# When orientability makes a difference? 

Maciej Dołęga, LIAFA, Université Paris Diderot \&
Uniwersytet Wrocławski
joint work with
Guillaume Chapuy, CNRS \& LIAFA, Université Paris Diderot, Valentin Féray, Universität Zürich
I. Maps

## Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces.

## Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces.


Projective plane


Torus

## Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces.


This is a map


This is not a map!

## Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces.


This is a map


This is a map too.

## Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces.


This is a map
$=$



This is a map too.
$=$


## Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number $g$ is the type of surface $\mathbb{S}$ if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

## Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number $g$ is the type of surface $\mathbb{S}$ if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- orientable



## Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number $g$ is the type of surface $\mathbb{S}$ if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- non-orientable



## Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number $g$ is the type of surface $\mathbb{S}$ if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- orientable,
- non-orientable.

We will say that a map $M$ is orientable/non-orientable of type $g$ if the underlying surface is orientable/non-orientable of type $g$.

## Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number $g$ is the type of surface $\mathbb{S}$ if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- orientable,
- non-orientable.

We will say that a map $M$ is orientable/non-orientable of type $g$ if the underlying surface is orientable/non-orientable of type $g$.


Non-orientable map of type $1 / 2$


Orientable map of type 1

## Rooted maps

Each edge consists of two half-edges.


## Rooted maps

Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called a corner.


## Rooted maps

Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called a corner. A map is rooted if it is equipped with a distinguished half-edge (called the root), together with a distinguished side of this half-edge.


## Rooted maps

Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called a corner. A map is rooted if it is equipped with a distinguished half-edge (called the root), together with a distinguished side of this half-edge.


[^0]
## II. Enumeration of maps

## Number of maps with $n$ edges

Question: What is the number $m_{\mathbb{S}}(n)$ of maps with $n$ edges on a surface $\mathbb{S}$ ?

## Number of maps with $n$ edges

Question: What is the number $m_{\mathbb{S}}(n)$ of maps with $n$ edges on a surface $\mathbb{S}$ ?

- When $\mathbb{S}=$ sphere, then $m_{\mathbb{S}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}([$ Tutte 1960]);


## Number of maps with $n$ edges

Question: What is the number $m_{\mathbb{S}}(n)$ of maps with $n$ edges on a surface $\mathbb{S}$ ?

- When $\mathbb{S}=$ sphere, then $m_{\mathbb{S}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}([$ Tutte 1960]);
- When $\chi(\mathbb{S})=2-2 g$, then $m_{\mathbb{S}}(n) \sim c(\mathbb{S}) \cdot n^{5(g-1) / 2} 12^{n}$, where $c(\mathbb{S})$ is a constant ([Bender, Canfield 1986]);


## Number of maps with $n$ edges

Question: What is the number $m_{\mathbb{S}}(n)$ of maps with $n$ edges on a surface $\mathbb{S}$ ?

- When $\mathbb{S}=$ sphere, then $m_{\mathbb{S}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}([$ Tutte 1960]);
- When $\chi(\mathbb{S})=2-2 g$, then $m_{\mathbb{S}}(n) \sim c(\mathbb{S}) \cdot n^{5(g-1) / 2} 12^{n}$, where $c(\mathbb{S})$ is a constant ([Bender, Canfield 1986]);


## Combinatorial explanation:

- When $\mathbb{S}=$ sphere: bijection with labeled trees [Cori, Vauquelin 1981]
- When $\chi(\mathbb{S})=2-2 g$, and $\mathbb{S}$ is ORIENTABLE: bijection with labeled tree-like structures ([Marcus, Schaeffer 1996]);


## Number of maps with $n$ edges

Question: What is the number $m_{\mathbb{S}}(n)$ of maps with $n$ edges on a surface $\mathbb{S}$ ?

- When $\mathbb{S}=$ sphere, then $m_{\mathbb{S}}(n)=\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}([$ Tutte 1960]);
- When $\chi(\mathbb{S})=2-2 g$, then $m_{\mathbb{S}}(n) \sim c(\mathbb{S}) \cdot n^{5(g-1) / 2} 12^{n}$, where $c(\mathbb{S})$ is a constant ([Bender, Canfield 1986]);


## Combinatorial explanation:

- When $\mathbb{S}=$ sphere: bijection with labeled trees [Cori, Vauquelin 1981]
- When $\chi(\mathbb{S})=2-2 g$, and $\mathbb{S}$ is ORIENTABLE: bijection with labeled tree-like structures ([Marcus, Schaeffer 1996]);
- When $\chi(\mathbb{S})=2-2 g$, and $\mathbb{S}$ is NON-ORIENTABLE: no combinatorial interpretation was known.


## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.

## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on $\mathbb{S}$ with $n$ edges, $l$ vertices and $k$ faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces, $l$ black vertices and $k$ white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.


## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on $\mathbb{S}$ with $n$ edges, $l$ vertices and $k$ faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces, $l$ black vertices and $k$ white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.



## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on $\mathbb{S}$ with $n$ edges, $l$ vertices and $k$ faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces, $l$ black vertices and $k$ white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.



## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on $\mathbb{S}$ with $n$ edges, $l$ vertices and $k$ faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces, $l$ black vertices and $k$ white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.



## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on $\mathbb{S}$ with $n$ edges, $l$ vertices and $k$ faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces, $l$ black vertices and $k$ white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.



## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on $\mathbb{S}$ with $n$ edges, $l$ vertices and $k$ faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces, $l$ black vertices and $k$ white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.



## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on $\mathbb{S}$ with $n$ edges, $l$ vertices and $k$ faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces, $l$ black vertices and $k$ white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.



## Maps with $n$ edges vs. bipartite quadrangulations with $n$ faces

Map $M$ is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on $\mathbb{S}$ with $n$ edges, $l$ vertices and $k$ faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces, $l$ black vertices and $k$ white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

| Number of maps with $n$ edges |
| :---: |
| on $\mathbb{S}$ |$=$| Number of bipartite |
| :---: |
| quadrangulations with $n$ faces on $\mathbb{S}$ |

## Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive, then the map is called well-labeled.


## Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 . If in addition we have:
- all the vertex labels are positive, then the map is called well-labeled.



## Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive, then the map is called well-labeled.

this map is not labeled


## Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive, then the map is called well-labeled.

this map is labeled and well-labeled as well


## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;


## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;



## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;



## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;



## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;



## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;



## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;



## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;



## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;



## Orientable case

Theorem [Marcus, Schaeffer 1996]
There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;


Are non-orientable maps different?

## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;


## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,


## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,



## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular



## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular $=$ dual graph has a tree-like structure,



## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!



## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- position of blue and black edges forces the position of red edges,



## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- position of blue and black edges forces the position of red edges,



## General case

Theorem [Chapuy, D. 2015]
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- If the construction of blue graph is local then it is invertible and it leads to BIJECTION!



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Step 0: Initialization



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


## Step 0: Initialization



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(D E G)$ on the same surface:


## Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.

or



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(D E G)$ on the same surface:


## Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.
- we choose an edge $e$ in $F$ by the following rule:



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Step 2: Attaching a new branch of blue edges labeled by $i$ starting across $e$


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Step 2: Attaching a new branch of blue edges labeled by $i$ starting across $e$


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(D E G)$ on the same surface:


## Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.
- we choose an edge $e$ in $F$ by the following rule:



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Step 2: Attaching a new branch of blue edges labeled by $i$ starting across $e$


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(D E G)$ on the same surface:


Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(D E G)$ on the same surface:


## Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


## Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(D E G)$ on the same surface:


## Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(D E G)$ on the same surface:


## Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.
- we choose an edge $e$ in $F$ by the following rule:



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(D E G)$ on the same surface:


## Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face $F$ having the following properties: $F$ is of type $(i-1, i, i+1, i)$, and $F$ has exactly one blue vertex already placed inside it.
- we choose an edge $e$ in $F$ by the following rule:



## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Step 2: Attaching a new branch of blue edges labeled by $i$ starting across $e$


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Proposition:
DEG $\nabla(\mathfrak{q})$ is formed by a unique oriented cycle encircling root vertex $v_{0}$, to which oriented trees are attached. After the construction of $\nabla(\mathfrak{q})$ is complete, each face of $\mathfrak{q}$ is of one of the two types:


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Proposition:
DEG $\nabla(\mathfrak{q})$ is formed by a unique oriented cycle encircling root vertex $v_{0}$, to which oriented trees are attached. After the construction of $\nabla(\mathfrak{q})$ is complete, each face of $\mathfrak{q}$ is of one of the two types:


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Proposition:
DEG $\nabla(\mathfrak{q})$ is formed by a unique oriented cycle encircling root vertex $v_{0}$, to which oriented trees are attached. After the construction of $\nabla(\mathfrak{q})$ is complete, each face of $\mathfrak{q}$ is of one of the two types:


## General case (II)

For a given quadrangulation $\mathfrak{q}$ we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:


Proposition:
DEG $\nabla(\mathfrak{q})$ is formed by a unique oriented cycle encircling root vertex $v_{0}$, to which oriented trees are attached. After the construction of $\nabla(\mathfrak{q})$ is complete, each face of $\mathfrak{q}$ is of one of the two types:


## Corollary:

Red $\operatorname{map} \phi(\mathfrak{q})$ is a one-face well-labeled rooted map with $n$ edges, where $n$ is the number of faces of $\mathfrak{q}$.

## General case (III)

$\left\{\right.$ rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)\}$
$\left\{\right.$ rooted, WELL-LABELED, one-face maps on $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)\}$

## General case (III)

$\left\{\right.$ rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)\}$
$\left\{\right.$ rooted, WELL-LABELED, one-face maps on $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)\}$

$$
\Downarrow
$$

\{rooted, POINTED bipartite quadrangulations on $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the pointed vertex $\left.(i \geq 1)\right\}$

$$
\leftrightarrow
$$

\{rooted, LABELED, one-face maps on $\mathbb{S}$ equipped with a sign $\epsilon \in\{+,-\}$ with $N_{i}$ vertices of label $\left.i+\left(\ell_{\min }-1\right)(i \geq 1)\right\}$

## General case (III)

\{rooted, bipartite quadrangulations on $\mathbb{S}$ with $n$ faces and $N_{i}$ vertices at distance $i$ from the root vertex $(i \geq 1)\}$
$\leftrightarrow$
$\left\{\right.$ rooted, WELL-LABELED, one-face maps on $\mathbb{S}$ with $n$ edges and $N_{i}$ vertices of label $i(i \geq 1)\}$
\{rooted, POINTED bipartite quadrangulations on $\mathbb{S}$ with $n$ faces and
$N_{i}$ vertices at distance $i$ from the pointed vertex $\left.(i \geq 1)\right\}$
$\leftrightarrow$
\{rooted, LABELED, one-face maps on $\mathbb{S}$ equipped with a sign $\epsilon \in\{+,-\}$ with $N_{i}$ vertices of label $\left.i+\left(\ell_{\min }-1\right)(i \geq 1)\right\}$

Double rooting trick and Hall's marriage theorem!

## Applications - enumeration

Theorem [Bender, Canfield 1986]
Let

$$
Q_{\mathbb{S}}(t):=\sum_{n \geq 0} \overrightarrow{q_{\mathbb{S}},} t^{n}=\sum_{n \geq 0}(n+2-2 h) \vec{q}_{\mathbb{S}}(n) t^{n}
$$

be the generating function of rooted maps of type $g$ pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T=1+3 t T^{2}, \quad U=t T^{2}\left(1+U+U^{2}\right)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in $U$.

## Applications - enumeration

Theorem [Bender, Canfield 1986]
Let

$$
Q_{\mathbb{S}}(t):=\sum_{n \geq 0} \overrightarrow{q_{\mathbb{S}}, t^{n}}=\sum_{n \geq 0}(n+2-2 h) \vec{q}_{\mathbb{S}}(n) t^{n}
$$

be the generating function of rooted maps of type $g$ pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T=1+3 t T^{2}, \quad U=t T^{2}\left(1+U+U^{2}\right)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in $U$.

Corollary [Bender, Canfield 1986]
When $\chi(\mathbb{S})=2-2 g$, then there exists a constant $c(\mathbb{S})$ such that the number $m_{\mathbb{S}}(n)$ of rooted maps with $n$ edges on $\mathbb{S}$ satisfies:

$$
m_{\mathbb{S}}(n) \sim c(\mathbb{S}) \cdot n^{5(g-1) / 2} 12^{n}
$$

## Applications - enumeration

Theorem [Bender, Canfield 1986]
Let

$$
Q_{\mathbb{S}}(t):=\sum_{n \geq 0} \overrightarrow{q_{\mathbb{S}},} t^{n}=\sum_{n \geq 0}(n+2-2 h) \vec{q}_{\mathbb{S}}(n) t^{n}
$$

be the generating function of rooted maps of type $g$ pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T=1+3 t T^{2}, \quad U=t T^{2}\left(1+U+U^{2}\right)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in $U$.

