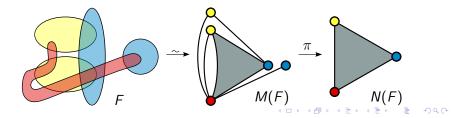
Helly-type theorems, intersection patterns, and topological combinatorics

Éric Colin de Verdière

Dpt Informatique, École normale supérieure and CNRS, Paris, France

Joint work with **Grégory Ginot** (University Paris 6, France) **Xavier Goaoc** (Inria Nancy Grand-Est \rightarrow LIGM, Marne-la-Vallée, France)

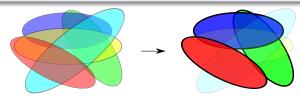


Helly's original theorem (1923)

Let F be a finite family of convex sets in \mathbb{R}^d . If every $G \subseteq F$ with $|G| \leq d + 1$ has non-empty intersection, then F has non-empty intersection.

Small-sized certificate of empty intersection

If F has empty intersection, some subfamily of size $\leq d + 1$ has empty intersection.

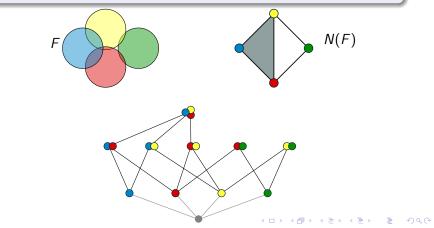


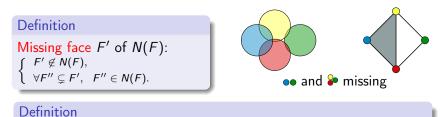
- 日本 - (理本 - (日本 - (日本 - 日本

Intersection patterns

- Let F be a (finite) family of subsets of an arbitrary ground set.
- The nerve N(F) of F is $\{G \subseteq F \mid \bigcap_G \neq \emptyset\}$.

 It is a simplicial complex (stable under taking subsets / a.k.a. a monotone hypergraph / a monotone set system).



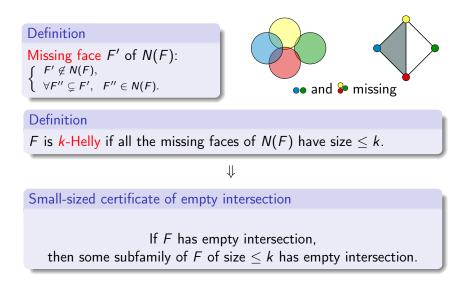


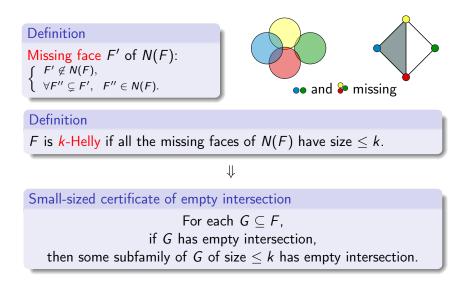
F is k-Helly if all the missing faces of N(F) have size $\leq k$.

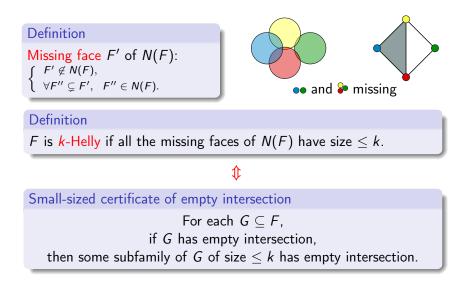
Small-sized certificate of empty intersection

If F has empty intersection, then some subfamily of F of size $\leq k$ has empty intersection.

ヘロト 人間と 人造と 人造と







Results

- A new topological Helly-type theorem for families of disconnected geometric objects
- based on a generalization of the nerve theorem from topological combinatorics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• with applications to geometric transversal theory.

Warm-Up

Topological Helly theorem

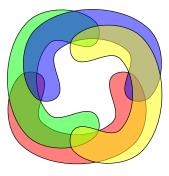
Wanted!

