions, and

Schubert polynomials. (FPSAC 1993)

I N. Bergeron and S. Billey. RC-graphs and Schubert polynomials. (1993)

I A. Knutson and E. Miller. Gröbner geometry of Schubert polynomials. (2005)

I . . .



Pipe dreams



Pipe dreams: why are they interesting?

1. They give a combinatorial understanding of Schubert polynomials in the
study of Schubert varieties.

2. Pipe dreams of certain families of permutations encode interesting
combinatorial objects:

triangulations multitriangulations ν-Tamari lattices

Goal

Introduce a Hopf algebra structure on pipe dreams with some remarkable
applications.



Hopf algebras



Hopf algebras

Hopf algebra: Vector space whose generators can be multiplied and
comultiplied in a compatible way. Also there is an antipode.

Example

kG : ∆(g) = g ⊗ g m(g ⊗ h) = gh.

I Polynomial rings

I Permutations

I Cohomology of Lie groups

I Universal enveloping algebra of Lie algebras

I Quantum groups

I Many more . . .



Examples: Hopf algebra on permutations

Sn: collection of permutations of [n]
kS: vector space spanned by all permutations

Theorem (Malvenuto, 1994, Malvenuto–Reutenauer, 1995)

kS may be equipped with a structure of graded Hopf algebra.

Comultiplication: sum of pairs obtained by cuttin a permutation in two

∆(312) = 312⊗ ∅+ 21⊗ 1 + 1⊗ 12 + ∅ ⊗ 312

Multiplication: sum of all possible shuffles between two permutations

12 · 21 = 1243 + 1423 + 1432 + 4123 + 4132 + 4312



Examples: Hopf algebra on binary trees

Yn: collection of planar binary trees with n leaves
kY : vector space spanned by all planar binary trees

Theorem (Loday–Ronco, 1998)

kY may be equipped with a structure of graded Hopf algebra.

Comultiplication Multiplication



A Hopf algebra on pipe dreams



Comultiplication

4n : Πn −→
n⊕

γ=0

Πγ ⊗ Πn−γ

P 7−→
∑

γ∈GD(ωP)

4γ,n−γ(P).

The sum ranges over allowable cuts of the permutation: global descents.



Comultiplication
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Multiplication

µr ,s : Πr ⊗ Πs −→ Πr+s

P · Q 7−→ ?⋅ � �
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Multiplication
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A Hopf algebra on pipe dreams

Πn: collection of pipe dreams of permutations in Sn

kΠ: vector space spanned by pipe dreams

Theorem

These operations endow kΠ with a graded Hopf algebra structure.
This Hopf algebra is free and cofree.



Hopf subalgebras



Hopf subalgebras from atom sets

Every permutation can be factorized into atomics (permutations with no
global descents):

2431 = 132 • 1 and 312 = 1 • 12

Given a set of atomics S

ΠS = {P ∈ Π : atomics(ωP) ⊆ S}

Theorem

kΠS is a Hopf subalgebra of kΠ.



Hopf subalgebras from atom sets

Every permutation can be factorized into atomics (permutations with no
global descents):

2431 = 132 • 1 and 312 = 1 • 12

Given a set of atomics S

ΠS = {P ∈ Π : atomics(ωP) ⊆ S}

Example

S = {1}: kΠ{1} ∼= Loday–Ronco Hopf algebra

I dim deg n = Cn.

I number of generators deg n = Cn−1.



Hopf subalgebras from atom sets

Every permutation can be factorized into atomics (permutations with no
global descents):

2431 = 132 • 1 and 312 = 1 • 12

Given a set of atomics S

ΠS = {P ∈ Π : atomics(ωP) ⊆ S}

Example

S = {12}: kΠ{12}
I number of generators deg n = C2n−1.



Hopf subalgebras from atom sets

Every permutation can be factorized into atomics (permutations with no
global descents):

2431 = 132 • 1 and 312 = 1 • 12

Given a set of atomics S

ΠS = {P ∈ Π : atomics(ωP) ⊆ S}

Example

S = {213}: kΠ{213}
I number of generators deg n = C3n−1.



Hopf subalgebras from atom sets

Every permutation can be factorized into atomics (permutations with no
global descents):

2431 = 132 • 1 and 312 = 1 • 12

Given a set of atomics S

ΠS = {P ∈ Π : atomics(ωP) ⊆ S}

Example

S = {3214}: kΠ{3214}
I number of generators deg n = C4n−1.



Hopf subalgebras from atom sets

Every permutation can be factorized into atomics (permutations with no
global descents):

2431 = 132 • 1 and 312 = 1 • 12

Given a set of atomics S

ΠS = {P ∈ Π : atomics(ωP) ⊆ S}

Example

S = {43215}: kΠ{43215}
I number of generators deg n = C5n−1.



