
Fighting Fish:

Gilles Schaeffer

Séminaire Philippe Flajolet, 2017

DIISM, Università di Siena

Enrica Duchi

Veronica Guerrini
& Simone Rinaldi

IRIF, Université Paris Diderot

LIX, CNRS and École Polytechnique

enumerative properties

Summary of the talk

Fighting fish, a new combinatorial model
of discrete branching surfaces

Fighting fish VS classical combinatorial structures

a bijective challenge...

Exact counting formulas for fighting fish

Decompositions for fighting fish

Fighting fish, definition

Cells

45o tilted unit square
(of thin paper or cloth)

Build surface by gluing cells along edges in
a coherent way: upper left with lower right
or lower left with upper right.

upper right edge

lower right edgelower left edge

upper left edge

glued edges

free edges

=

These objects do not necessarily fit in the plane so my pictures are projections
of the actual surfaces: Apparently overlapping cells are in fact independant.

Fighting fish, definition

Directed cell aggregation. Restrict to only three legal ways to add cells:

by lower right gluing, upper right gluing, or simultaneous lower
and upper right gluings from adjacent free edges.

⇒

⇒

⇒

by lower right gluing, upper right gluing, or simultaneous lower
and upper right gluings from adjacent free edges.

lower right gluing

upper right gluing

simultaneous right gluing

Fighting fish, definition

Lemma. Single cell + aggregations
⇒ a simply connected surface

⇒

⇒

⇒

Remark. Such surfaces can be recovered from their boundary walk.

Fighting fish, definition

A fighting fish is a surface that can be obtained from a single
cell by a sequence of directed cell agregations.

Fighting fish

We are interested only in the resulting surface, not in the
aggregation order (but type of aggregation matters)

=
1

2

2

1
=

11 1

2

1

2

1

2

1

2

3

1

2

1

2

3

4

6=but

1

2

1

2

3

4

5

6=

8 free edges 10 free edges

Small fighting fish

n = 2

n = 3

n = 4

n = 5

n = 2

n = 3

n = 4

n = 5

Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

Directed polyominoes: there is a
cell, the head, from which all cells can
be reached by a left-to-right path.

Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

⇒ fighting fish do not all fit in the plane,
ie they are not all polyominoes.

Directed polyominoes: there is a
cell, the head, from which all cells can
be reached by a left-to-right path.

Proposition.
A fighting fish is a directed polyomino
iff its projection in the plane is injective.

Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

⇒ fighting fish do not all fit in the plane,
ie they are not all polyominoes.

Directed polyominoes: there is a
cell, the head, from which all cells can
be reached by a left-to-right path.

Proposition.
A fighting fish is a directed polyomino
iff its projection in the plane is injective.

Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

⇒ fighting fish do not all fit in the plane,
ie they are not all polyominoes.

Directed polyominoes: there is a
cell, the head, from which all cells can
be reached by a left-to-right path.

Conversely there are directed polyominoes that are not fighting fish:

Proposition.
A fighting fish is a directed polyomino
iff its projection in the plane is injective.

Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

⇒ fighting fish do not all fit in the plane,
ie they are not all polyominoes.

Directed polyominoes: there is a
cell, the head, from which all cells can
be reached by a left-to-right path.

Conversely there are directed polyominoes that are not fighting fish:
Fighting fish are a generalization of directed polyominoes
without holes.

Proposition.
A fighting fish is a directed polyomino
iff its projection in the plane is injective.

Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

⇒ fighting fish do not all fit in the plane,
ie they are not all polyominoes.

Directed polyominoes: there is a
cell, the head, from which all cells can
be reached by a left-to-right path.

Conversely there are directed polyominoes that are not fighting fish:
Fighting fish are a generalization of directed polyominoes
without holes.

Proposition.
A fighting fish is a directed polyomino
iff its projection in the plane is injective.