Every "convex-like" family in \mathbb{R}^d is (d+1)-Helly.

Wrong statement

Replace "convex-like" with "contractible" ("without hole"; e.g.,

homeomorphic to a convex set).



・ロッ ・雪 ・ ・ ヨ ・

э

Definition

A (finite) family F of (open) geometric objects is acyclic (a.k.a. a good cover) if: For every $G \subseteq F$, \bigcap_G is either empty or contractible.

Topological Helly theorem

Every acyclic family in \mathbb{R}^d is (d + 1)-Helly [Helly, 1930].

Topological Helly theorem

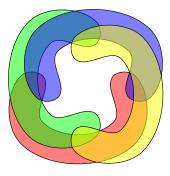
Wanted!

Every "convex-like" family in \mathbb{R}^d is (d+1)-Helly.

Wrong statement

Replace "convex-like" with "contractible" ("without hole"; e.g.,

homeomorphic to a convex set).



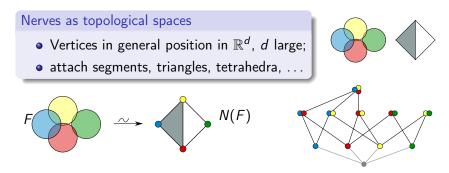
Definition

A (finite) family F of (open) geometric objects is acyclic (a.k.a. a good cover) if: For every $G \subseteq F$, \bigcap_G is either empty or contractible.

Topological Helly theorem

Every acyclic family in \mathbb{R}^d is (d + 1)-Helly [Helly, 1930].

Nerve theorem



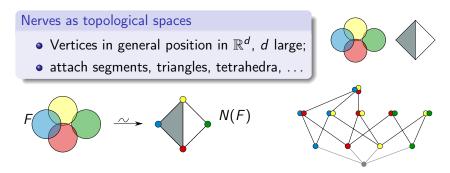
Nerve theorem

If F is acyclic, then $\bigcup_F \simeq N(F)$: they have "holes" in the same dimensions [Borsuk, 1948].

Proof(s)

- Follows "trivially" from algebraic topology arguments;
- more "hands-on" (homotopic) combinatorial proof [Björner, 2003].

Nerve theorem



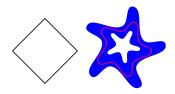
Nerve theorem

If F is acyclic, then $\bigcup_F \simeq N(F)$: they have "holes" in the same dimensions [Borsuk, 1948].

Proof(s)

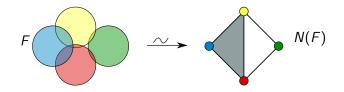
- Follows "trivially" from algebraic topology arguments;
- more "hands-on" (homotopic) combinatorial proof [Björner, 2003].

Topological interlude: "holes"



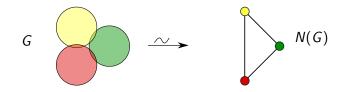
Holes in a topological space S

- Intuitively, S has a k-hole if some k-dimensional "closed part" of S is the boundary of no (k + 1)-dimensional subset of S.
- Examples:
 - S has a 0-hole if it is not connected;
 - *S* has a 1-hole if it contains a closed curve that is not the boundary of a surface in *S*;
 - S has a 2-hole if it contains a "bubble"...
- Contractible means "without hole".



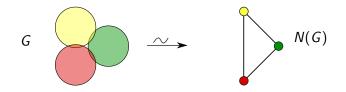
- Let F be an acyclic family in \mathbb{R}^d .
- Let G be a missing face of N(F).
- *N*(*G*) has a (|*G*| − 2)-hole.
- On the other hand, we have $N(G) \simeq \bigcup_{G} \dots$
- and $\bigcup_G \subseteq \mathbb{R}^d$, so \bigcup_G has no hole in dimension $\geq d$.