Hopf subalgebra for walks on the plane

Conjecture

S = {1, 12, 123, 1234, . . . }: kΠS

I dim deg n = number of walks in the quarter plane
(within N2 ⊂ Z2) starting at (0, 0), ending on the horizontal axis,
and consisting of 2n steps taken from {(−1, 1), (1,−1), (0, 1)}.

1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, 2650293, . . .



Hopf subalgebra for walks on the plane

Conjecture (refined 1)

S = {1, 12, 123, 1234, . . . }: kΠS

I The pipe dreams of deg n with k atomic parts count the number of
walks with k steps (0, 1).

1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, 2650293, . . .



Hopf subalgebra for walks on the plane

Conjecture (refined 2)

S = {1, 12, 123, 1234, . . . }: kΠS

I The pipe dreams of deg n with k atomic parts count the number of
bicolored Dyck paths with k black north steps.

1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, 2650293, . . .



Hopf subalgebra for walks on the plane

Proposition

These three conjectures are true for k = 1, 2, n.
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Hopf subalgebra of dominant dreams

A permutation ω is called dominant if its Rothe diagram is a partition
located at the top-left corner.

23 4 1

Schubert polynomials of dominant permutations are specially interesting.



Hopf subalgebra of dominant dreams

Sdom: Collection of all dominant permutations

Theorem

kΠSdom is a Hopf subalgebra of kΠ.

I dim deg n = det

∣∣∣∣ Cn Cn+1

Cn+1 Cn+2

∣∣∣∣
Dominant pipe dreams are in bijection with pairs of nested Dyck paths.





Application to
multivariate diagonal harmonics



What is multivariate diagonal harmonics?

The story begins with the Macdonald positivity conjecture, regarding the
coefficients of the Schur function expansion of Macdonald polynomials:

Hµ(x; q, t) =
∑
ν`µ

kµν(q, t)sν(x).

Conjecture (Macdonald Positivity Conjecture, 1988)

kµν(q, t) are polynomials in q and t with non-negative coefficients.

Garsia–Haiman’s combinatorial approach:
study a representation of the symmetric group on a space ∂Dµ



Garsia–Haiman’s combinatorial approach

Theorem (The n! conjecture, Haiman 2001)

For any µ ` n, we have
dimC ∂Dµ = n!.

Theorem (Haiman 2001)

kµν(q, t) =
∑
i ,j

t iqj mult(χλ, ch(Dµ)i ,j)

In particular, it is a polynomial with non-negative integer coefficients
and the Macdonald positivity conjecture holds.

For µ = (1, 1, . . . , 1), ∂Dµ is the space of harmonics.



The space of harmonics

Q[x] := Q[x1, . . . , xn] is the polynomial ring in n variables,
I := ideal generated by all symmetric polynomials with no constant term,
∂x = ( ∂

∂x1
, . . . , ∂

∂xn
).

Definition

The space of harmonics is defined by

Hn = {h ∈ Q[x] : f (∂x)h = 0, ∀f ∈ I} .

Example (n = 1)

We want all h(x1) ∈ Q[x1] such that ∂
∂x1

h = 0. Therefore

H1 = span{1}.



The space of harmonics

Q[x] := Q[x1, . . . , xn] is the polynomial ring in n variables,
I := ideal generated by all symmetric polynomials with no constant term,
∂x = ( ∂

∂x1
, . . . , ∂

∂xn
).

Definition

The space of harmonics is defined by

Hn = {h ∈ Q[x] : f (∂x)h = 0, ∀f ∈ I} .

Example (n = 2)

We want all h(x1, x2) ∈ Q[x1, x2] such that f (∂x)h = 0, ∀f ∈ I .
One can check that

H2 = span{1, x1 − x2}.



The space of harmonics

Q[x] := Q[x1, . . . , xn] is the polynomial ring in n variables,
I := ideal generated by invariant Sn polynomials with no constant term,
∂x = ( ∂

∂x1
, . . . , ∂

∂xn
).

Definition

The space of harmonics is defined by

Hn = {h ∈ Q[x] : f (∂x)h = 0, ∀f ∈ I} .

Fact

As Sn-modules,
Hn
∼= Q[x]/I .



Diagonal harmonics

Q[x, y] := Q[x1, . . . , xn, y1, . . . , yn]
Let the symmetric group Sn act diagonally on this ring:

σ(xi ) = xσ(i) σ(yi ) = yσ(i)

I := ideal generated by Sn invariant polynomials with no constant term.

Definition

The space of diagonal harmonics is defined by

DHn = {h ∈ Q[x, y] : f (∂x, ∂y)h = 0, ∀f ∈ I} .