Parameters of fighting fish

Area = # cells

The fin length = #{ lower free edges from head to first tail }

head
tails

branch points

fin

Size = semi-perimeter
= #{upper free edges}
= #{upper left free edges} + #{upper right free edges}

Parameters of fighting fish

Area = # cells

The fin length = #{ lower free edges from head to first tail }

Fighting fish with exactly 1 tail

head
tails

branch points

fin

Size = semi-perimeter
= #{upper free edges}
= #{upper left free edges} + #{upper right free edges}

Parameters of fighting fish

Area = # cells

The fin length = #{ lower free edges from head to first tail }

Fighting fish with exactly 1 tail

in this case, fin length = semi-perimeter

head
tails

branch points

fin

Size = semi-perimeter
= #{upper free edges}
= #{upper left free edges} + #{upper right free edges}

= parallelogram polyominoes
aka staircase polygons

Enumerative results

Enumerative results

Theorem (folklore)

#

{
parallelogram polyominos
with semi-perimeter n+ 1

}
=

1

2n+ 1

(
2n

n

)

#

{
parallelogram polyominos with
i top left and j top right edges

}
= 1

i+j−1

(
i+j−1
i

)(
i+j−1
j

)

fighting fish with 1 tail

Enumerative results

Theorem (folklore)

Theorem (D., Guerrini, Rinaldi, Schaeffer, 2016)

#

{
parallelogram polyominos
with semi-perimeter n+ 1

}
=

1

2n+ 1

(
2n

n

)

#

{
parallelogram polyominos with
i top left and j top right edges

}
= 1

i+j−1

(
i+j−1
i

)(
i+j−1
j

)

#

{
fighting fish

with semi-perimeter n+ 1

}
=

2

(n+ 1)(2n+ 1)

(
3n

n

)

#

{
fighting fish with

i top left and j top right edges

}
= 1

(2i+j−1)(2j+i−1)

(
2i+j−1

i

)(
2j+i−1

j

)

fighting fish with 1 tail

Fighting fish as random branching surfaces

Let Fn be a fighting fish taken uniformly at random among all
fighting fish of size n.

Fighting fish as random branching surfaces

Theorem (D., Guerrini, Rinaldi, Schaeffer, J. Physics A, 2016)
The expected area of Fn is of order n5/4

Let Fn be a fighting fish taken uniformly at random among all
fighting fish of size n.

Fighting fish as random branching surfaces

Compare to the known expected area n3/2 of
random parallelogram polyominoes of size n

Theorem (D., Guerrini, Rinaldi, Schaeffer, J. Physics A, 2016)
The expected area of Fn is of order n5/4

Let Fn be a fighting fish taken uniformly at random among all
fighting fish of size n.

Fighting fish as random branching surfaces

Compare to the known expected area n3/2 of
random parallelogram polyominoes of size n

Theorem (D., Guerrini, Rinaldi, Schaeffer, J. Physics A, 2016)
The expected area of Fn is of order n5/4

Uniform random fighting fish of size n gives a new model of
random branching surfaces with original features.

Let Fn be a fighting fish taken uniformly at random among all
fighting fish of size n.

Fish tails

We start by giving the definition of a slightly more
general class: Fighting fish tails.

Fish tails

We start by giving the definition of a slightly more
general class: Fighting fish tails.

A cell is made up by two scales
Left scale

Right scale

Fish tails

We start by giving the definition of a slightly more
general class: Fighting fish tails.

A cell is made up by two scales
Left scale

Right scale

A fish tail is a surface that can be obtained from a strip of
right scales by a sequence of directed cell agregations.

⇒

⇒

⇒

Fish tails

We start by giving the definition of a slightly more
general class: Fighting fish tails.

A cell is made up by two scales
Left scale

Right scale

A fish tail is a surface that can be obtained from a strip of
right scales by a sequence of directed cell agregations.

⇒

⇒

⇒

Fish tails

We start by giving the definition of a slightly more
general class: Fighting fish tails.

A cell is made up by two scales
Left scale

Right scale

A fish tail is a surface that can be obtained from a strip of
right scales by a sequence of directed cell agregations.

height= the number of
right scales in the strip

area= the number of left and
right scales in the fish tail

size= the number of upper
left and right free edges

A recursive decomposition

A recursive decomposition

The empty fish is the unique fish tail with height 0.

T1

T2

`
` + 1

k

T1

T2

`

k

`

T1

T2

`

k

`

T1

T2

`

k

` − 1

Operation u Operation h Operation h′ Operation d

A recursive decomposition

The empty fish is the unique fish tail with height 0.