Corollary [Bender, Canfield 1986]
When $\chi(\mathbb{S})=2-2 g$, then there exists a constant $c(\mathbb{S})$ such that the number $m_{\mathbb{S}}(n)$ of rooted maps with $n$ edges on $\mathbb{S}$ satisfies:

$$
m_{\mathbb{S}}(n) \sim c(\mathbb{S}) \cdot n^{5(g-1) / 2} 12^{n}
$$

## Remark

Our main theorem allows us to recover Bender and Canfield results (that was already recovered using combinatorial methods in the orientable case [Chapuy, Marcus, Schaeffer 2009]). In particular we can give some explicit (but very complicated) formula for the constant $c(\mathbb{S})$.

## Applications - random maps

Let $(\mathcal{M}, v)$ be a map with distinguished vertex $v$. We define:

- radius of a $\operatorname{map} \mathcal{M}$ centered at $v$ by the quantity

$$
R(\mathcal{M}, v)=\max _{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u)
$$

- profile of distances from the distinguished point $v$ (for any $r>0$ ) by:

$$
I_{(\mathcal{M}, v)}(r)=\#\left\{u \in V(\mathcal{M}): d_{\mathcal{M}}(v, u)=r\right\}
$$

## Applications - random maps

Let $(\mathcal{M}, v)$ be a map with distinguished vertex $v$. We define:

- radius of a $\operatorname{map} \mathcal{M}$ centered at $v$ by the quantity

$$
R(\mathcal{M}, v)=\max _{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u)
$$

- profile of distances from the distinguished point $v$ (for any $r>0$ ) by:

$$
I_{(\mathcal{M}, v)}(r)=\#\left\{u \in V(\mathcal{M}): d_{\mathcal{M}}(v, u)=r\right\}
$$

## Theorem [Chapuy, D. 2015]

Let $q_{n}$ be uniformly distributed over the set of rooted, bipartite quadrangulations with $n$ faces on $\mathbb{S}$, let $v_{0}$ be a root vertex of $q_{n}$ and let $v_{*}$ be uniformly chosen vertex of $q_{n}$. Then, there exists a continuous, stochastic process $L^{\mathbb{S}}=\left(L_{t}^{\mathbb{S}}, 0 \leq t \leq 1\right)$ such that:
$\bullet \frac{9}{8 n}{ }^{1 / 4} R\left(q_{n}, v_{*}\right) \rightarrow \sup L^{\mathbb{S}}-\inf L^{\mathbb{S}} ;$

- $\frac{9}{8 n}{ }^{1 / 4} d_{q_{n}}\left(v_{0}, v_{*}\right) \rightarrow \sup L^{\mathbb{S}}$;
- $\frac{I_{\left(q_{n}, v_{*}\right)}\left((8 n / 9)^{1 / 4} \cdot\right)}{n+2-2 h} \rightarrow \mathcal{I}^{\mathbb{S}}$,
where $\mathcal{I}^{\mathbb{S}}$ is defined as follows: for every non-negative, measurable $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$,

$$
\left\langle\mathcal{I}^{\mathbb{S}}, g\right\rangle=\int_{0}^{1} d t g\left(L_{t}^{\mathbb{S}}-\inf L^{\mathbb{S}}\right)
$$

## Further directions

- Generalization of the Bouttier-Di Francesco-Guitter bijection for nonorientable maps (bijection between bipartite $2 p$-angulations, or, more generally bipartite maps with $n$ faces of prescribed degrees and some kind of nonorientable mobiles?)


## Further directions

- Generalization of the Bouttier-Di Francesco-Guitter bijection for nonorientable maps (bijection between bipartite $2 p$-angulations, or, more generally bipartite maps with $n$ faces of prescribed degrees and some kind of nonorientable mobiles?)
- Studying random maps on ANY surface in Gromov-Hausdorff topology (using our bijection and already established methods we (Bettinelli, Chapuy, D.) can prove a convergence of bipartite quadrangulations up to extraction of SUBSEQUENCE - what about full convergance)?).
III. Enumeration - different approach


## Enumeration via symmetric functions (I)

Let $\mathcal{M}$ be a bipartite map with $n$ edges.

- Degrees of white vertices gives a partition $\mu$ of $n$;
- Degrees of black vertices gives a partition $\nu$ of $n$;
- Degree of faces are even and sum up to $2 n$, hence degrees of faces divided by 2 gives a partition $\tau$ of $n$.
We say that a $\operatorname{map} \mathcal{M}$ has type $(\mu, \nu, \tau)$.


## Enumeration via symmetric functions (I)

Let $\mathcal{M}$ be a bipartite map with $n$ edges.

- Degrees of white vertices gives a partition $\mu$ of $n$;
- Degrees of black vertices gives a partition $\nu$ of $n$;
- Degree of faces are even and sum up to $2 n$, hence degrees of faces divided by 2 gives a partition $\tau$ of $n$.
We say that a map $\mathcal{M}$ has type $(\mu, \nu, \tau)$.


## Example:



Bipartite map $\mathcal{M}$ with 7 edges on a projective plane. This map has type ( $\mu, \nu, \tau$ ) with:

## Enumeration via symmetric functions (I)

Let $\mathcal{M}$ be a bipartite map with $n$ edges.

- Degrees of white vertices gives a partition $\mu$ of $n$;
- Degrees of black vertices gives a partition $\nu$ of $n$;
- Degree of faces are even and sum up to $2 n$, hence degrees of faces divided by 2 gives a partition $\tau$ of $n$.
We say that a map $\mathcal{M}$ has type $(\mu, \nu, \tau)$.


## Example:



Bipartite map $\mathcal{M}$ with 7 edges on a projective plane. This map has type ( $\mu, \nu, \tau$ ) with:

- $\mu=(3,2,2)$;


## Enumeration via symmetric functions (I)

Let $\mathcal{M}$ be a bipartite map with $n$ edges.

- Degrees of white vertices gives a partition $\mu$ of $n$;
- Degrees of black vertices gives a partition $\nu$ of $n$;
- Degree of faces are even and sum up to $2 n$, hence degrees of faces divided by 2 gives a partition $\tau$ of $n$.
We say that a map $\mathcal{M}$ has type $(\mu, \nu, \tau)$.