<ロト < 回 > < 回 > < 回 > < 三 > 三 三



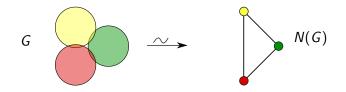
- Let F be an acyclic family in \mathbb{R}^d .
- Let G be a missing face of N(F).
- *N*(*G*) has a (|*G*| − 2)-hole.
- On the other hand, we have $N(G) \simeq \bigcup_{G} \dots$
- and $\bigcup_G \subseteq \mathbb{R}^d$, so \bigcup_G has no hole in dimension $\geq d$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



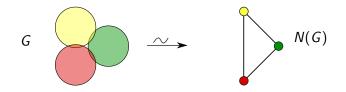
- Let F be an acyclic family in \mathbb{R}^d .
- Let G be a missing face of N(F).
- *N*(*G*) has a (|*G*| − 2)-hole.
- On the other hand, we have $N(G) \simeq \bigcup_{G} \dots$
- and $\bigcup_G \subseteq \mathbb{R}^d$, so \bigcup_G has no hole in dimension $\geq d$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



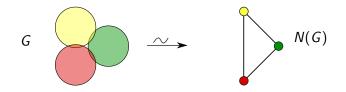
- Let F be an acyclic family in \mathbb{R}^d .
- Let G be a missing face of N(F).
- *N*(*G*) has a (|*G*| − 2)-hole.
- On the other hand, we have $N(G) \simeq \bigcup_{G \cdots}$
- and $\bigcup_G \subseteq \mathbb{R}^d$, so \bigcup_G has no hole in dimension $\geq d$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let F be an acyclic family in \mathbb{R}^d .
- Let G be a missing face of N(F).
- *N*(*G*) has a (|*G*| − 2)-hole.
- On the other hand, we have $N(G) \simeq \bigcup_{G \cdots}$
- and $\bigcup_G \subseteq \mathbb{R}^d$, so \bigcup_G has no hole in dimension $\geq d$.
- So |G| 2 < d, i.e., $|G| \le d + 1$. \Box



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Let F be an acyclic family in \mathbb{R}^d .
- Let G be a missing face of N(F).
- *N*(*G*) has a (|*G*| − 2)-hole.
- On the other hand, we have $N(G) \simeq \bigcup_{G \cdots}$
- and $\bigcup_G \subseteq \mathbb{R}^d$, so \bigcup_G has no hole in dimension $\geq d$.
- So |G| 2 < d, i.e., $|G| \le d + 1$. \Box

Results

◆□ > < 個 > < E > < E > E 9 < 0</p>

Definition

A family F of sets in \mathbb{R}^d is *r*-acyclic if $\forall G \subseteq F$, \bigcap_G is the disjoint union of at most r contractible sets.

Topological Helly theorem

Let F be a 1-acyclic family in \mathbb{R}^d . Then F is (d + 1)-Helly.

Remarks

• The value (d + 1)r cannot be lowered;

strengthens a result by [Kalai and Meshulam, 2008] on *r*-families of acyclic families (also [Amenta, 1996]);
 r-family *F* of a "ground" family *G*: The intersection of a subfamily of *F* is the disjoint union of at most *r* elements in *G*.

• [Matoušek, 1997] had proved that F is k-Helly for some (large) k.

Definition

A family F of sets in \mathbb{R}^d is *r*-acyclic if $\forall G \subseteq F$, \bigcap_G is the disjoint union of at most r contractible sets.

New topological Helly-type theorem: Let $r \ge 1$

```
Let F be an r-acyclic family in \mathbb{R}^d.
Then F is (d+1) \times r-Helly.
```

Remarks

• The value (d + 1)r cannot be lowered;

strengthens a result by [Kalai and Meshulam, 2008] on *r*-families of acyclic families (also [Amenta, 1996]);
 r-family *F* of a "ground" family *G*: The intersection of a subfamily of *F* is the disjoint union of at most *r* elements in *G*.

• [Matoušek, 1997] had proved that F is k-Helly for some (large) k.

Definition

A family F of sets in \mathbb{R}^d is *r*-acyclic if $\forall G \subseteq F$, \bigcap_G is the disjoint union of at most r contractible sets.