T1

T2

`
` + 1

k

T1

T2

`

k

`

T1

T2

`

k

`

T1

T2

`

k

` − 1

Operation u Operation h Operation h′ Operation d

Every fish tail can be obtained in a unique way using operations
u, h, h′, d.

A recursive definition

A recursive definition

h

A recursive definition

h

A recursive definition

h

h

A recursive definition

h

h

A recursive definition

h

h

d

A recursive definition

h

h

d

A recursive definition

h

h

d

h

A recursive definition

h

h

d

h
u

u
h

A recursive definition

h

h

d

h
u

u
h

Fish tails vs fighting fish

Fish tails with height 1 and n free upper edges are in one-to-one
correspondence with fighting fish with n+ 1 free upper edges.

Fish tails vs fighting fish

Fish tails with height 1 and n free upper edges are in one-to-one
correspondence with fighting fish with n+ 1 free upper edges.

n = 1

n = 2

n = 3

n = 4

Fish tails vs fighting fish

Fish tails with height 1 and n free upper edges are in one-to-one
correspondence with fighting fish with n+ 1 free upper edges.

n = 2

n = 3

n = 4

n = 5

n = 2

n = 3

n = 4

n = 5

The generating function

Then T (v, q, x, t) =
∑
T∈FT v

h(T)qa(T)xc(T)tn(T) denote
the generating function of fish tails, where

h(T) is the height of T

a(T) is the area of T

c(T) is the number of tails of T

n(T) is the semi-perimeter of T

Let FT be the set of fish tails without the empty fish tail.

The generating function

Then T (v, q, x, t) =
∑
T∈FT v

h(T)qa(T)xc(T)tn(T) denote
the generating function of fish tails, where

h(T) is the height of T

a(T) is the area of T

c(T) is the number of tails of T

n(T) is the semi-perimeter of T

Let us denote
T (v, q) ≡ T (v, q, x, t) f(q) = [v]T (v, q)

We are going to write the functional equation associated
with the previous construction.

Let FT be the set of fish tails without the empty fish tail.

The functional equation for fish tails

T (v, q, x, t) =
∑
T∈FT v

h(T)qa(T)xc(T)tn(T)

The functional equation for fish tails

`
`+ 1

T1

T2

T
n(T) = n(T1) + n(T2) + 1

h(T) = h(T1) + h(T2) + 1

c(T) = c(T1) + c(T2) if ` := h(T1) 6= 0

c(T) = c(T2) + 1 if ` = 0
Operation u

a(T) = a(T1) + a(T2) + 2`+ 1

T (v, q, x, t) =
∑
T∈FT v

h(T)qa(T)xc(T)tn(T)

The functional equation for fish tails

`
`+ 1

T1

T2

T
n(T) = n(T1) + n(T2) + 1

h(T) = h(T1) + h(T2) + 1

c(T) = c(T1) + c(T2) if ` := h(T1) 6= 0

c(T) = c(T2) + 1 if ` = 0
Operation u

a(T) = a(T1) + a(T2) + 2`+ 1

T (v, q, x, t) =
∑
T∈FT v

h(T)qa(T)xc(T)tn(T)

Operation u gives the term

tvqT (vq2, q, x, t)(T (v, q, x, t) + 1) + tvqx(T (v, q, x, t) + 1)

= tvq(T (vq2, q) + x)(T (v, q) + 1)

The functional equation for fish tails

T (v, q, x, t) =
∑
T∈FT v

h(T)qa(T)xc(T)tn(T)

T1

T2

`

k

`

T1

T2

`

k

`

Operation h Operation h′

n(T) = n(T1) + n(T2) + 1

h(T) = h(T1) + h(T2)

c(T) = c(T1) + c(T2) (` 6= 0)

a(T) = a(T1) + a(T2) + 2`

Operation h and h′ give the term

2t(T (vq2, q)(T (v, q) + 1)

T T

The functional equation for fish tails

T (v, q, x, t) =
∑
T∈FT v

h(T)qa(T)xc(T)tn(T)

T1

T2

`

k

` − 1

Operation d

n(T) = n(T1) + n(T2) + 1

h(T) = h(T1) + h(T2)− 1

c(T) = c(T1) + c(T2)

a(T) = a(T1) + a(T2) + 2`− 1

(` > 1)