Fact

as Sn-modules,
DHn

∼= Q[x, y]/I .



Diagonal harmonics

The (n + 1)n−1 conjecture by Garsia and Haiman from 1993:

Theorem (Haiman 2002)

The dimension of DHn is equal to (n + 1)n−1.

Theorem (Haiman 2002)

The dimension of the alternating component of DHn is equal to 1
n+1

(2n
n

)
.

This led to the now famous q, t-Catalan polynomials!



Multivariate diagonal harmonics

The space DHn can be generalized to three, or more sets of variables.

Conjecture (Haiman 1994)

In the trivariate case,

I the dimension of DHn is 2n(n + 1)n−2.

I the dimension of its alternating component is

2

n(n + 1)

(
4n + 1

n − 1

)
.

These two numbers can be combinatorially interpreted as the number of
labeled and unlabeled intervals in the Tamari lattice.

No conjectural formulas are known for more sets of variables.



Multivariate diagonal harmonics

The space DHn can be generalized to three, or more sets of variables.

Conjecture (Haiman 1994)

In the trivariate case,

I the dimension of DHn is 2n(n + 1)n−2.

I the dimension of its alternating component is

2
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(
4n + 1
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)
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These two numbers can be combinatorially interpreted as the number of
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No conjectural formulas are known for more sets of variables.



In summary

The dimensions of the spaces of multivariate diagonal harmonics and
their alternating components are

n!

1

one set of variables

(n + 1)n−1

1
n+1

(
2n
n

)

two sets of variables

Tamari lattice
labelled intervals

Tamari lattice
intervals

three sets of variables

Open problems

Unknown

Unknown

more sets of variables

One may expect that dimensions for r sets of variables are counted by
labeled and unlabeled chains (π1, . . . , πr−1) in the Tamari lattice.
But this is not true in general.



Back to pipe dreams

Pipe dreams have a natural poset structure.
The number of intervals in the graded dimensions of kΠSdom is:

1, 4, 29, 297, 3823, 57956, . . .

They correspond to certain triples of Dyck paths.

Definition (Hopf chains)

A Hopf chain of length r and size n is a tuple (π1, . . . , πr ) of Dyck paths
of size n such that

I π1 is the bottom diagonal path,

I every triple comes from an interval in the Hopf algebra of dominant
dreams.



Counting Hopf chains

Example (n=4)

The number of Hopf chains (π1, . . . , πr ) of Dyck paths of size n = 4 is

1, 14, 68, 217, 549, 1196, 2345, . . .

Example (n=4)

The dimension of the alternating component of the space of diagonal
harmonics DHn for fixed n = 4 and r variables is equal to

1, 14, 68, 217, 549, 1196, 2345, . . .



Counting Hopf chains

Example (n=4)

The number of Hopf chains (π1, . . . , πr ) of Dyck paths of size n = 4 is

1, 14, 68, 217, 549, 1196, 2345, . . .

Example (n=4)

The dimension of the alternating component of the space of diagonal
harmonics DHn for fixed n = 4 and r variables is equal to

1, 14, 68, 217, 549, 1196, 2345, . . .



Counting Hopf chains

Theorem

For degree n ≤ 4 and any number r of sets of variables, the Frobenius
image of the character of DHn,r expanded in the elementary basis is

Ψn,r =
∑

Hopf chains (π1,...,πr )

etype(πr ), (1)

where type(πr ) is the partition of the up steps lengths in πr .



Counting Hopf chains

Corollary

For degree n ≤ 4 and any number r of sets of variables:

1. The dimension of the alternating component of DHn,r is equal to
the number of Hopf chains of length r and size n.

2. The dimension of DHn,r is equal to the number of labelled Hopf
chains of length r and size n.



Counting Hopf chains

The dimensions of the alternating and full component for fixed n ≤ 4
and arbitrary r are given in the following table:

n number of Hopf chains number of laballed Hopf chains

n = 1
(r
0

) (r+1
0

)
n = 2

(r
1

) (r+1
1

)
n = 3

(r
1
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3
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1
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2
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3
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1
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(r
2

)
+ 29

(r
3
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1

)
+ 22

(r+1
2

)
+ 56

(r+1
3

)
+25

(r
4

)
+ 9
(r
5

)
+
(r
6

)
+40

(r+1
4
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+ 11

(r+1
5

)
+
(r+1

6

)



Counting Hopf chains

For n = 5 the result is almost true:

Excessn=5 =

(
k + 4

9

)
e[5] +

(
k + 4

8

)
e[4,1]. (2)

We have a few possible candidates that kill this excess but do not have a
combinatorial rule to describe them at the moment.



To be continued . . .

Thank you!