## Example:



Bipartite map $\mathcal{M}$ with 7 edges on a projective plane. This map has type ( $\mu, \nu, \tau$ ) with:

- $\mu=(3,2,2)$;
- $\nu=(3,2,2)$;


## Enumeration via symmetric functions (I)

Let $\mathcal{M}$ be a bipartite map with $n$ edges.

- Degrees of white vertices gives a partition $\mu$ of $n$;
- Degrees of black vertices gives a partition $\nu$ of $n$;
- Degree of faces are even and sum up to $2 n$, hence degrees of faces divided by 2 gives a partition $\tau$ of $n$.
We say that a map $\mathcal{M}$ has type $(\mu, \nu, \tau)$.


## Example:



Bipartite map $\mathcal{M}$ with 7 edges on a projective plane. This map has type ( $\mu, \nu, \tau$ ) with:

- $\mu=(3,2,2)$;
- $\nu=(3,2,2)$;
- $\tau=(4,3)$;


## Enumeration via symmetric functions (II)

- Let $\mu, \nu, \tau \vdash n$ and let $\mathcal{M}_{(\mu, \nu, \tau)}\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}\right.$, respectively) be a set of ORIENTABLE (ALL, respectively) rooted, bipartite maps of type ( $\mu, \nu \tau$ ).


## Enumeration via symmetric functions (II)

- Let $\mu, \nu, \tau \vdash n$ and let $\mathcal{M}_{(\mu, \nu, \tau)}\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}\right.$, respectively) be a set of ORIENTABLE (ALL, respectively) rooted, bipartite maps of type $(\mu, \nu \tau)$.
- We define two generating functions:
- $\phi(x, y, z):=\sum_{n \geq 1} t^{n} \sum_{\mu, \nu \tau \vdash n} \sum_{m \in \mathcal{M}_{(\mu, \nu, \tau)}} p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)$;
- $\widetilde{\phi}(x, y, z):=\sum_{n \geq 1} t^{n} \sum_{\mu, \nu \tau \vdash n} \sum_{m \in \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}} p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)$;
where $p_{\lambda}(x)$ is a power-sum symmetric function, i.e.:

$$
p_{\lambda}(x):=\prod_{i} p_{\lambda_{i}}(x) ; \quad p_{0}(x):=1 ; \quad p_{i}(x):=x_{1}^{i}+x_{2}^{i}+\cdots \text { for } i \geq 1 .
$$

## Enumeration via symmetric functions (II)

- Let $\mu, \nu, \tau \vdash n$ and let $\mathcal{M}_{(\mu, \nu, \tau)}\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}\right.$, respectively) be a set of ORIENTABLE (ALL, respectively) rooted, bipartite maps of type ( $\mu, \nu \tau$ ).
- We define two generating functions:
- $\phi(x, y, z):=\sum_{n \geq 1} t^{n} \sum_{\mu, \nu \tau \vdash n} \sum_{m \in \mathcal{M}_{(\mu, \nu, \tau)}} p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)$;
- $\widetilde{\phi}(x, y, z):=\sum_{n \geq 1} t^{n} \sum_{\mu, \nu \tau \vdash n} \sum_{m \in \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}} p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)$;
where $p_{\lambda}(x)$ is a power-sum symmetric function, i.e.:

$$
p_{\lambda}(x):=\prod_{i} p_{\lambda_{i}}(x) ; \quad p_{0}(x):=1 ; \quad p_{i}(x):=x_{1}^{i}+x_{2}^{i}+\cdots \text { for } i \geq 1 .
$$

## Theorem

- $\phi(x, y, z)=t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}(x) s_{\lambda}(y) s_{\lambda}(z) t^{n}\right)$ [Jackson, Visentin 1990].
- $\widetilde{\phi}(x, y, z)=2 t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{1}{H_{2 \lambda}} Z_{\lambda}(x) Z_{\lambda}(y) Z_{\lambda}(z) t^{n}\right)$ [Goulden, Jackson 1996].
where $H_{\lambda}=\prod_{\square \in \lambda}(a(\square)+\ell(\square)+1)$ is a hook formula, $s_{\lambda}(x)$ is Schur polynomial and $Z_{\lambda}$ is Zonal polynomial.


## Enumeration via symmetric functions (II)

- Let $\mu, \nu, \tau \vdash n$ and let $\mathcal{M}_{(\mu, \nu, \tau)}\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}\right.$, respectively) be a set of ORIENTABLE (ALL, respectively) rooted, bipartite maps of type $(\mu, \nu \tau)$.
product of
- We define two generating functions:
- $\phi(x, y, z):=\sum_{n \geq 1} t^{n} \sum_{\mu, \nu \tau \vdash n} \sum_{m \in \mathcal{M}_{(\mu, \nu, \tau)}} p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)$;
- $\widetilde{\phi}(x, y, z):=\sum_{n \geq 1} t^{n} \sum_{\mu, \nu \tau \vdash n} \sum_{m \in \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}} p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)$;
where $p_{\lambda}(x)$ is a power-sum symmetric function, i.e.:

$$
p_{\lambda}(x):=\prod_{i} p_{\lambda_{i}}(x) ; \quad p_{0}(x):=1 ; \quad p_{i}(x):=x_{1}^{i}+x_{2}^{i}+\cdots \text { for } i \geq 1 .
$$

## Theorem

- $\phi(x, y, z)=t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} H_{\lambda}{ }_{{ }_{\lambda \lambda}(x) s_{\lambda}(y) s_{\lambda}(z) t} t^{n}\right)$ [Jackson, Visentin 1990].
- $\widetilde{\phi}(x, y, z)=2 t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{1}{H_{2 \lambda}} Z_{\lambda}(x) Z_{\lambda}(y) Z_{\lambda}(z) t^{n}\right)$ [Goulden, Jackson 1996],
where $H_{\lambda}=\prod_{\square \in \lambda}(a(\square)+\ell(\square)+1)$ is a hook formula, $s_{\lambda}(x)$ is Schur polynomial and $Z_{\lambda}$ is Zonal polynomial.