Operation u gives the term

t
vq

(T (vq2, q)− vq2f(q))(T (v, q) + 1)

T

Enumeration wrt the perimeter and number of tails

T (v, q) = tvq(T (vq2, q) + x)(T (v, q) + 1) + 2tT (vq2, q)(T (v, q) + 1)

+ t
vq (T (vq

2, q)− vq2f(q))(T (v, q) + 1)

The functional equation

Enumeration wrt the perimeter and number of tails

T (v, q) = tvq(T (vq2, q) + x)(T (v, q) + 1) + 2tT (vq2, q)(T (v, q) + 1)

+ t
vq (T (vq

2, q)− vq2f(q))(T (v, q) + 1)

The functional equation

Letting q = 1 the master equation reduces to

T (v) = tv(T (v) + x)(T (v) + 1) + 2tT (v)(T (v) + 1)

+ t
v (T (v)− vf)(T (v) + 1)

where T (v) ≡ T (v, 1) and f ≡ f(1)

Enumeration wrt the perimeter and number of tails

T (v, q) = tvq(T (vq2, q) + x)(T (v, q) + 1) + 2tT (vq2, q)(T (v, q) + 1)

+ t
vq (T (vq

2, q)− vq2f(q))(T (v, q) + 1)

The functional equation

Letting q = 1 the master equation reduces to

This equation is now a polynomial equation with one catalytic variable
and it admits an explicitly computable algebraic solution.

(Bousquet-Mélou and Jehanne, J. Combin. Theory Ser.B, 2006)

T (v) = tv(T (v) + x)(T (v) + 1) + 2tT (v)(T (v) + 1)

+ t
v (T (v)− vf)(T (v) + 1)

where T (v) ≡ T (v, 1) and f ≡ f(1)

Enumeration wrt semi-perimeter and number of tails

T (v) = tv(T (v) + x)(T (v) + 1) + 2tT (v)(T (v) + 1)

+ t
v (T (v)− vf)(T (v) + 1)

We apply the Bousquet-Mélou Jehanne trick:

Enumeration wrt semi-perimeter and number of tails

T (v) = tv(T (v) + x)(T (v) + 1) + 2tT (v)(T (v) + 1)

+ t
v (T (v)− vf)(T (v) + 1)

We apply the Bousquet-Mélou Jehanne trick:

Upon deriving with respect to v we obtain the following equation

(1− tv(T (v) + x)− 2tT (v)− t
v
(T (v)− vf)− (tv + 2t+ t

v
)(T (v) + 1))

dT (v)
dv

=

= (T (v) + 1)(t(T (v) + x)− t
v2

(T (v)− vf)− t
v
f)

Enumeration wrt semi-perimeter and number of tails

T (v) = tv(T (v) + x)(T (v) + 1) + 2tT (v)(T (v) + 1)

+ t
v (T (v)− vf)(T (v) + 1)

We apply the Bousquet-Mélou Jehanne trick:

Upon deriving with respect to v we obtain the following equation

(1− tv(T (v) + x)− 2tT (v)− t
v
(T (v)− vf)− (tv + 2t+ t

v
)(T (v) + 1))

dT (v)
dv

=

= (T (v) + 1)(t(T (v) + x)− t
v2

(T (v)− vf)− t
v
f)

There is a power series V ≡ V (t), such that setting v = V cancels
the left hand side:

(1− tV (T (V) + x)− 2tT (V)− t
V
(T (V)− V f)− (tV + 2t+ t

V
)(T (V) + 1)) = 0

(T (V) + 1)(t(T (V) + x)− t
V 2 (T (V)− V f)− t

V
f) = 0we then also have

and the main equation gives a third equation.

Enumeration wrt semi-perimeter and number of tails

Simplifying the previous system of equations we obtain

V = t(1 + V + xV 2

1−V)2

f = xV − x2 V 3

(1−V)2

T (V) = xV 2

1−V 2

Enumeration wrt semi-perimeter and number of tails

Simplifying the previous system of equations we obtain

V = t(1 + V + xV 2

1−V)2

f = xV − x2 V 3

(1−V)2

T (V) = xV 2

1−V 2

By setting x = 1 we obtain equations for fighting fish according
to the semi-perimeter only.

