The Z-invariant massive Laplacian on ISORADIAL GRAPHS

Béatrice de Tilière
University Paris 6
j.w. with Cédric Boutillier (Paris 6), Kilian Raschel (Tours)

Séminaire Philippe Flajolet
Institut Henri Poincaré, le 4 juin 2015

Isoradial graphs

- A graph G is isoradial if it can be embedded in the plane in such a way that all (inner) faces are inscribed in a circle of radius 1 , and such that the center of the circles are in the interior of the faces (Duffin-Mercat-Kenyon).

Isoradial graphs

- A graph G is isoradial if it can be embedded in the plane in such a way that all (inner) faces are inscribed in a circle of radius 1 , and such that the center of the circles are in the interior of the faces (Duffin-Mercat-Kenyon).

Isoradial graphs

- A graph G is isoradial if it can be embedded in the plane in such a way that all (inner) faces are inscribed in a circle of radius 1 , and such that the center of the circles are in the interior of the faces (Duffin-Mercat-Kenyon).

Isoradial graphs

- A graph G is isoradial if it can be embedded in the plane in such a way that all (inner) faces are inscribed in a circle of radius 1 , and such that the center of the circles are in the interior of the faces (Duffin-Mercat-Kenyon).

Isoradial graphs

- A graph G is isoradial if it can be embedded in the plane in such a way that all (inner) faces are inscribed in a circle of radius 1 , and such that the center of the circles are in the interior of the faces (Duffin-Mercat-Kenyon).

Isoradial graphs

- A graph G is isoradial if it can be embedded in the plane in such a way that all (inner) faces are inscribed in a circle of radius 1 , and such that the center of the circles are in the interior of the faces (Duffin-Mercat-Kenyon).

Corresponding diamond graph, angles

- Take the centers of the circumcircles (embedded dual vertices)

Corresponding diamond graph, angles

- Join them to the vertices of G of the face they correspond to. \Rightarrow Corresponding rhombus graph G°.

Corresponding diamond graph, angles

- Join them to the vertices of G of the face they correspond to. \Rightarrow Corresponding rhombus graph G°.

Corresponding diamond graph, angles

- To every edge e corresponds a rhombus and a half-angle θ_{e}.

Discrete complex analysis

- Let f be a function defined on vertices of G and G^{*}.
- It is discrete holomorphic if, for every rhombus xwyz,

$$
\frac{f(y)-f(x)}{y-x}=\frac{f(w)-f(z)}{w-z} .
$$

Z-INVARIANT MODELS ON ISORADIAL GRAPHS

- Finite isoradial graph $G=(V, E)$.
- Set of configurations on $G: \mathcal{C}(G)$.

Z-INVARIANT MODELS ON ISORADIAL GRAPHS

- Parameters: positive weight function on edges/vertices

```
w depends on angles ( }\mp@subsup{0}{\textrm{e}}{}\mp@subsup{)}{\textrm{e}\in\textrm{E}}{
```

- Boltzmann probability measure on configurations:

$$
\forall \mathrm{C} \in \mathcal{C}(\mathrm{G}), \quad \mathbb{P}(\mathrm{C})=\frac{\mathrm{e}^{-\mathcal{E}_{w}(\mathrm{C})}}{Z(\mathrm{G}, w)},
$$

where $Z(\mathrm{G}, w)=\sum_{\mathrm{C} \in \mathcal{C}(\mathrm{G})} \mathrm{e}^{-\varepsilon_{w}(\mathrm{C})}$ is the partition function.

Z-invariant models on isoradial graphs

- Star-triangle transformation preserves isoradiality.

Z-INVARIANT MODELS ON ISORADIAL GRAPHS

- Star-triangle transformation preserves isoradiality.

Z-INVARIANT MODELS ON ISORADIAL GRAPHS

- Star-triangle transformation preserves isoradiality.

Z-INVARIANT MODELS ON ISORADIAL GRAPHS

- Star-triangle transformation preserves isoradiality.