## Enumeration via symmetric functions (II)

- Let $\mu, \nu, \tau \vdash n$ and let $\mathcal{M}_{(\mu, \nu, \tau)}\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}\right.$, respectively) be a set of ORIENTABLE (ALL, respectively) rooted, bipartite maps of type $(\mu, \nu \tau)$.
product of
- We define two generating functions:
- $\phi(x, y, z):=\sum_{n \geq 1} t^{n} \sum_{\mu, \nu \tau \vdash n} \sum_{m \in \mathcal{M}_{(\mu, \nu, \tau)}} p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)$;
- $\widetilde{\phi}(x, y, z):=\sum_{n \geq 1} t^{n} \sum_{\mu, \nu \tau \vdash n} \sum_{m \in \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}} p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)$; where $p_{\lambda}(x)$ is a power-sum symmetric function, i.e.:

$$
p_{\lambda}(x):=\prod_{i} p_{\lambda_{i}}(x) ; \quad p_{0}(x):=1 ; \quad p_{i}(x):=x_{1}^{i}+x_{2}^{i}+\cdots \text { for } i \geq 1 .
$$

## Theorem

- $\phi(x, y, z)=t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}(x) s_{\lambda}(y) s_{\lambda}(z) t^{n}\right)$ [Jackson, Visentin 1990].
- $\widetilde{\phi}(x, y, z)=2 t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} \stackrel{1}{H_{2 \lambda}} Z_{\lambda}(x) Z_{\lambda}(y) Z_{\lambda}(z) t^{n}\right)$ [Goulden, Jackson 1996],
where $H_{\lambda}=\prod_{\square \in \lambda}(a(\square)+\ell(\square)+1)$ is a hook formula, $s_{\lambda}(x)$ is Schur polynomial and $Z_{\lambda}$ is Zonal polynomial.


## Jack symmetric function

Schur polynomials and Zonal polynomials are special cases of Jack polynomials $J_{\lambda}^{\alpha}(x)$ (for special values of $\alpha$ ).

- $J_{\lambda}^{(1)}(x)=\frac{|\lambda|!}{H_{\lambda}} s_{\lambda}(x)$;
- $J_{\lambda}^{(2)}(x)=Z_{\lambda}(x)$.


## Jack symmetric function

Schur polynomials and Zonal polynomials are special cases of Jack polynomials $J_{\lambda}^{\alpha}(x)$ (for special values of $\alpha$ ).
Let us define

$$
\begin{gathered}
\psi(x, y, z, \alpha):=\alpha t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{J_{\lambda}^{(\alpha)}(x) J_{\lambda}^{(\alpha)}(y) J_{\lambda}^{(\alpha)}(z)}{\left\langle J_{\lambda}^{(\alpha)}, J_{\lambda}^{(\alpha)}\right\rangle} t^{n}\right)= \\
\sum_{n \geq 1} t^{n} \sum_{\mu, \nu, \tau \vdash n} h_{\mu, \nu \tau}(\beta) p_{\mu}(x) p_{\nu}(y) p_{\tau}(z),
\end{gathered}
$$

where $\beta=\alpha-1$.

## Jack symmetric function

Schur polynomials and Zonal polynomials are special cases of Jack polynomials $J_{\lambda}^{\alpha}(x)$ (for special values of $\alpha$ ).
Let us define

$$
\begin{gathered}
\psi(x, y, z, \alpha):=\alpha t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{J_{\lambda}^{(\alpha)}(x) J_{\lambda}^{(\alpha)}(y) J_{\lambda}^{(\alpha)}(z)}{\left\langle J_{\lambda}^{(\alpha)}, J_{\lambda}^{(\alpha)}\right\rangle} t^{n}\right)= \\
\sum_{n \geq 1} t^{n} \sum_{\mu, \nu, \tau \vdash n} h_{\mu, \nu \tau}(\beta) p_{\mu}(x) p_{\nu}(y) p_{\tau}(z),
\end{gathered}
$$

where $\beta=\alpha-1$.

- $\psi(x, y, z, 0)=\phi(x, y, z)$ hence $h_{\mu, \nu, \tau}(0)=\left|\mathcal{M}_{(\mu, \nu, \tau)}\right|$;
- $\psi(x, y, z, 1)=\widetilde{\phi}(x, y, z)$ hence $h_{\mu, \nu, \tau}(1)=\left|\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}\right|$;


## Jack symmetric function

Schur polynomials and Zonal polynomials are special cases of Jack polynomials $J_{\lambda}^{\alpha}(x)$ (for special values of $\alpha$ ).
Let us define

$$
\begin{gathered}
\psi(x, y, z, \alpha):=\alpha t \frac{\partial}{\partial_{t}} \log \left(\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{J_{\lambda}^{(\alpha)}(x) J_{\lambda}^{(\alpha)}(y) J_{\lambda}^{(\alpha)}(z)}{\left\langle J_{\lambda}^{(\alpha)}, J_{\lambda}^{(\alpha)}\right\rangle} t^{n}\right)= \\
\sum_{n \geq 1} t^{n} \sum_{\mu, \nu, \tau \vdash n} h_{\mu, \nu \tau}(\beta) p_{\mu}(x) p_{\nu}(y) p_{\tau}(z)
\end{gathered}
$$

where $\beta=\alpha-1$.

- $\psi(x, y, z, 0)=\phi(x, y, z)$ hence $h_{\mu, \nu, \tau}(0)=\left|\mathcal{M}_{(\mu, \nu, \tau)}\right|$;
- $\psi(x, y, z, 1)=\widetilde{\phi}(x, y, z)$ hence $h_{\mu, \nu, \tau}(1)=\left|\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}\right|$;

Conjecture ( $\beta$-conjecture) [Goulden, Jackson 1996]
Let $\mu, \nu, \tau \vdash n$. Then $h_{\mu, \nu, \tau}(\beta)$ is a polynomial in $\beta$ with positive, integer coefficients. Moreover, there exists a statistic $\eta: \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)} \rightarrow \mathbb{N}$ such that:

$$
h_{\mu, \nu, \tau}(\beta)=\sum_{m \in \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}} \beta^{\eta(m)}
$$

and $\eta\left(\mathcal{M}_{(\mu, \nu, \tau)}\right)=0, \eta\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)} \backslash \mathcal{M}_{(\mu, \nu, \tau)}\right)>0$.