Enumeration wrt semi-perimeter and number of tails

Simplifying the previous system of equations we obtain

V = t(1 + V + xV 2

1−V)2

f = xV − x2 V 3

(1−V)2

T (V) = xV 2

1−V 2

By setting x = 1 we obtain equations for fighting fish according
to the semi-perimeter only.

V = t
(1−V)2

f = V − V 3

(1−V)2

Enumeration wrt semi-perimeter and number of tails

Simplifying the previous system of equations we obtain

V = t(1 + V + xV 2

1−V)2

f = xV − x2 V 3

(1−V)2

T (V) = xV 2

1−V 2

By setting x = 1 we obtain equations for fighting fish according
to the semi-perimeter only.

V = t
(1−V)2

f = V − V 3

(1−V)2

Lagrange inversion
formula

[tn]f = 2
(n+1)(2n+1)

(
3n
n

)
The number of fighting fish

with size n+ 1

Enumeration wrt semi-perimeter and number of tails.

The same approach can be applied to (re)derive the number of fighting
fish of size n+ 1 with one tail.

Enumeration wrt semi-perimeter and number of tails.

The same approach can be applied to (re)derive the number of fighting
fish of size n+ 1 with one tail.

[xtn]f = 1
n+1

(
2n
n

)
Parallelogram polyominoes of size n+ 1

f = xV − x2 V 3

(1−V)2

V = t(1 + V + xV 2

1−V)2

[x]f = [x0]V = V0

where V0 = t(1 + V0)
2

Enumeration wrt semi-perimeter and number of tails.

The same approach can be applied to (re)derive the number of fighting
fish of size n+ 1 with one tail.

[xtn]f = 1
n+1

(
2n
n

)
Parallelogram polyominoes of size n+ 1

f = xV − x2 V 3

(1−V)2

Operation u Operation h Operation h′ Operation d

Our decomposition generalizes a Temperly like decomposition
for parallelogram polyominoes.

T1

`
` + 1

T1

`
`

T1

``

T1

`` − 1

T2 T2

T2 T2

V = t(1 + V + xV 2

1−V)2

[x]f = [x0]V = V0

where V0 = t(1 + V0)
2

Enumeration wrt semi-perimeter and number of tails.

The same approach can be applied to (re)derive the number of fighting
fish of size n+ 1 with one tail.

[xtn]f = 1
n+1

(
2n
n

)
Parallelogram polyominoes of size n+ 1

f = xV − x2 V 3

(1−V)2

Operation u Operation h Operation h′ Operation d

T1

`
` + 1

T1

`
`

T1

``

T1

`` − 1 where T1 is a fighting fish
with 1 tail

V = t(1 + V + xV 2

1−V)2

[x]f = [x0]V = V0

where V0 = t(1 + V0)
2

Enumeration wrt semi-perimeter and number of tails.

The same approach can be applied to (re)derive the number of fighting
fish of size n+ 1 with one tail.

[xtn]f = 1
n+1

(
2n
n

)
Parallelogram polyominoes of size n+ 1

f = xV − x2 V 3

(1−V)2

Operation u Operation h Operation h′ Operation d

`
` + 1

`
`

`` `` − 1

V = t(1 + V + xV 2

1−V)2

[x]f = [x0]V = V0

where V0 = t(1 + V0)
2

Enumeration wrt semi-perimeter and number of tails.

The same approach can be applied to (re)derive the number of fighting
fish of size n+ 1 with one tail.

[xtn]f = 1
n+1

(
2n
n

)
Parallelogram polyominoes of size n+ 1

f = xV − x2 V 3

(1−V)2

More generally generating function for fighting fish with size n+ 1
and c tails is rational in the Catalan generating function.

However explicit expressions are not particularly simple

V = t(1 + V + xV 2

1−V)2

[x]f = [x0]V = V0

where V0 = t(1 + V0)
2

Enumeration wrt semi-perimeter and number of tails.

The same approach can be applied to (re)derive the number of fighting
fish of size n+ 1 with one tail.

[xtn]f = 1
n+1

(
2n
n

)
Parallelogram polyominoes of size n+ 1

f = xV − x2 V 3

(1−V)2

More generally generating function for fighting fish with size n+ 1
and c tails is rational in the Catalan generating function.

