
T Z-  L 
 

Béatrice de Tilière
University Paris 6

j.w. with Cédric Boutillier (Paris 6), Kilian Raschel (Tours)

Séminaire Philippe Flajolet
Institut Henri Poincaré, le 4 juin 2015



I 

I A graph G is isoradial if it can be embedded in the plane in such
a way that all (inner) faces are inscribed in a circle of radius 1,
and such that the center of the circles are in the interior of the
faces (Duffin-Mercat-Kenyon).



I 

I A graph G is isoradial if it can be embedded in the plane in such
a way that all (inner) faces are inscribed in a circle of radius 1,
and such that the center of the circles are in the interior of the
faces (Duffin-Mercat-Kenyon).



I 

I A graph G is isoradial if it can be embedded in the plane in such
a way that all (inner) faces are inscribed in a circle of radius 1,
and such that the center of the circles are in the interior of the
faces (Duffin-Mercat-Kenyon).



I 

I A graph G is isoradial if it can be embedded in the plane in such
a way that all (inner) faces are inscribed in a circle of radius 1,
and such that the center of the circles are in the interior of the
faces (Duffin-Mercat-Kenyon).



I 

I A graph G is isoradial if it can be embedded in the plane in such
a way that all (inner) faces are inscribed in a circle of radius 1,
and such that the center of the circles are in the interior of the
faces (Duffin-Mercat-Kenyon).



I 

I A graph G is isoradial if it can be embedded in the plane in such
a way that all (inner) faces are inscribed in a circle of radius 1,
and such that the center of the circles are in the interior of the
faces (Duffin-Mercat-Kenyon).



C  , 

I Take the centers of the circumcircles (embedded dual vertices)



C  , 

I Join them to the vertices of G of the face they correspond to.
⇒ Corresponding rhombus graph G�.
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C  , 

I To every edge e corresponds a rhombus and a half-angle θe.

e

θe



D  

I Let f be a function defined on vertices of G and G∗.
I It is discrete holomorphic if, for every rhombus xwyz,

f (y) − f (x)
y − x

=
f (w) − f (z)

w − z
.

yx

z

w



Z-    

I Finite isoradial graph G = (V,E).

I Set of configurations on G: C(G).



Z-    

I Parameters: positive weight function on edges/vertices

w depends on angles (θe)e∈E

I Boltzmann probability measure on configurations:

∀C ∈ C(G), P(C) =
e−Ew(C)

Z(G,w)
,

where Z(G,w) =
∑

C∈C(G)
e−Ew(C) is the partition function.
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I Star-triangle transformation preserves isoradiality.
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Z-    
x3

x1 x2

x3

x1x2

I Decompose the partition function according to the possible
configurations outside of the star/triangle.

I The model is Z-invariant (Baxter) if ∃ constant C, s.t. for all
outer configuration C(x1, x2, x3):

Z(GY,w,C(x1, x2, x3)) = CZ(G∆,w,C(x1, x2, x3)).
(Yang-Baxter equations)

⇒ Transfer matrices commute (Onsager, 1944).
⇒ Probabilities are not affected by Y − ∆ transformations.

Probabilities should only depend on the local geometry of the graph
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∀σ ∈ {−1, 1}V, PIsing(σ) =

exp
( ∑
e=xy∈E

J(θe)σxσy.

)
ZIsing(G, J)

,



T (B)
The Ising model is Z-invariant if

∀ e ∈ E, J(θe) =
1
2
log

1 + sn
(
2K
π θe|k

)
cn

(
2K
π θe|k

)  , k ∈ [0, 1).

. K =
∫ π

2
0

1
√
1−k2 sin τ

dτ: Complete elliptic integral of the first kind.

. sn, cn: Jacobi elliptic functions.

I If k = 0: ∀ e ∈ E, J(θe) =
1
2
log

(
1 + sin θe

cos θe

)
.

I The model is critical (Li, Duminil-Copin-Cimasoni, Lis),
conformally invariant (Chelkak - Smirnov).

I Local expressions for probabilities of the corresponding dimer
model (Boutillier-dT).

I k , 0: (Boutillier-dT-Raschel).



T L [...]     (K)

I Infinite isoradial graph G.
I Conductances: ρ = (tan(θe))e∈E.
I Let ∆ be the discrete Laplacian on G represented by the matrix ∆:

∀ x, y ∈ V, ∆(x, y) =


ρ(θxy) if x ∼ y

−
∑

y∼x ρ(θxy) if x = y

0 otherwise.

I The Laplacian ∆ is an operator from CV to CV

∀ f ∈ CV, (∆f )(x) =
∑
y∈V

∆(x, y)f (y) =
∑
y∼x

ρ(θxy)(f (y) − f (x)).

I The restriction to G of a discrete holomorphic function is discrete
harmonic.



T L [...]     (K)
I The Green function G is the inverse of the Laplacian: ∆G = Id.
I Discrete exponential function (Mercat):

Exp : V� × V� × C→ C. Let x, y ∈ V�.