## What is known?

Bijection between:

- bipartite maps of type $\left(\left(2^{n}\right), \nu, \tau\right)$, where $\nu, \tau \vdash 2 n$,
- maps (not necessarily bipartite) with $n$ edges, vertex distribution $\nu$, and face distribution $\tau$ :


## What is known?

Bijection between:

- bipartite maps of type $\left(\left(2^{n}\right), \nu, \tau\right)$, where $\nu, \tau \vdash 2 n$,
- maps (not necessarily bipartite) with $n$ edges, vertex distribution $\nu$, and face distribution $\tau$ :



## What is known?

Bijection between:

- bipartite maps of type $\left(\left(2^{n}\right), \nu, \tau\right)$, where $\nu, \tau \vdash 2 n$,
- maps (not necessarily bipartite) with $n$ edges, vertex distribution $\nu$, and face distribution $\tau$ :



## What is known?

Bijection between:

- bipartite maps of type $\left(\left(2^{n}\right), \nu, \tau\right)$, where $\nu, \tau \vdash 2 n$,
- maps (not necessarily bipartite) with $n$ edges, vertex distribution $\nu$, and face distribution $\tau$ :

Theorem [La Croix 2009]
Let $\nu \vdash 2 n$ and $1 \leq v \leq 2 n$ be an integer. Then there exists a statistic "measure of non-orientability" $\eta: \mathcal{M}_{(\mu, \nu, \tau)} \rightarrow \mathbb{N}$ such that:

$$
\sum_{\tau: \ell(\tau)=v} h_{\left(2^{n}\right), \nu, \tau}(\beta)=\sum_{m \in \bigcup_{\tau: \ell(\tau)=v}} \widetilde{\mathcal{M}}_{\left(\left(2^{n}\right), \nu, \tau\right)} \beta^{\eta(m)}
$$

and $\eta\left(\mathcal{M}_{(\mu, \nu, \tau)}\right)=0, \eta\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)} \backslash \mathcal{M}_{(\mu, \nu, \tau)}\right)>0$.

## What is known?

Bijection between:

- bipartite maps of type $\left(\left(2^{n}\right), \nu, \tau\right)$, where $\nu, \tau \vdash 2 n$,
- maps (not necessarily bipartite) with $n$ edges, vertex distribution $\nu$, and face distribution $\tau$ :

Theorem [La Croix 2009]
Let $\nu \vdash 2 n$ and $1 \leq v \leq 2 n$ be an integer. Then there exists a statistic "measure of non-orientability" $\eta: \mathcal{M}_{(\mu, \nu, \tau)} \rightarrow \mathbb{N}$ such that:

$$
\begin{aligned}
& \sum_{\tau: \ell(\tau)=v} h_{\left(2^{n}\right), \nu, \tau}(\beta)=\sum_{m \in \Psi_{\tau: \ell(\tau)=v} \widetilde{\mathcal{M}}_{\left(\left(^{n}\right), \nu, \tau\right)}} \beta^{\eta(m)} \\
& \left.\mathcal{U}_{(\mu, \nu, \tau)}\right)=0, \eta\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)} \backslash \mathcal{M}_{(\mu, \nu, \tau)}\right)>0 .
\end{aligned}
$$

$\sim$ set of maps with $n$ edges, vertex distribution $\nu$ and fixed number of faces $v$.

## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,



## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,



## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,



## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.



## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.

Definition (of $\eta$ ) [La Croix 2009]

- If $m$ has no edges then $\eta(m)=0$.


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.

Definition (of $\eta$ ) [La Croix 2009]

- If $m$ has no edges then $\eta(m)=0$.
- Otherwise, we delate a root edge $e$ and we produce one, or two rooted maps:


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.

Definition (of $\eta$ ) [La Croix 2009]

- If $m$ has no edges then $\eta(m)=0$.
- Otherwise, we delate a root edge $e$ and we produce one, or two rooted maps:
- If $e$ is a bridge, we obtain maps $m_{1}, m_{2}$, and $\eta(m):=\eta\left(m_{1}\right)+\eta\left(m_{2}\right)$,


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.

Definition (of $\eta$ ) [La Croix 2009]

- If $m$ has no edges then $\eta(m)=0$.
- Otherwise, we delate a root edge $e$ and we produce one, or two rooted maps:
- If $e$ is a bridge, we obtain maps $m_{1}, m_{2}$, and $\eta(m):=\eta\left(m_{1}\right)+\eta\left(m_{2}\right)$,
- If $e$ is not a bridge, we produce a single map $m^{\prime}$ :


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.


## Definition (of $\eta$ ) [La Croix 2009]

- If $m$ has no edges then $\eta(m)=0$.
- Otherwise, we delate a root edge $e$ and we produce one, or two rooted maps:
- If $e$ is a bridge, we obtain maps $m_{1}, m_{2}$, and $\eta(m):=\eta\left(m_{1}\right)+\eta\left(m_{2}\right)$,
- If $e$ is not a bridge, we produce a single map $m^{\prime}$ :
- If $e$ is a border then $\eta(m):=\eta\left(m^{\prime}\right)$,


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.


## Definition (of $\eta$ ) [La Croix 2009]

- If $m$ has no edges then $\eta(m)=0$.
- Otherwise, we delate a root edge $e$ and we produce one, or two rooted maps:
- If $e$ is a bridge, we obtain maps $m_{1}, m_{2}$, and $\eta(m):=\eta\left(m_{1}\right)+\eta\left(m_{2}\right)$,
- If $e$ is not a bridge, we produce a single map $m^{\prime}$ :
- If $e$ is a border then $\eta(m):=\eta\left(m^{\prime}\right)$,
- If $e$ is a twisted then $\eta(m):=\eta\left(m^{\prime}\right)+1$,


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.


## Definition (of $\eta$ ) [La Croix 2009]

- If $m$ has no edges then $\eta(m)=0$.
- Otherwise, we delate a root edge $e$ and we produce one, or two rooted maps:
- If $e$ is a bridge, we obtain maps $m_{1}, m_{2}$, and $\eta(m):=\eta\left(m_{1}\right)+\eta\left(m_{2}\right)$,
- If $e$ is not a bridge, we produce a single map $m^{\prime}$ :
- If $e$ is a border then $\eta(m):=\eta\left(m^{\prime}\right)$,
- If $e$ is a twisted then $\eta(m):=\eta\left(m^{\prime}\right)+1$,
- If $e$ is a handle then there exists a second map $\sigma_{e} m$ obtained from $m$ by twisting a root edge $e$, such that a root edge of $\sigma_{e} m$ is a handle too.


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.

- If $e$ is a handle then there exists a second map $\sigma_{e} m$ obtained from $m$ by twisting a root edge $e$, such that a root edge of $\sigma_{e} m$ is a handle too.


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.

- If $e$ is a handle then there exists a second map $\sigma_{e} m$ obtained from $m$ by twisting a root edge $e$, such that a root edge of $\sigma_{e} m$ is a handle too.