Z-INVARIANT MODELS ON ISORADIAL GRAPHS

- Decompose the partition function according to the possible configurations outside of the star/triangle.
- The model is Z-invariant (Baxter) if \exists constant \mathcal{C}, s.t. for all outer configuration $\mathrm{C}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$:

$$
\begin{gathered}
Z\left(\mathrm{G}_{Y}, w, \mathrm{C}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)\right)=\mathcal{C} Z\left(\mathrm{G}_{\Delta}, w, \mathrm{C}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)\right) . \\
\text { (Yang-Baxter equations) }
\end{gathered}
$$

\Rightarrow Transfer matrices commute (Onsager, 1944).
\Rightarrow Probabilities are not affected by $\mathrm{Y}-\Delta$ transformations.
Probabilities should only depend on the local geometry of the graph

Example: the Z-invariant Ising model (Baxter)

$$
\forall \sigma \in\{-1,1\}^{\mathrm{V}}, \quad \mathbb{P}_{\text {Ising }}(\sigma)=\frac{\exp \left(\sum_{e=\mathrm{x} \in \mathrm{E}} J\left(\theta_{\mathrm{e}}\right) \sigma_{\mathrm{x}} \sigma_{\mathrm{y} \cdot}\right)}{Z_{\text {Ising }}(\mathrm{G}, J)},
$$

Theorem (Baxter)

The Ising model is Z-invariant if

$$
\forall \mathrm{e} \in \mathrm{E}, J\left(\theta_{\mathrm{e}}\right)=\frac{1}{2} \log \left(\frac{1+\operatorname{sn}\left(\left.\frac{2 K}{\pi} \theta_{\mathrm{e}} \right\rvert\, k\right)}{\operatorname{cn}\left(\left.\frac{2 K}{\pi} \theta_{\mathrm{e}} \right\rvert\, k\right)}\right), k \in[0,1) .
$$

. $K=\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^{2} \sin \tau}} \mathrm{~d} \tau$: Complete elliptic integral of the first kind.
. sn, cn: Jacobi elliptic functions.

- If $k=0: \forall \mathrm{e} \in \mathrm{E}, J\left(\theta_{\mathrm{e}}\right)=\frac{1}{2} \log \left(\frac{1+\sin \theta_{\mathrm{e}}}{\cos \theta_{\mathrm{e}}}\right)$.
- The model is critical (Li, Duminil-Copin-Cimasoni, Lis), conformally invariant (Chelkak - Smirnov).
- Local expressions for probabilities of the corresponding dimer model (Boutillier-dT).
- $k \neq 0$:
* (Boutillier-dT-Raschel).

The Laplacian [...] on critical planar graphs (Kenyon)

- Infinite isoradial graph G.
- Conductances: $\rho=\left(\tan \left(\theta_{\mathrm{e}}\right)\right)_{\mathrm{e} \in \mathrm{E}}$.
- Let Δ be the discrete Laplacian on G represented by the matrix Δ :

$$
\forall \mathrm{x}, \mathrm{y} \in \mathrm{~V}, \quad \Delta(\mathrm{x}, \mathrm{y})= \begin{cases}\rho\left(\theta_{\mathrm{xy}}\right) & \text { if } \mathrm{x} \sim \mathrm{y} \\ -\sum_{\mathrm{y} \sim \mathrm{x}} \rho\left(\theta_{\mathrm{xy}}\right) & \text { if } \mathrm{x}=\mathrm{y} \\ 0 \text { otherwise. } & \end{cases}
$$

- The Laplacian Δ is an operator from \mathbb{C}^{V} to \mathbb{C}^{V}

$$
\forall f \in \mathbb{C}^{\mathrm{V}}, \quad(\Delta f)(\mathrm{x})=\sum_{\mathrm{y} \in \mathrm{~V}} \Delta(\mathrm{x}, \mathrm{y}) f(\mathrm{y})=\sum_{\mathrm{y} \sim \mathrm{x}} \rho\left(\theta_{\mathrm{xy}}\right)(f(\mathrm{y})-f(\mathrm{x})) .
$$

- The restriction to G of a discrete holomorphic function is discrete harmonic.