New topological Helly-type theorem: Let $r \ge 1$

```
Let F be an r-acyclic family in \mathbb{R}^d.
Then F is (d+1) \times r-Helly.
```

Remarks

• The value (d + 1)r cannot be lowered;

strengthens a result by [Kalai and Meshulam, 2008] on *r*-families of acyclic families (also [Amenta, 1996]);
 r-family *F* of a "ground" family *G*: The intersection of a subfamily of *F* is the disjoint union of at most *r* elements in *G*.

• [Matoušek, 1997] had proved that F is k-Helly for some (*large*) k.

Comparison with other results

```
convex sets in \mathbb{R}^d
[Helly, 1923]
d+1
```

acyclic families in \mathbb{R}^d [Helly, 1930] d+1 *r*-family of convex sets in \mathbb{R}^d [Amenta, 1996] (d+1)r

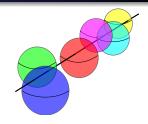
r-family of an acyclic family in \mathbb{R}^d [Kalai and Meshulam, 2008] (d+1)r topological condition [Matoušek, 1997] no explicit bound

・ロト ・ 日 ・ モート ・ 田 ・ うへで

r-family of a non-additive family *G* closed under \bigcap [Eckhoff and Nischke, 2009] $r \times h(G)$ *r*-acyclic family [CdV, G, and G] (d+1)r

Application to geometric transversal theory

- Let C₁,..., C_n be disjoint convex sets in ℝ^d.
- For each *i*, let *F_i* be the set of lines meeting *C_i*.
- Let $F := \{F_1, \ldots, F_n\}.$



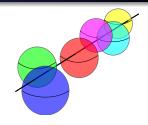
- In which cases is F k-Helly?
- Central question in geometric transversal theory.

		k -Helly for $k = \dots$	
parallelotopes in \mathbb{R}^d $(d\geq 2)$		$2^{d-1}(2d-1)$ [Santaló, 1940]	$2^{d-1}(2d-1)$
disjoint translates of a convex in \mathbb{R}^2			10
disjoint unit balls in \mathbb{R}^d	d = 2		12
		11 [Cheong et al., 2008]	15
	d = 4	15 [Cheong et al., 2008]	20
		19 [Cheong et al., 2008]	20
		4d-1 [Cheong et al., 2008]	

000

Application to geometric transversal theory

- Let C₁,..., C_n be disjoint convex sets in ℝ^d.
- For each *i*, let *F_i* be the set of lines meeting *C_i*.
- Let $F := \{F_1, \ldots, F_n\}.$

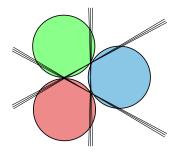


- In which cases is F k-Helly?
- Central question in geometric transversal theory.

Shape	k-Helly for $k = \dots$	
	previous bound	our bound
parallelotopes in \mathbb{R}^d $(d \ge 2)$	$2^{d-1}(2d-1)$ [Santaló, 1940]	$2^{d-1}(2d-1)$
disjoint translates of a convex in \mathbb{R}^2	5 [Tverberg, 1989]	10
disjoint unit balls in \mathbb{R}^d $d=2$	5 [Danzer, 1957]	12
d = 3	11 [Cheong et al., 2008]	15
d = 4	15 [Cheong et al., 2008]	20
d = 5	19 [Cheong et al., 2008]	20
$d \ge 6$	4d-1 [Cheong et al., 2008]	4 <i>d</i> – 2

New topological Helly-type theorem

Let *F* be a family of sets in \mathbb{R}^d such that $\forall G \subseteq F$, \bigcap_G is the disjoint union of at most *r* contractible sets. Then *F* is ((d + 1)r)-Helly.



Idea: Apply the main result in the space of lines of \mathbb{R}^d

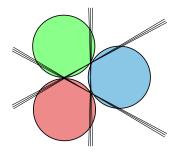
- Good: Often, if G ⊆ F, each connected component of ∩_G corresponds to a *geometric permutation* of the objects C_i.
- Bad: The space of lines in \mathbb{R}^d is a (2d 2)-manifold. \rightarrow Extension to arbitrary topological spaces

(d = dimension of vanishing homology of open sets).