## Measure of non-orientability

We will define $\eta$ inductively be edge-delation process.
Types of edges:

- bridge - delating it decomposes a map into two connected components,
- handle - delating it increases the number of faces by 1 ,
- border - delating it decreases the number of faces by 1 ,
- twisted edge - deleting it does not change the number of faces.


## Definition (of $\eta$ ) [La Croix 2009]

- If $m$ has no edges then $\eta(m)=0$.
- Otherwise, we delate a root edge $e$ and we produce one, or two rooted maps:
- If $e$ is a bridge, we obtain maps $m_{1}, m_{2}$, and $\eta(m):=\eta\left(m_{1}\right)+\eta\left(m_{2}\right)$,
- If $e$ is not a bridge, we produce a single map $m^{\prime}$ :
- If $e$ is a border then $\eta(m):=\eta\left(m^{\prime}\right)$,
- If $e$ is a twisted then $\eta(m):=\eta\left(m^{\prime}\right)+1$,
- If $e$ is a handle then there exists a second map $\sigma_{e} m$ obtained from $m$ by twisting a root edge $e$, such that a root edge of $\sigma_{e} m$ is a handle too. We define $\left\{\eta(m), \eta\left(\sigma_{e} m\right)\right\}:=\left\{\eta\left(m^{\prime}\right), \eta\left(m^{\prime}\right)+1\right\}$ chosen in any canonical way such that $\eta(m)=0$ and $\eta\left(\sigma_{e} m\right)=1$ for $m$ orientable.


## What is known in general case?

## What is known in general case?

Not much...

## What is known in general case?

Not much... For arbitrary partitions $\mu, \nu, \tau \vdash n$ :

- strictly from the construction $h_{\mu, \nu, \tau}(\beta)$ is a rational function in $\beta$ with rational coefficients,
- $h_{\mu, \nu, \tau}(\beta-1)=(-\beta)^{n+2-\ell(\mu)-\ell(\nu)-\ell(\tau)} h_{\mu, \nu, \tau}\left(\beta^{-1}-1\right)$ as a rational function [La Croix 2009].


## What is known in general case?

Not much... For arbitrary partitions $\mu, \nu, \tau \vdash n$ :

- strictly from the construction $h_{\mu, \nu, \tau}(\beta)$ is a rational function in $\beta$ with rational coefficients,
- $h_{\mu, \nu, \tau}(\beta-1)=(-\beta)^{n+2-\ell(\mu)-\ell(\nu)-\ell(\tau)} h_{\mu, \nu, \tau}\left(\beta^{-1}-1\right)$ as a rational function [La Croix 2009].

Theorem [D., Féray 2015]
For any $\mu, \nu, \tau \vdash n$ the quantity $h_{\mu, \nu, \tau}(\beta)$ is a polynomial in $\beta$ with rational coefficients.

## What is known in general case?

Not much... For arbitrary partitions $\mu, \nu, \tau \vdash n$ :

- strictly from the construction $h_{\mu, \nu, \tau}(\beta)$ is a rational function in $\beta$ with rational coefficients,
- $h_{\mu, \nu, \tau}(\beta-1)=(-\beta)^{n+2-\ell(\mu)-\ell(\nu)-\ell(\tau)} h_{\mu, \nu, \tau}\left(\beta^{-1}-1\right)$ as a rational function [La Croix 2009].

Theorem [D., Féray 2015]
For any $\mu, \nu, \tau \vdash n$ the quantity $h_{\mu, \nu, \tau}(\beta)$ is a polynomial in $\beta$ with rational coefficients.

Remark:
Unfortunately, we are unable to prove positivity nor integrality in $\beta$-conjecture, so this challange is still open!

## What is known in general case?

Not much... For arbitrary partitions $\mu, \nu, \tau \vdash n$ :

- strictly from the construction $h_{\mu, \nu, \tau}(\beta)$ is a rational function in $\beta$ with rational coefficients,
- $h_{\mu, \nu, \tau}(\beta-1)=(-\beta)^{n+2-\ell(\mu)-\ell(\nu)-\ell(\tau)} h_{\mu, \nu, \tau}\left(\beta^{-1}-1\right)$ as a rational function
$[$ La Croix 2009].

Theorem [D., Féray 2015]
For any $\mu, \nu, \tau \vdash n$ the quantity $h_{\mu, \nu, \tau}(\beta)$ is a polynomial in $\beta$ with rational coefficients.

Remark:
Unfortunately, we are unable to prove positivity nor integrality in $\beta$-conjecture, so this challange is still open!

Top-degree coeffcient of $h_{\mu, \nu, \tau}(\beta)$ is given by

$$
(-1)^{n+2-\ell(\mu)-\ell(\nu)-\ell(\tau)} h_{\mu, \nu, \tau}(-1)
$$

## Unhandled one-face maps

- $h_{\mu, \nu, \tau}(0)$ is a number of orientable maps of type $(\mu, \nu, \tau)$,
- $h_{\mu, \nu, \tau}(1)$ is a number of all maps of type $(\mu, \nu, \tau)$,


## Unhandled one-face maps

- $h_{\mu, \nu, \tau}(0)$ is a number of orientable maps of type $(\mu, \nu, \tau)$,
- $h_{\mu, \nu, \tau}(1)$ is a number of all maps of type $(\mu, \nu, \tau)$,
- $\pm h_{\mu, \nu, \tau}(-1)$ is a number of unhandled maps of type $(\mu, \nu, \tau)$.


## Unhandled one-face maps

- $h_{\mu, \nu, \tau}(0)$ is a number of orientable maps of type $(\mu, \nu, \tau)$,
- $h_{\mu, \nu, \tau}(1)$ is a number of all maps of type $(\mu, \nu, \tau)$,
- $\pm h_{\mu, \nu, \tau}(-1)$ is a number of unhandled maps of type $(\mu, \nu, \tau)$.

Assume that

$$
h_{\mu, \nu, \tau}(\beta)=\sum_{m \in \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}} \beta^{\eta(m)},
$$

where $\eta$ is a measure of non-orientability defined by Le Croix. Then maps, which are contributing to the top-degree coefficient are exactly these, where no handles appear during edge-deletion procedure.