Path in E�: x = x1, . . . , xn = y,

Expxj,xj+1(λ) =
(λ + eiαj)
(λ − eiαj)

Expx,y(λ) =

n−1∏
j=1

Expxj,xj+1(λ).

y
x

xj

xj+1eiαj

T (K)
The Green function has the following explicit expression:

∀ x, y ∈ V, G(x, y) = −
1

8π2i

∮
γ
Expx,y(λ) log(λ) dλ,

where γ is a contour in C containing all the poles of Expx,y.



R   

I Spanning trees of G

I Boltmann probability measure:

∀T ∈ T(G), Ptree(T) =

∏
e∈T ρ(θe)

Ztree(G, ρ)
.



R   

T (K)

Ztree(G, ρ) = det∆(r),

where ∆(r) is the matrix ∆ from which the line and column
corresponding to the vertex r are removed.

T (B - P)
For every subset of edges {e1, . . . , ek} of G:

Ptree(e1, . . . , ek) = det[(H(ei, ej))1≤i,j≤k],

where H is the transfer impedance matrix. Coefficients are differences
of Green functions.

I Kenyon’s results yield local formulas for Ptree and for the free
energy when the graph is infinite.



Z-   

θ2

θ3

π
2 − θ2

π
2 − θ3

π
2 − θ1

θ1

ρ(θ3)

ρ(θ2)

x3

x2x1

ρ(θ1)
x1

x3

x2ρ(π2 − θ3)

ρ(π2 − θ2) ρ(π2 − θ1)

Decompose Ztree(G, ρ) according to the possible configurations outside
of the Y − ∆.
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x3

x1 x2

x3

x1 x2

Example: x1, x2, x3 are connected to r

CY C∆

{x1, x2, x3}
∑3
`=1 ρ(θ`) 1

{xi, xj} ρ(θk)
(∑

`,k ρ(θ`)
) ∑

`,k ρ(π2 − θ`)
{xi}

∏3
`=1 ρ(θ`)

∑3
`=1

∏
`′,` ρ(π2 − θ`′)

{∅} 0 0

R
The spannig tree model with conductances ρ = (tan(θe))e∈E is
Z-invariant [Kenelly].
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I Let k ∈ [0, 1) (the elliptic modulus), k′ =
√
1 − k2, θ̄e = 2K

π θe.
I Define conductances and masses on G:

∀ e ∈ E, ρ(θe) = sc(θ̄e | k)

∀ x ∈ V, m2(x) =

n∑
j=1

A(θ̄j|k) −
2
k′

(K − E) −
n∑
j=1

ρ(θ̄j|k).

I E =
∫ π

2
0

√
1 − k2 sin τdτ: complete elliptic int. of the second kind.

I E(u|k) =
∫ u
0 dn2(v|k)dv: Jacobi epsilon function.

I A(u|k) = − i
k′E(iu|k′).



F   L

I The massive Laplacian ∆m(k) on G is represented by the matrix :

∀ x, y ∈ V, ∆m(k)(x, y) =


ρ(θxy) if x ∼ y

−m2(x) −
∑

y∼x ρ(θxy) if x = y

0 otherwise.

I The massive Laplacian ∆m(k) is the operator:

∀ f ∈ CV, (∆m(k)f )(x) =
∑
y∼x

ρ(θxy)(f (y) − f (x)) −m2(x)f (x).

I The massive Green function Gm(k) is the inverse of the massive
Laplacian: ∆m(k)Gm(k) = Id.



T    
I Let T(k) = C/(4KZ + i4K′Z).

Exp( · |k) : V� × V� × T(k)→ C.

Let x, y ∈ V�.

Path in E�: x = x1, . . . , xn = y,

Expxj,xj+1(u|k) = −i
√
k′ sc(uᾱj), uᾱj =

u − ᾱj

2
.

Expx,y(u|k) =

n−1∏
j=1

Expxj,xj+1(u|k).

y
x

xj

xj+1eiαj

L
The discrete massive exponential function is well defined, i.e.,
independent of the choice of the path from x to y.

P
For every u ∈ T(k), for every y ∈ V, the function Exp(·,y)(u|k) ∈ CV is
massive harmonic: ∆m Exp(·,y)(u|k) = 0.



L     G 
T
For every pair of vertices x, y of G,

Gm(k)(x, y) = −
k′

4iπ

∮
γx,y

H(u|k)Expx,y(u|k)du,

where γx,y is the following contour, H(u|k) = u
4K + K′

π Z(u/2|k) and Z is
Jacobi zeta function.