The Laplacian [...] on critical planar graphs (Kenyon)

- The Green function G is the inverse of the Laplacian: $\Delta G=\mathrm{Id}$.
- Discrete exponential function (Mercat):

Exp: $\mathrm{V}^{\diamond} \times \mathrm{V}^{\diamond} \times \mathbb{C} \rightarrow \mathbb{C}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{V}^{\diamond}$.
Path in $E^{\curvearrowright}: x=x_{1}, \ldots, x_{n}=y$,
$\operatorname{Exp}_{\mathrm{x}_{j}, \mathrm{x}_{\mathrm{j}+1}}(\lambda)=\frac{\left(\lambda+\mathrm{e}^{i \alpha_{j}}\right)}{\left(\lambda-e^{i \alpha_{j}}\right)}$
$\operatorname{Exp}_{\mathrm{x}, \mathrm{y}}(\lambda)=\prod_{j=1}^{n-1} \operatorname{Exp}_{\mathrm{x}_{j}, \mathrm{x}_{j+1}}(\lambda)$.

Theorem (Kenyon)
The Green function has the following explicit expression:

$$
\forall \mathrm{x}, \mathrm{y} \in \mathrm{~V}, \quad G(\mathrm{x}, \mathrm{y})=-\frac{1}{8 \pi^{2} i} \oint_{\gamma} \operatorname{Exp}_{\mathrm{x}, \mathrm{y}}(\lambda) \log (\lambda) \mathrm{d} \lambda
$$

where γ is a contour in \mathbb{C} containing all the poles of $\operatorname{Exp}_{x, y}$.

Relation to statistical mechanics

- Spanning trees of G

- Boltmann probability measure:

$$
\forall \mathrm{T} \in \mathcal{T}(\mathrm{G}), \quad \mathbb{P}_{\text {tree }}(\mathrm{T})=\frac{\prod_{\mathrm{e} \in \mathrm{~T}} \rho\left(\theta_{\mathrm{e}}\right)}{Z_{\text {tree }}(\mathrm{G}, \rho)} .
$$

Relation to statistical mechanics

Theorem (Kirchioff)

$$
Z_{\text {tree }}(\mathrm{G}, \rho)=\operatorname{det} \Delta^{(\mathrm{r})},
$$

where $\Delta^{(r)}$ is the matrix Δ from which the line and column corresponding to the vertex r are removed.

Theorem (Burton - Pemantle)
For every subset of edges $\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{k}\right\}$ of G :

$$
\mathbb{P}_{\text {tree }}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{k}\right)=\operatorname{det}\left[\left(H\left(\mathrm{e}_{i}, \mathrm{e}_{j}\right)\right)_{1 \leq i, j \leq k}\right],
$$

where H is the transfer impedance matrix. Coefficients are differences of Green functions.

- Kenyon's results yield local formulas for $\mathbb{P}_{\text {tree }}$ and for the free energy when the graph is infinite.

Z-invariance for spanning trees

Decompose $Z_{\text {tree }}(\mathrm{G}, \rho)$ according to the possible configurations outside of the $Y-\Delta$.

Z-invariance for spanning trees

Example: $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ are connected to r

	C_{Y}	C_{Δ}
$\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$	$\sum_{\ell=1}^{3} \rho\left(\theta_{\ell}\right)$	1
$\left\{\mathrm{x}_{i}, \mathrm{x}_{j}\right\}$	$\rho\left(\theta_{k}\right)\left(\sum_{\ell \neq k} \rho\left(\theta_{\ell}\right)\right)$	$\sum_{\ell \neq k} \rho\left(\frac{\pi}{2}-\theta_{\ell}\right)$
$\left\{\mathrm{x}_{i}\right\}$	$\prod_{\ell=1}^{3} \rho\left(\theta_{\ell}\right)$	$\sum_{\ell=1}^{3} \prod_{\ell^{\prime} \neq \ell} \rho\left(\frac{\pi}{2}-\theta_{\ell^{\prime}}\right)$
$\{\emptyset\}$	0	0

Remark
The spannig tree model with conductances $\rho=\left(\tan \left(\theta_{\mathrm{e}}\right)\right)_{\mathrm{e} \in \mathrm{E}}$ is
Z-invariant [Kenelly].