## Unhandled one-face maps

- $h_{\mu, \nu, \tau}(0)$ is a number of orientable maps of type $(\mu, \nu, \tau)$,
- $h_{\mu, \nu, \tau}(1)$ is a number of all maps of type $(\mu, \nu, \tau)$,
- $\pm h_{\mu, \nu, \tau}(-1)$ is a number of unhandled maps of type $(\mu, \nu, \tau)$.

Assume that

$$
h_{\mu, \nu, \tau}(\beta)=\sum_{m \in \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)}} \beta^{\eta(m)},
$$

where $\eta$ is a measure of non-orientability defined by Le Croix. Then maps, which are contributing to the top-degree coefficient are exactly these, where no handles appear during edge-deletion procedure.

## Theorem [D., Féray 2015]

There exists a statistic "measure of non-orientability" $\eta: \widetilde{\mathcal{M}}_{(\mu, \nu, \tau)} \rightarrow \mathbb{N}$ such that $\eta\left(\mathcal{M}_{(\mu, \nu, \tau)}\right)=0, \eta\left(\widetilde{\mathcal{M}}_{(\mu, \nu, \tau)} \backslash \mathcal{M}_{(\mu, \nu, \tau)}\right)>0$ and such that for any partitions $\mu, \nu \vdash n$ and for any $\beta \in\{-1,0,1\}$ the following equality holds true:

$$
h_{\mu, \nu,(n)}(\beta)=\sum_{m \in \widetilde{\mathcal{M}}_{(\mu, \nu,(n))}} \beta^{\eta(m)}
$$

## One-face unhandled maps (II)

Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type $(\mu, \nu,(n))$ and orientable maps of type $(\mu, \nu, \tau)$ for some $\tau \vdash n$. Moreover, for any unhandled one-face map $m$, an associated orientable map $f(m)$ is obtained by twisting some edges $e_{1}, \ldots, e_{l}$ of $m$, that is $f(m)$ is of the form
$\sigma_{e_{l}} \cdots \sigma_{e_{1}} m$.

## One-face unhandled maps (II)

Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type $(\mu, \nu,(n))$ and orientable maps of type $(\mu, \nu, \tau)$ for some $\tau \vdash n$. Moreover, for any unhandled one-face map $m$, an associated orientable map $f(m)$ is obtained by twisting some edges $e_{1}, \ldots, e_{l}$ of $m$, that is $f(m)$ is of the form
$\sigma_{e_{l}} \cdots \sigma_{e_{1}} m$.

## Proof:

- Induction on the number of edges $n$;


## One-face unhandled maps (II)

## Lemma [D., Féray 2015]

There is a bijection between unhandled maps of type $(\mu, \nu,(n))$ and orientable maps of type $(\mu, \nu, \tau)$ for some $\tau \vdash n$. Moreover, for any unhandled one-face map $m$, an associated orientable map $f(m)$ is obtained by twisting some edges $e_{1}, \ldots, e_{l}$ of $m$, that is $f(m)$ is of the form
$\sigma_{e_{l}} \cdots \sigma_{e_{1}} m$.

## Proof:

- Induction on the number of edges $n$;
- $m$ - one-face unhandled map. Its root $e$ might be:
- a bridge;

Then $m \backslash e$ decompose into two disjoint unhandled one-face maps $m_{1}, m_{2}$. Let $f\left(m_{1}\right)=\sigma_{e_{l}} \cdots \sigma_{e_{1}} m_{1}$ and $f\left(m_{2}\right)=\sigma_{\tilde{e}_{k}} \cdots \sigma_{\tilde{e}_{1}} m_{2}$. Then we define $f(m)=\sigma_{e_{l}} \cdots \sigma_{e_{1}} \sigma_{\tilde{e}_{k}} \cdots \sigma_{\tilde{e}_{1}} m$.


## One-face unhandled maps (II)

Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type $(\mu, \nu,(n))$ and orientable maps of type $(\mu, \nu, \tau)$ for some $\tau \vdash n$. Moreover, for any unhandled one-face map $m$, an associated orientable map $f(m)$ is obtained by twisting some edges $e_{1}, \ldots, e_{l}$ of $m$, that is $f(m)$ is of the form
$\sigma_{e_{l}} \cdots \sigma_{e_{1}} m$.

## Proof:

- Induction on the number of edges $n$;
- $m$ - one-face unhandled map. Its root $e$ might be:
- a bridge;
- twisted edge;

Then $m \backslash e=m^{\prime}$ is unhandled one-face map, and $f\left(m^{\prime}\right)=\sigma_{e_{l}} \cdots \sigma_{e_{1}} m^{\prime}$ is orientable. Then exactly one from these maps $\sigma_{e_{l}} \cdots \sigma_{e_{1}} m$ or $\sigma_{e_{l}} \cdots \sigma_{e_{1}} \sigma_{e} m$ is orientable and we define $f(m)$ to be an orientable one.


## One-face unhandled maps (II)

Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type $(\mu, \nu,(n))$ and orientable maps of type $(\mu, \nu, \tau)$ for some $\tau \vdash n$. Moreover, for any unhandled one-face map $m$, an associated orientable map $f(m)$ is obtained by twisting some edges $e_{1}, \ldots, e_{l}$ of $m$, that is $f(m)$ is of the form
$\sigma_{e_{l}} \cdots \sigma_{e_{1}} m$.

## Proof:

- Induction on the number of edges $n$;
- $m$ - one-face unhandled map. Its root $e$ might be:
- a bridge;
- twisted edge;
- Construction is easily reversible.


## One-face unhandled maps (II)

Lemma [D., Féray 2015]
There is a bijection between unhandled maps of type $(\mu, \nu,(n))$ and orientable maps of type $(\mu, \nu, \tau)$ for some $\tau \vdash n$. Moreover, for any unhandled one-face map $m$, an associated orientable map $f(m)$ is obtained by twisting some edges $e_{1}, \ldots, e_{l}$ of $m$, that is $f(m)$ is of the form $\sigma_{e_{l}} \cdots \sigma_{e_{1}} m$.

## Proof:

- Induction on the number of edges $n$;
- $m$ - one-face unhandled map. Its root $e$ might be:
- a bridge;
- twisted edge;
- Construction is easily reversible.

```
Question:
What can we say about the class of unhandled maps with arbitrary face
distribution? Are they in a bijection with some class of face-colored
orientable maps? Is }\eta\mathrm{ introduced by La Croix is a correct invariant in
general?
```

THANK
YOU!


[^0]:    Remark:
    Tutte noticed that maps are much simpler to enumerate, when rooted, because of the lack of symmetry. From now on, all maps will be rooted!