6
6
6
6

•

•

�

•

•

•

−2K

−2K − 2iK′

−2K + 2iK′ 2K + 2iK′

2K − 2iK′−2iK′

γ ��� ���

�

?
? 6

6

-
-�

Torus T(k), contour of γx,y. White squares are poles of Expx,y( · |k), the black
square is the pole of H.
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Idea of the proof (Kenyon)
I Show that ∀ x, y ∈ V, ∆m(k)Gm(k)(x, y) = δ(x, y).
I If x , y, deform the contours into a common contour and use the

fact that massive exponential functions are massive harmonic.
I If x = y, explicit residue computation. Use the jump of the

function H on the torus T(k).
Consequences
I Locality of the formula.
I Asymptotics of Gm(k)(x, y), when |x − y| → ∞.
I Explicit computations.



E  

If x ∼ y in G, then

x yθ

eiβeiα
Expx,y(u) = −(k′)2 sc(uᾱ) sc(uβ̄).

Gm(k)(x, y) =
(k′)2

4iπ

∮
γ
H(u) sc(uᾱ) sc(uβ̄)du

=
(k′)2

4iπ

∮
γ
H(u) sc

(u
2

)
sc

(
u − 2θ̄

2

)
du, (change of variable)

=
H(2K + 2θ̄) −H(2K)

sc(θ̄)
−

K′k′

π dn(θ̄)
, (residues 2K, 2K + 2θ̄, 2iK′)

=
H(2θ̄)
sc(θ̄)

−
K′ dn(θ̄)

π
, (addition formula for H).



L     

I Rooted spanning forests

I Boltmann probability measure:

∀F ∈ F(G), Pforest(F) =

∏
T∈F,T rooted in x

(∏
e∈T ρ(θe)

)
m2(x)

Zforest(G, ρ,m2)
.

I Explicit expression for probability measure on spanning forests of
an infinite isoradial graph, periodic or not.
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CY C∆

{x1,x2,x3} m2(x0)+
∑3
`=1 ρ(θ`) 1

{xi,xj} ρ(θk)[∑
`,k ρ(θ`)]+m2(x0)ρ(θk)+

m2(xk)[∑3
`=1 ρ(θ`)+m2(x0)]

∑
`,k ρ(K−θ`)+m

′2(xk)

{xi}
∏3
`=1 ρ(θ`)+m2(x0)

∏
`,i ρ(θ`)+∑

`,i m
2(x`)ρ(θ

{i,`})[
∑
`′∈{i,`} ρ(θ`′ )]+

m2(x0)[m2(xk)ρ(θj)+m
2(xj)ρ(θk)]+

[∏
`,i m

2(x`)][∑3
`=1 ρ(θ`)+m2(x0)]

∑3
`=1

∏
`′,` ρ(K−θ`′ )+∑

`,i m
′2(x`)[∑

`′∈{i,`} ρ(K−θ`′ )]+
∏
`,i m

′2(x`)

{∅} [∑3
i=0 m2(xi)][∏3

i=1 ρ(θi)]+m2(x0)
∑3
i=1 m

2(xi)
∏
`,i ρ(θ`)+∑3

i=1[
∏
`,i m

2(x`)]ρ(θi)[∑
`,i ρ(θi)]+

m2(x0)
∑3
i=1[

∏
`,i m

2(x`)]ρ(θi)+

[∏3
i=1 m

2(xk)][∑3
i=1 ρ(θi)+m2(x0)]

[∑3
i=1 m

′2(xi)
]
[∑3

i=1
∏
`,i ρ(K−θ`)]+∑3

i=1

[∏
`,i m

′2(x`)
]
[∑

i,` ρ(K−θ`)]+∏3
i=1 m

′2(xk)



Z-    

T
For every k ∈ [0, 1), the rooted spanning forest model with weights
ρ,m2, is Z-invariant.

I When k = 0, ρ(θe) = tan(θe),m2(x) = 0: one recovers the “critical”
case.



W   G  Z2-

Exhaustion by toroidal graphs G: Gn = G/nZ2.

The free energy is:

f (k) = − lim
n→∞

1
n2

logZforest(Gn, ρ,m2).

T
The free energy is equal to

f (k) = |V1|

∫ K

0
4H′(2θ) log sc(θ)dθ +

∑
e∈E1

∫ θe

0

2H(2θ)sc′(θ)
sc(θ)

dθ,

When k = 0, one recovers Kenyon’result.



S   

P
When k→ 0,

f (k) = f (0) − k2 log(k)|V1| + O(k2).

where f (0) is the free energy of spanning trees.



S 
I Fundamental domain: G1.

z, 1z

w, 1
w

I ∆m(k)(z,w): massive Laplacian matrix of G1, with weights
z, 1z ,w,

1
w .

I Characteristic polynomial: P∆m(k)(z,w) = det∆m(k)(z,w).
I Spectral curve of the massive Laplacian:

C∆m(k) = {(z,w) ∈ C2 : P∆m(k)(z,w) = 0}

T
I For every k ∈ (0, 1), C∆m(k) is a Harnack curve of genus 1.
I Every Harnack curve of genus 1 with (z,w)↔ (z−1,w−1) symmetry
arises for such a massive Laplacian.