Away from the critical point ? Massive Laplacian

- Let $k \in[0,1)$ (the elliptic modulus), $k^{\prime}=\sqrt{1-k^{2}}, \bar{\theta}_{\mathrm{e}}=\frac{2 K}{\pi} \theta_{\mathrm{e}}$.
- Define conductances and masses on G :

$$
\begin{aligned}
& \forall \mathrm{e} \in \mathrm{E}, \rho\left(\theta_{\mathrm{e}}\right)=\operatorname{sc}\left(\bar{\theta}_{\mathrm{e}} \mid k\right) \\
& \forall \mathrm{x} \in \mathrm{~V}, m^{2}(\mathrm{x})=\sum_{j=1}^{n} \mathrm{~A}\left(\bar{\theta}_{j} \mid k\right)-\frac{2}{k^{\prime}}(K-E)-\sum_{j=1}^{n} \rho\left(\bar{\theta}_{j} \mid k\right) .
\end{aligned}
$$

- $E=\int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \sin \tau}$ d τ : complete elliptic int. of the second kind.
- $\mathrm{E}(u \mid k)=\int_{0}^{u} \mathrm{dn}^{2}(v \mid k) \mathrm{d} v:$ Jacobi epsilon function.
- $\mathrm{A}(u \mid k)=-\frac{i}{k^{\prime}} \mathrm{E}\left(i u \mid k^{\prime}\right)$.

Family of massive Laplacians

- The massive Laplacian $\Delta^{m(k)}$ on G is represented by the matrix :

$$
\forall \mathrm{x}, \mathrm{y} \in \mathrm{~V}, \quad \Delta^{m(k)}(\mathrm{x}, \mathrm{y})= \begin{cases}\rho\left(\theta_{\mathrm{xy}}\right) & \text { if } \mathrm{x} \sim \mathrm{y} \\ -m^{2}(x)-\sum_{\mathrm{y} \sim \mathrm{x}} \rho\left(\theta_{\mathrm{xy}}\right) & \text { if } \mathrm{x}=\mathrm{y} \\ 0 & \text { otherwise }\end{cases}
$$

- The massive Laplacian $\Delta^{m(k)}$ is the operator:

$$
\forall f \in \mathbb{C}^{\mathrm{V}}, \quad\left(\Delta^{m(k)} f\right)(\mathrm{x})=\sum_{\mathrm{y} \sim \mathrm{x}} \rho\left(\theta_{\mathrm{xy}}\right)(f(\mathrm{y})-f(\mathrm{x}))-m^{2}(x) f(x)
$$

- The massive Green function $G^{m(k)}$ is the inverse of the massive Laplacian: $\Delta^{m(k)} G^{m(k)}=$ Id.

The discrete massive exponential function

- Let $\mathbb{T}(k)=\mathbb{C} /\left(4 K \mathbb{Z}+i 4 K^{\prime} \mathbb{Z}\right)$.
$\operatorname{Exp}(\cdot \mid k): \mathrm{V}^{\vee} \times \mathrm{V}^{\vee} \times \mathbb{T}(k) \rightarrow \mathbb{C}$.
Let $x, y \in V^{\circ}$.
Path in $E^{\curvearrowright}: x=x_{1}, \ldots, x_{n}=y$,
$\operatorname{Exp}_{\mathrm{x}_{j}, \mathrm{x}_{j+1}}(u \mid k)=-i \sqrt{k^{\prime}} \operatorname{sc}\left(u_{\bar{\alpha}_{j}}\right), u_{\bar{\alpha}_{j}}=\frac{u-\bar{\alpha}_{j}}{2}$.
$\operatorname{Exp}_{\mathrm{x}, \mathrm{y}}(u \mid k)=\prod_{j=1}^{n-1} \operatorname{Exp}_{\mathrm{x}_{j}, \mathrm{x}_{\mathrm{j}+1}}(u \mid k)$.