However explicit expressions are not particularly simple

The number of fighting fish with size n+ 1 and a marked tail is 1
n

(
3n−2
n−1

)
df
dx
|x=1 + Lagrange inversion formula

V = t(1 + V + xV 2

1−V)2

[x]f = [x0]V = V0

where V0 = t(1 + V0)
2

Enumeration wrt semi-perimeter and number of tails.

The same approach can be applied to (re)derive the number of fighting
fish of size n+ 1 with one tail.

[xtn]f = 1
n+1

(
2n
n

)
Parallelogram polyominoes of size n+ 1

f = xV − x2 V 3

(1−V)2

More generally generating function for fighting fish with size n+ 1
and c tails is rational in the Catalan generating function.

However explicit expressions are not particularly simple

The number of fighting fish with size n+ 1 and a marked tail is 1
n

(
3n−2
n−1

)
df
dx
|x=1 + Lagrange inversion formula

V = t(1 + V + xV 2

1−V)2

The average number of tails of fighting fish of size n+ 1 is
[xn] dfdx |x=1

[xn]f = (n+1)(2n+1)
3(3n−1)

[x]f = [x0]V = V0

where V0 = t(1 + V0)
2

Enumeration of fighting fish wrt the area

We are going to count fighting fish weighted by their area.

Let A ≡ A(x, t) be the total area generating function.

Then A(x, t) =
∑
F a(F)t

n(F) = ∂(qf(q))
∂q |q=1 = f + ∂(f(q))

∂q |q=1

Enumeration of fighting fish wrt the area

We are going to count fighting fish weighted by their area.

Let A ≡ A(x, t) be the total area generating function.

Then A(x, t) =
∑
F a(F)t

n(F) = ∂(qf(q))
∂q |q=1 = f + ∂(f(q))

∂q |q=1

Let us consider the master equation

T (v, q) = tvq(T (vq2, q) + x)(T (v, q) + 1) + 2tT (vq2, q)(T (v, q) + 1)

+ t
vq (T (vq

2, q)− vq2f(q))(T (v, q) + 1)

Enumeration of fighting fish wrt the area

We are going to count fighting fish weighted by their area.

Let A ≡ A(x, t) be the total area generating function.

Then A(x, t) =
∑
F a(F)t

n(F) = ∂(qf(q))
∂q |q=1 = f + ∂(f(q))

∂q |q=1

Let us consider the master equation

T (v, q) = tvq(T (vq2, q) + x)(T (v, q) + 1) + 2tT (vq2, q)(T (v, q) + 1)

+ t
vq (T (vq

2, q)− vq2f(q))(T (v, q) + 1)

By deriving with respect to q and by setting q = 1 we obtain

(1− tv(T (v, 1) + x)− 2tT (v, 1)− t
v
(T (v, 1)− vf)− (tv + 2t+ t

v
)(T (v) + 1)) ∂T

∂q
(v, 1)

= (T (v, 1) + 1)(
(tv + 2t+ t

v
) · 2v ∂T

∂v
(v, 1) + tv(T (v, 1) + x)− t

v
(T (v, 1)− vf)− 2tf − t ∂f

∂q
(1)
)

Enumeration of fighting fish wrt the area

We are going to count fighting fish weighted by their area.

Let A ≡ A(x, t) be the total area generating function.

Then A(x, t) =
∑
F a(F)t

n(F) = ∂(qf(q))
∂q |q=1 = f + ∂(f(q))

∂q |q=1

Let us consider the master equation

T (v, q) = tvq(T (vq2, q) + x)(T (v, q) + 1) + 2tT (vq2, q)(T (v, q) + 1)

+ t
vq (T (vq

2, q)− vq2f(q))(T (v, q) + 1)

By setting v = V we have

(tV + 2t+ t
V
) · 2V ∂T

∂v
(V, 1) + tV (T (V, 1) + x)− t

V
(T (V, 1)− V f)− 2tf − t ∂f

∂q
(1)

To obtain ∂T
∂v (V, 1) we apply again the kernel method.