- Bad: Some components of \bigcap_G are not contractible.
 - \rightarrow For small G, allow \bigcap_G to have holes in low dimension.

New topological Helly-type theorem

Let *F* be a family of sets in \mathbb{R}^d such that $\forall G \subseteq F$, \bigcap_G is the disjoint union of at most *r* contractible sets. Then *F* is ((d + 1)r)-Helly.

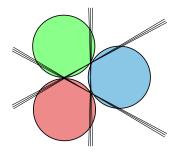


Idea: Apply the main result in the space of lines of \mathbb{R}^d

- Good: Often, if G ⊆ F, each connected component of ∩_G corresponds to a geometric permutation of the objects C_i.
- Bad: The space of lines in ℝ^d is a (2d 2)-manifold.
 → Extension to arbitrary topological spaces (d=dimension of vanishing homology of open sets).
- Bad: Some components of \bigcap_G are not contractible. \rightarrow For small G, allow \bigcap_F to have holes in low dimension.

New topological Helly-type theorem

Let *F* be a family of sets in \mathbb{R}^d such that $\forall G \subseteq F$, \bigcap_G is the disjoint union of at most *r* contractible sets. Then *F* is ((d + 1)r)-Helly.

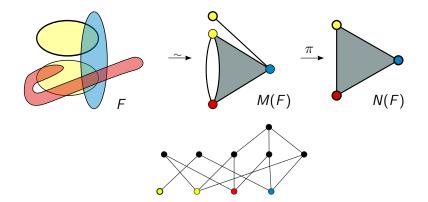


Idea: Apply the main result in the space of lines of \mathbb{R}^d

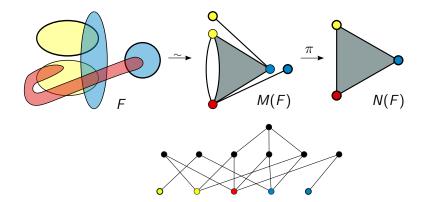
- Good: Often, if G ⊆ F, each connected component of ∩_G corresponds to a geometric permutation of the objects C_i.
- Bad: The space of lines in ℝ^d is a (2d 2)-manifold.
 → Extension to arbitrary topological spaces (d=dimension of vanishing homology of open sets).
- Bad: Some components of \bigcap_G are not contractible. \rightarrow For small G, allow \bigcap_G to have holes in low dimension.

Sketch of Proof

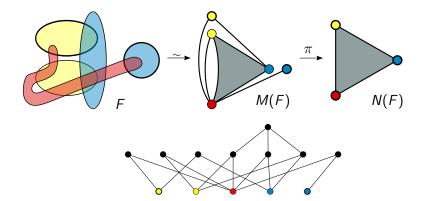
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○



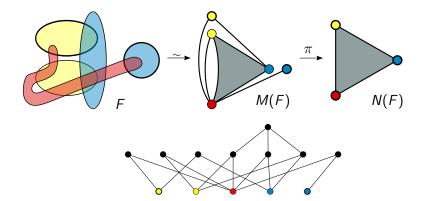
- M(F) is a more general simplicial poset [Björner, Stanley, ...];
- every "lower interval" is a simplex.



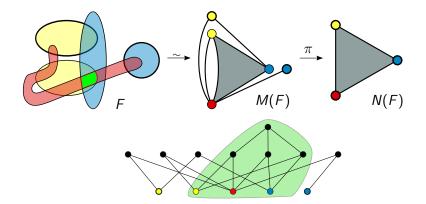
- M(F) is a more general simplicial poset [Björner, Stanley, ...];
- every "lower interval" is a simplex.



- M(F) is a more general simplicial poset [Björner, Stanley, ...];
- every "lower interval" is a simplex.