Lemma

The discrete massive exponential function is well defined, i.e., independent of the choice of the path from x to y .

Proposition

For every $u \in \mathbb{T}(k)$, for every $\mathrm{y} \in \mathrm{V}$, the function $\operatorname{Exp}_{(\cdot, y)}(u \mid k) \in \mathbb{C}^{\mathrm{V}}$ is massive harmonic: $\Delta^{m} \operatorname{Exp}_{(\cdot, y)}(u \mid k)=0$.

Local expression for the massive Green function

Theorem

For every pair of vertices x, y of G ,

$$
G^{m(k)}(\mathrm{x}, \mathrm{y})=-\frac{k^{\prime}}{4 i \pi} \oint_{\gamma_{x, y}} H(u \mid k) \operatorname{Exp}_{\mathrm{x}, \mathrm{y}}(u \mid k) \mathrm{d} u
$$

where $\gamma_{x, y}$ is the following contour, $H(u \mid k)=\frac{u}{4 K}+\frac{K^{\prime}}{\pi} Z(u / 2 \mid k)$ and Z is Jacobi zeta function.

Torus $\mathbb{T}(k)$, contour of $\gamma_{x, y}$. White squares are poles of $\operatorname{Exp}_{x, y}(\cdot \mid k)$, the black square is the pole of H.

IdeA of The proof, CONSEQUENCES

Idea of the proof (Kenyon)

- Show that $\forall \mathrm{x}, \mathrm{y} \in \mathrm{V}, \Delta^{m(k)} G^{m(k)}(\mathrm{x}, \mathrm{y})=\delta(\mathrm{x}, \mathrm{y})$.
- If $x \neq y$, deform the contours into a common contour and use the fact that massive exponential functions are massive harmonic.
- If $x=y$, explicit residue computation. Use the jump of the function H on the torus $\mathbb{T}(k)$.
Consequences
- Locality of the formula.
- Asymptotics of $G^{m(k)}(\mathrm{x}, \mathrm{y})$, when $|\mathrm{x}-\mathrm{y}| \rightarrow \infty$.
- Explicit computations.

Example of computation

If $x \sim y$ in G, then

$$
\operatorname{Exp}_{\mathrm{x}, \mathrm{y}}(u)=-\left(k^{\prime}\right)^{2} \operatorname{sc}\left(u_{\bar{\alpha}}\right) \operatorname{sc}\left(u_{\bar{\beta}}\right)
$$

$$
\begin{aligned}
G^{m(k)}(\mathrm{x}, \mathrm{y}) & =\frac{\left(k^{\prime}\right)^{2}}{4 i \pi} \oint_{\gamma} H(u) \operatorname{sc}\left(u_{\bar{\alpha}}\right) \operatorname{sc}\left(u_{\bar{\beta}}\right) \mathrm{d} u \\
& =\frac{\left(k^{\prime}\right)^{2}}{4 i \pi} \oint_{\gamma} H(u) \operatorname{sc}\left(\frac{u}{2}\right) \operatorname{sc}\left(\frac{u-2 \bar{\theta}}{2}\right) \mathrm{d} u, \text { (change of variable) } \\
& =\frac{H(2 K+2 \bar{\theta})-H(2 K)}{\operatorname{sc}(\bar{\theta})}-\frac{K^{\prime} k^{\prime}}{\pi \operatorname{dn}(\bar{\theta})},\left(\text { residues } 2 K, 2 K+2 \bar{\theta}, 2 i K^{\prime}\right) \\
& =\frac{H(2 \bar{\theta})}{\operatorname{sc}(\bar{\theta})}-\frac{K^{\prime} \operatorname{dn}(\bar{\theta})}{\pi},(\text { addition formula for } H) .
\end{aligned}
$$