The area generating function

The generating function A ≡ A(x, t) for the total area of fighting fish
with size n+ 1 satisfies

−V (1− V)2A2 + 2(1− V)2(1− V 2 + xV 2)A− 4xV (1− V 2 + xV 2) = 0

The area generating function

The generating function A ≡ A(x, t) for the total area of fighting fish
with size n+ 1 satisfies

−V (1− V)2A2 + 2(1− V)2(1− V 2 + xV 2)A− 4xV (1− V 2 + xV 2) = 0

Extracting the coefficient of x, [x]A = A1, yields

2(1− V0)2(1− V 2
0)A1 − 4V0(1− V 2

0) = 0

where V0 = [x0]V is a Catalan generating function satisfying V0 = t(1 + V0)2

we obtain the generating function for the total area of parallelogram polyominoes

A1 = 2V0
(1−V0)2

= 2t
1−4t

The simplification to a rational function of t
is a well-known feature of parallelogram polyominoes.

The area generating function

The generating function A ≡ A(x, t) for the total area of fighting fish
with size n+ 1 satisfies

−V (1− V)2A2 + 2(1− V)2(1− V 2 + xV 2)A− 4xV (1− V 2 + xV 2) = 0

Extracting the coefficient of x, [x]A = A1, yields

2(1− V0)2(1− V 2
0)A1 − 4V0(1− V 2

0) = 0

where V0 = [x0]V is a Catalan generating function satisfying V0 = t(1 + V0)2

we obtain the generating function for the total area of parallelogram polyominoes

A1 = 2V0
(1−V0)2

= 2t
1−4t

The simplification to a rational function of t
is a well-known feature of parallelogram polyominoes.

The average area for parallelogram polyominoes of size n is 4n/Cn
where Cn are the Catalan numbers.

The average area for parallelogram polyominoes of size n scales like n
3
2

The area generating function

The generating function A ≡ A(x, t) for the total area of fighting fish
with size n+ 1 satisfies

−V (1− V)2A2 + 2(1− V)2(1− V 2 + xV 2)A− 4xV (1− V 2 + xV 2) = 0

Extracting the coefficient of x, [x]A = A1, yields

2(1− V0)2(1− V 2
0)A1 − 4V0(1− V 2

0) = 0

where V0 = [x0]V is a Catalan generating function satisfying V0 = t(1 + V0)2

we obtain the generating function for the total area of parallelogram polyominoes

A1 = 2V0
(1−V0)2

= 2t
1−4t

The simplification to a rational function of t
is a well-known feature of parallelogram polyominoes.

The average area for parallelogram polyominoes of size n is 4n/Cn
where Cn are the Catalan numbers.

The average area for parallelogram polyominoes of size n scales like n
3
2

The generating function of the total area of fighting fish with c tails and size n+ 1
is a rational function of the Catalan generating function V0

The area generatin function

The average area An of fighting fish with size n+ 1 grows like n
5
4

The area generatin function

The average area An of fighting fish with size n+ 1 grows like n
5
4

Indeed, let us reconsider the equation for V , f , and A,

V = t
(1−V)2

f = V − V 3

(1−V)2

A = 1
V −

√
(1+V)(1−3V)
V (1−V)

and get asymptotics by singularity analysis

The area generatin function

The average area An of fighting fish with size n+ 1 grows like n
5
4

Indeed, let us reconsider the equation for V , f , and A,

V = t
(1−V)2

f = V − V 3

(1−V)2

A = 1
V −

√
(1+V)(1−3V)
V (1−V)

and get asymptotics by singularity analysis

Then the average area is

[tn]A

[tn]f
∼

n→∞
cte · n 5

4

[tn]f ∼
n→∞

cte · n− 5
2 t−nc

[tn]A ∼
n→∞

cte · n−
5
4 t−nc

We obtain:

A refinement of the main formula

T1

T2

`
` + 1

k

T1

T2

`

k

`

T1

T2

`

k

`

T1

T2

`

k

` − 1

Operation u Operation h Operation h′ Operation d

T (v, q) = tvqb(T (vq2, q) + x)(T (v, q) + 1) + aT (vq2, q)(T (v, q) + 1)+

+bT (vq2, q)(T (v, q) + 1) + t
vq
a(T (vq2, q)− vq2f(q))(T (v, q) + 1)

T (v, q, x, t) =
∑
T∈FT a

l(T)br(T)vh(T)qa(T)xc(T)tn(T) denote
the generating function of fish tails, where

l(T) is the number of upper-left free edges of T

r(T) is the number of upper-right edges of T

#

{
fighting fish with

i top left and j top right edges

}
= 1

(2i+j−1)(2j+i−1)

(2i+j−1
i

)(2j+i−1
j

)

An algebraic decomposition for parallelogram polyominoes.