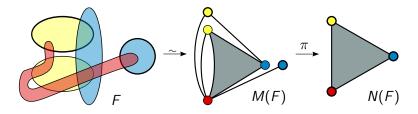


- M(F) is a more general simplicial poset [Björner, Stanley, ...];
- every "lower interval" is a simplex.



- M(F) is a more general simplicial poset [Björner, Stanley, ...];
- every "lower interval" is a simplex.

Multinerve theorem



Multinerve theorem

Let F be a family of sets in \mathbb{R}^d such that $\forall G \subseteq F$, \bigcap_G is the disjoint union of finitely many contractible sets. Then M(F) and \bigcup_F have holes in the same dimensions.

Proof

- Spectral sequences with Leray's acyclic cover theorem;
- alternatively, variation on [Björner, 2003].

- We know that M(F) has no hole in dimension $\geq d$;
- we want to infer that N(F) has no hole in dimension $\geq (d+1)r 1$.

Theorem [Kalai and Meshulam, 2008]

- Let *M* and *N* be simplicial complexes.
- Let $\pi: M \to N$ be simplicial, size-preserving, at most *r*-to-one, and onto.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

• Assume (roughly) that *M* has no hole in dim. $\geq d$. Assume that some suitably defined subcomplexes of sd(M) have no hole in dim. $\geq d$.

```
Then N has no hole in dimension \geq (d + 1)r - 1.
```

- We know that M(F) has no hole in dimension $\geq d$;
- we want to infer that N(F) has no hole in dimension $\geq (d+1)r 1$.

Theorem [Kalai and Meshulam, 2008]

- Let *M* and *N* be simplicial complexes.
- Let $\pi: M \to N$ be simplicial, size-preserving, at most *r*-to-one, and onto.

ション ふゆ アメリア メリア しょうくの

 Assume (roughly) that M has no hole in dim. ≥ d. Assume that some suitably defined subcomplexes of sd(M) have no hole in dim. ≥ d.

Then *N* has no hole in dimension $\geq (d + 1)r - 1$.

- We know that M(F) has no hole in dimension $\geq d$;
- we want to infer that N(F) has no hole in dimension $\geq (d+1)r 1$.

Theorem [Kalai and Meshulam, 2008]

- Let *M* and *N* be simplicial complexes.
- Let $\pi: M \to N$ be simplicial, size-preserving, at most *r*-to-one, and onto.

ション ふゆ く 山 マ チャット しょうくしゃ

• Assume (roughly) that *M* has no hole in dim. $\geq d$. Assume that some suitably defined subcomplexes of sd(*M*) have no hole in dim. $\geq d$.

Then N has no hole in dimension $\geq (d+1)r - 1$.

- We know that M(F) has no hole in dimension $\geq d$;
- we want to infer that N(F) has no hole in dimension $\geq (d+1)r 1$.

Theorem (generalizing [Kalai and Meshulam, 2008])

- Let *M* be a simplicial poset and *N* a simplicial complex.
- Let $\pi: M \to N$ be simplicial, size-preserving, at most *r*-to-one, and onto.

ション ふゆ く 山 マ チャット しょうくしゃ

• Assume (roughly) that *M* has no hole in dim. $\geq d$. Assume that some suitably defined subcomplexes of sd(*M*) have no hole in dim. $\geq d$.

Then N has no hole in dimension $\geq (d+1)r - 1$.

- We know that M(F) has no hole in dimension $\geq d$;
- we want to infer that N(F) has no hole in dimension $\geq (d+1)r 1$.

Theorem (generalizing [Kalai and Meshulam, 2008])

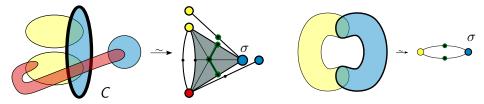
- Let *M* be a simplicial poset and *N* a simplicial complex.
- Let $\pi: M \to N$ be simplicial, size-preserving, at most *r*-to-one, and onto.
- Assume (roughly) that *M* has no hole in dim. $\geq d$. Assume that some suitably defined subcomplexes of sd(*M*) have no hole in dim. $\geq d$.

