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Abstract

We consider the set Ln of n-letter Lyndon words on the alphabet {0, 1}. For a random
uniform element Ln of the set Ln, the binary tree obtained by successive standard factor-
ization of Ln and of the factors produced by these factorization is the Lyndon tree of Ln.
We prove that the height Hn of the Lyndon tree of ln satisfies limn(Hn/ ln n) = ∆, in which
the constant ∆ is solution of an equation involving large deviation rate functions related to
the asymptotics of Eulerian numbers (∆ ≈ 5.091...). The convergence is the convergence in
probability of random variables. Joint work with Lucas Mercier.

1 Introduction and main result

For a word w ∈ {0, 1}∗ := ∪n≥0{0, 1}n, define its necklace 〈w〉 to be the collection of its cyclic
rotations. A word w is said to be primitive if the cardinal of its necklace #〈w〉 equals its length
|w|. A Lyndon word is a word w that is primitive and lexicographically the smallest in its
necklace (the lexicographic order is written ≺) [1, 4]. Lyndon words have a natural recursive
structure since w ∈ A∗ is Lyndon if either |w| = 1, or |w| > 1 and there exists two Lyndon
words u and v such that w = uv and u ≺ v. The decomposition that maximizes the length of
the second factor (v above) is called the standard factorization. This decomposition defines a
binary tree L(w) of a Lyndon word w, where the leaves a labelled with letters. Let Ln denote
the set of Lyndon words on length n on {0, 1}. The main question that is addressed concerns
the asymptotics as n → ∞ for the height of the Lyndon tree L(Ln) when Ln is chosen uniformly
at random in Ln.

Let (A(n, k))n,k denote the Eulerian numbers and define

Ξ(θ) = lim
n→∞
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∆ = sup
λ,µ,ν>0

(1 + µ + ν) ln 2 + Ψ(λ, µ, ν)

λν
= 5.092 . . .

Then, it is proved that

Theorem 1. Let Ln be a uniformly random Lyndon word of length n, and let h(L(Ln)) be the

height of the corresponding Lyndon tree. Then

h(L(Ln))

ln n
−−−→
n→∞

∆

in probability.
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2 Approach and sketch of proof

One of the main difficulties is that the uniform distribution on the Lyndon words is not main-
tained by the recursive decomposition. The proof uses a number of approximations which reduce
the problem to simpler versions of the tree.

A more convenient distribution on Ln. First, it is more convenient to work with Lyndon
words which are not uniform in Ln. For a word w ∈ A∗, one can define its Lyndon word ℓ(w)
as follows: if w is not primitive, then ℓ(w) = 0|w|−11, otherwise let ℓ(w) be the lexicographically
smallest word in the necklace 〈w〉. For a uniformly random word Wn on A∗, ℓ(Wn) is not
uniform in Ln, but the total variation distance between the distribution of ℓ(Wn) and the uniform
distribution is O(2−n/2). So in order to prove Theorem 1 it suffices to prove the corresponding
result for ℓ(Wn). From now on, Ln denotes ℓ(Wn).

Lyndon words of random length. Since the standard factorization looks for Lyndon sub-
words, which must be the smallest in their necklace, the high level structure of the decomposition
is given by the lengths and positions of the long runs of 0 (these are the only locations where
a Lyndon word may start). In order to simplify the analysis which would involve ties between
some of the longest runs, Lyndon words of random length are considered. Let W∞ be the word
consisting of a sequence of independent uniformly random letters. Let W ℓ denote the word
formed by the letter 1, followed by the truncation of W∞ at the position of the ℓ-th zero in the
first run of ℓ consecutive zeros. Then W ℓ is primitive and one lets Lℓ denote the corresponding
Lyndon word. Note that E[|Lℓ|] ∼ 2ℓ+1.

In Lℓ, the structure of the runs of zeros of decreasing lengths ℓ − k − 1 is that of a Galton–
Watson process with geometric(1/2) offspring distribution [3]. One then shows that proving
Theorem 1 reduces to showing the following corresponding result for the height of L(Lℓ):

Theorem 2.

h(L(Lℓ))

ℓ

p
−−−→
ℓ→∞

∆ ln 2.

Decomposition of the contributions to the height. As long as the Lyndon words of
the decomposition are sufficiently long, the long runs of zero are sufficiently sparse, and the
corresponding factors sufficiently independent. This stops being true when the words get short,
and one wants to decompose the tree into two regions depending on the length of the runs of
zeros: one first focus on the top of the tree denoted Tℓ, where the runs all have length at least
aℓ := ⌊log2 ℓ⌋, and then studies the remaining part which consists in a forest of pendant shrubs.

The top of the tree and a binary search tree. Roughly, the distribution of the locations
of the longest run of zero is uniformly distributed in the word, so that when it does a proper

cut the standard factorization cuts the word at a uniformly random location. This is precisely
the kind of split that happens for the random binary search tree, and one can approximate the
shape of the top of the tree by that of a random binary search tree. However, there is a small
effect due to the following phenomenon: when a given run is much longer than the next one, for
some time the standard factorization simply extracts some of the initial zeros one after another
until a truely new run can take over, and produce a new uniform cut of the word. (Each such
zero expelled is referred to as a needle.) Note that this effect is not negligible since it happens
at every macroscopic cut with a positive probability. For this reason, the structure of the top
of the tree is that of a random binary search tree in which some edges have been split in order
to take this into account the effect of needles on the depth of leaves.

The game is then to estimate the number of leaves which lie at every depth k, so that one
can in turn estimate the height hk of the highest shrub grafted from a leaf at this depth (the

2



highest of a bunch of independent random trees, so their number is crucial). The height of
the tree is then supk(k + hk). However, the phenomenon of needles discussed above makes the
analysis much tricker, and especially the estimation of the number of leaves at a certain depth.
By generalizing the analyses of the height of binary search trees using branching processes, the
authors then obtain the first order asymptotics for the number of leaves of Tℓ of certain types
which allows to control the contributions of the binary search tree part and the needles part.
Without going in the details of the definition of the types the parameters of interest are the left
depth (number of edges going left on the path to a node) the right depth, and the number of
needles. These are (essentially) tracked using the parameters ℓ = λn, νn for the right-depth, n
for the left-depth, and µn for the needles. Then:

• the depth of a leaf of Tℓ of type (νn, n, µn) = (ν, 1, µ)ℓ/λ is approximately (1 + µ + ν)ℓ/λ;

• there are about eℓΨ(λ,µ,ν)/λ such leaves;

• the maximum height of a bunch of k independent shrubs is about log2 k (for one this is
geometric).

So the maximum height of a leaf L(Lℓ) that goes through a leaf of the top Tℓ of a given type is

1 + ν + µ

λ
· ℓ + log2 eℓΨ(λ,µ,ν),

hence the highest leaf is about ∆ℓ high, with

∆ = sup
λ,µ,ν>0

(1 + µ + ν) ln 2 + Ψ(λ, µ, ν)

λ ln 2
. (1)

The number of leaves of Tℓ of a given type. The last unknown in (1), Ψ is the large
deviation a rate function: the sheer number of leaves at a given level allow some events to occur
that would not occur if one would consider any the path to any single leaf. Estimating the
number of leaves of a given type reduces precisely to obtain the exponential rate of decay of the
corresponding events for a single leaf as in [2].
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