Local formula for rooted spanning forests

- Rooted spanning forests

- Boltmann probability measure:

$$
\forall \mathrm{F} \in \mathcal{F}(\mathrm{G}), \quad \mathbb{P}_{\text {forest }}(\mathrm{F})=\frac{\prod_{\mathrm{T} \in \mathrm{~F}, \mathrm{~T} \text { rooted in } \mathrm{x}}\left(\prod_{\mathrm{e} \in \mathrm{~T}} \rho\left(\theta_{\mathrm{e}}\right)\right) m^{2}(\mathrm{x})}{Z_{\text {forest }}\left(\mathrm{G}, \rho, m^{2}\right)} .
$$

- Explicit expression for probability measure on spanning forests of an infinite isoradial graph, periodic or not.

Z-Invariance for rooted spanning forests

	C_{Y}	C_{Δ}
$\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$	$m^{2}\left(x_{0}\right)+\sum_{\ell=1}^{3} \rho\left(\theta_{\ell}\right)$	1
$\left\{\mathrm{x}_{i}, \mathrm{x}_{j}\right\}$	$\begin{aligned} & \rho\left(\theta_{k}\right)\left[\sum_{\ell \neq k} \rho\left(\theta_{\ell}\right)\right]+m^{2}\left(x_{0}\right) \rho\left(\theta_{k}\right)+ \\ & m^{2}\left(x_{k}\right)\left[\sum_{\ell=1}^{3} \rho\left(\theta_{\ell}\right)+m^{2}\left(x_{0}\right)\right] \end{aligned}$	$\sum_{\ell \neq k} \rho\left(K-\theta_{\ell}\right)+m^{\prime 2}\left(x_{k}\right)$
$\left\{\mathrm{X}_{i}\right\}$	$\prod_{\ell=1}^{3} \rho\left(\theta_{\ell}\right)+m^{2}\left(x_{0}\right) \prod_{\ell \neq i} \rho\left(\theta_{\ell}\right)+$	$\Sigma_{\ell=1}^{3} \Pi_{\ell^{\prime} \neq \ell} \rho\left(K-\theta_{\ell^{\prime}}\right)+$
	$\begin{aligned} & \sum_{\ell \neq i} m^{2}\left(x_{\ell}\right) \rho\left(\theta_{\{\overline{i, \ell\}}}\right)\left[\sum_{\ell^{\prime} \in\{i, \ell\}} \rho\left(\theta_{\ell^{\prime}}\right)\right]+ \\ & m^{2}\left(x_{0}\right)\left[m^{2}\left(x_{k}\right) \rho\left(\theta_{j}\right)+m^{2}\left(x_{j}\right) \rho\left(\theta_{k}\right)\right]+ \\ & {\left[\Pi_{\ell \neq i} m^{2}\left(x_{\ell}\right)\right]\left[\sum_{\ell=1}^{3} \rho\left(\theta_{\ell}\right)+m^{2}\left(x_{0}\right)\right]} \end{aligned}$	$\sum_{\ell \neq i} m^{\prime 2}\left(x_{\ell}\right)\left[\sum_{\ell^{\prime} \in\{i, \ell\}} \rho\left(K-\theta_{\ell^{\prime}}\right)\right]+\prod_{\ell \neq i} m^{\prime} 2_{\left(x_{\ell}\right)}$
$\{\emptyset\}$	$\begin{aligned} & {\left[\sum_{i=0}^{3} m^{2}\left(x_{i}\right)\right]\left[\Pi_{i=1}^{3} \rho\left(\theta_{i}\right)\right]+m^{2}\left(x_{0}\right) \sum_{i=1}^{3} m^{2}\left(x_{i}\right) \prod_{\ell \neq i} \rho\left(\theta_{\ell}\right)+} \\ & \sum_{i=1}^{3}\left[\Pi_{\ell \neq i} m^{2}\left(x_{\ell}\right)\right] \rho\left(\theta_{i}\right)\left[\sum_{\ell \neq i} \rho\left(\theta_{i}\right)\right]+ \\ & m^{2}\left(x_{0}\right) \sum_{i=1}^{3}\left[\Pi_{\ell \neq i} m^{2}\left(x_{\ell}\right)\right] \rho\left(\theta_{i}\right)+ \\ & {\left[\prod_{i=1}^{3} m^{2}\left(x_{k}\right)\right]\left[\sum_{i=1}^{3} \rho\left(\theta_{i}\right)+m^{2}\left(x_{0}\right)\right]} \end{aligned}$	$\begin{aligned} & {\left[\sum_{i=1}^{3} m^{\prime 2}\left(x_{i}\right)\right]\left[\sum_{i=1}^{3} \prod_{\ell \neq i} \rho\left(K-\theta_{\ell}\right)\right]+} \\ & \sum_{i=1}^{3}\left[\prod_{\ell \neq i} m^{\prime 2}\left(x_{\ell}\right)\right]\left[\Sigma_{i \neq \ell} \rho\left(K-\theta_{\ell}\right)\right]+ \\ & \prod_{i=1}^{3} m^{\prime 2}\left(x_{k}\right) \end{aligned}$