Then N has no hole in dimension $\geq (d+1)r - 1$.

Tools

Algebraic topology (spectral sequences, multiple point set, etc.).

Proof sketch (continued)



Definition

If σ is a simplex of a simplicial poset X, then $\operatorname{barylink}_{X}(\sigma)$ is the subcomplex of sd_{X} that is the order complex of $(\sigma, \cdot]$ in X.

Lemma

For any acyclic family F in \mathbb{R}^d , barylink_{M(F)}(σ) has no hole in dimension $\geq d$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Proof sketch (end)

Multiple point set $M_k := \{m_1, \ldots, m_k \in |\mathcal{M}|^k \mid \pi(m_1) = \ldots = \pi(m_k)\}.$

Consequence of [Goryunov and Mond, 1993]

Some spectral sequence $(E_{p,q}^{\bullet})$ converging to $H_*(N)$ satisfies: If, for all q, for all $p \leq r - 1$, and for all $p + q \geq (d + 1)r - 1$, we have $H_q(M_{p+1}) = 0$, then $E_{p,q}^1 = 0$ (and therefore $H_k(N) = 0$ for all $k \geq (d + 1)r - 1$).

Rephrasing [Kalai and Meshulam, 2008]

Some spectral sequence $(E_{p,q}^{\prime \bullet})$ converging to $H_*(M_{p+1})$ satisfies

$$E_{p,q}^{\prime 1} \simeq \bigoplus_{\substack{(\sigma_2,\ldots,\sigma_k) \\ \in S_p}} \bigoplus_{\substack{i_1,\ldots,i_k \ge 0 \\ i_1+\ldots+i_k = p+q}} H_{i_1}\left(M\left\lfloor\bigcap_{i=2}^k \tilde{\sigma}_i\right\rfloor\right) \otimes \bigotimes_{j=2}^k \tilde{H}_{i_j-1}\left(\mathsf{barylink}_M(\sigma_j)\right)$$

Thus in our setting $H_q(M_{p+1}) = 0...$

Conclusion

Definition

F is *k*-fractional Helly if the following holds: If "many" *k*-tuples of F have non-empty intersection, then there exists a "large" subfamily of F that has non-empty intersection.

More precisely: If a fraction x of the k-tuples have non empty intersection, then a fraction f(x) of the elements in F have non-empty intersection, where f(x) tends to one as x tends to one.

More theorems for free!

Using [Alon, Kalai, Matoušek, Meshulam, 2002], we obtain immediately such fractional Helly theorems for *r*-acyclic families.

Another proof without topology?

[Eckhoff and Nischke, 2009] reproves [Kalai and Meshulam, 2008] in a purely combinatorial way ("generalized pigeonhole principle"). Can we use that proof technique instead?

Core of their proof

- Let *M*, *N* be simplicial complexes.
- Let $\pi: M \to N$ be simplicial, size-preserving, at most *r*-to-one, and onto.
- If N contains all the strict subfamilies of a set S of size k + 1, then π⁻¹(2^S) contains all the subfamilies of size ≤ ⌊k/r⌋ of a set of size k + 1.

Can we allow M to be a simplicial poset? Under which conditions?

Common hypotheses

- Let Γ be a locally arcwise connected topological space.
- Let F be a finite family of open subsets of Γ that is r-acyclic with slack d: for every subfamily G ⊆ F, G ≠ Ø,
 - if |G| ≥ d, then G intersects in at most r connected components.
 - for every $i \ge \max\{1, d |G|\}$, we have $\tilde{H}_i(\bigcap_G, \mathbb{Q}) = 0$.

General multinerve theorem

For every $i \geq d$, $\tilde{H}_i(M(F), \mathbb{Q}) \simeq \tilde{H}_i(\bigcup_F, \mathbb{Q})$.

General topological Helly theorem

Assume moreover that every open set of Γ has trivial homology in dimension $\geq d$. Then F is ((d + 1)r)-Helly.