Z-invariance for rooted spanning forests

Theorem

For every $k \in[0,1)$, the rooted spanning forest model with weights ρ, m^{2}, is Z-invariant.

- When $k=0, \rho\left(\theta_{\mathrm{e}}\right)=\tan \left(\theta_{\mathrm{e}}\right), m^{2}(\mathrm{x})=0$: one recovers the "critical" case.

When the graph G is \mathbb{Z}^{2}-periodic

Exhaustion by toroidal graphs $\mathrm{G}: \mathrm{G}_{n}=\mathrm{G} / n \mathbb{Z}^{2}$.

The free energy is:

$$
f(k)=-\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log Z_{\text {forest }}\left(\mathrm{G}_{n}, \rho, m^{2}\right) .
$$

Theorem
The free energy is equal to

$$
f(k)=\left|\mathrm{V}_{1}\right| \int_{0}^{K} 4 H^{\prime}(2 \theta) \log \operatorname{sc}(\theta) \mathrm{d} \theta+\sum_{e \in \mathrm{E}_{1}} \int_{0}^{\theta_{e}} \frac{2 H(2 \theta) \mathrm{sc}^{\prime}(\theta)}{\operatorname{sc}(\theta)} \mathrm{d} \theta
$$

When $k=0$, one recovers Kenyon'result.

Second order phase transition

Proposition

When $k \rightarrow 0$,

$$
f(k)=f(0)-k^{2} \log (k)\left|\mathrm{V}_{1}\right|+O\left(k^{2}\right) .
$$

where $f(0)$ is the free energy of spanning trees.

Spectral curve

- Fundamental domain: G_{1}.

- $\Delta^{m(k)}(z, w)$: massive Laplacian matrix of G_{1}, with weights $z, \frac{1}{z}, w, \frac{1}{w}$.
- Characteristic polynomial: $P_{\Delta^{m(k)}}(z, w)=\operatorname{det} \Delta^{m(k)}(z, w)$.
- Spectral curve of the massive Laplacian:

$$
C_{\Delta^{m(k)}}=\left\{(z, w) \in \mathbb{C}^{2}: P_{\Delta^{m(k)}}(z, w)=0\right\}
$$

Theorem

- For every $k \in(0,1), C_{\Delta^{m(k)}}$ is a Harnack curve of genus 1.
- Every Harnack curve of genus 1 with $(z, w) \leftrightarrow\left(z^{-1}, w^{-1}\right)$ symmetry arises for such a massive Laplacian.