Since the gf function f of fighting fish is algebraic we would like
to find an algebraic decomposition.

An algebraic decomposition for parallelogram polyominoes.

Since the gf function f of fighting fish is algebraic we would like
to find an algebraic decomposition.

We try a new decomposition starting from
a grammar-like decomposition on parallelogram polyominoes.

An algebraic decomposition for parallelogram polyominoes.

Since the gf function f of fighting fish is algebraic we would like
to find an algebraic decomposition.

We try a new decomposition starting from
a grammar-like decomposition on parallelogram polyominoes.

The wasp-waist decomposition for parallelogram polyominoes

An algebraic decomposition for parallelogram polyominoes.

Since the gf function f of fighting fish is algebraic we would like
to find an algebraic decomposition.

We try a new decomposition starting from
a grammar-like decomposition on parallelogram polyominoes.

The wasp-waist decomposition for parallelogram polyominoes

Let P =
∑
P t
|P | be the GF of parallelogram polyominoes

according to the size, then P = t+ 2tP + tP 2

A new decomposition

Extend the wasp-waist decomposition of parallelogram polyominoes:

remove one cell at the bottom of each diagonal, from left to right
along the fin, until this creates a cut

+

A new decomposition

Extend the wasp-waist decomposition of parallelogram polyominoes:

remove one cell at the bottom of each diagonal, from left to right
along the fin, until this creates a cut

Two more cases must be considered for fighting fish...

+

A glipse of the proof

F (u) = tu(1 + F (u))2 + xtuF (u)
F (1)− F (u)

1− u
with f = F (1).

Let F (u) =
∑
f t
|f |ufin(f)xtail(f)−1 be the GF of fighting fish

according to the size, fin length and number of extra tails.
Then

A glipse of the proof

F (u) = tu(1 + F (u))2 + xtuF (u)
F (1)− F (u)

1− u
with f = F (1).

Case x = 0. Fish with one tail, ie parallelogram polyominoes:
we have the usual algebraic equation for the GF of Catalan numbers.

Let F (u) =
∑
f t
|f |ufin(f)xtail(f)−1 be the GF of fighting fish

according to the size, fin length and number of extra tails.
Then

A glipse of the proof

F (u) = tu(1 + F (u))2 + xtuF (u)
F (1)− F (u)

1− u
with f = F (1).

But in the general case we have again a polynomial equation with one
catalytic variable...

Case x = 0. Fish with one tail, ie parallelogram polyominoes:
we have the usual algebraic equation for the GF of Catalan numbers.

⇒ The question to find a direct algebraic decomposition of
fighting fish remain.

Let F (u) =
∑
f t
|f |ufin(f)xtail(f)−1 be the GF of fighting fish

according to the size, fin length and number of extra tails.
Then

Bijections and parameter
equidistributions?

Sloane’s Online Encyclopedia of Integer Sequences

The number of fighting fish of size n+ 1 (with i left and j down top edges)
is equal to the number of:

• Two-stack sortable permutations of {1, . . . , n} (i ascending and j descending runs)
(West, Zeilberger, Bona, 90’s)

• Rooted non separable planar maps with n edges (i+ 1 vertices, j + 1 faces)
(Tutte, Mullin and Schellenberg, 60’s)

This integer sequence was already in Sloane’s OEIS!

• Left ternary trees with n noeuds (i+ 1 even, j odd vertices)
(Del Lungo, Del Ristoro, Penaud, 1999)

#

{
fighting fish

with semi-perimeter n+ 1

}
=

2

(n+ 1)(2n+ 1)

(
3n

n

)
1, 2, 6, 91, 408, 1938...

Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

• vertex with label i ⇒ left child i+ 1,
central child i, right child i− 1.

• root vertex has label 0

0

0
0

01

1

1

2

-1

Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

• vertex with label i ⇒ left child i+ 1,
central child i, right child i− 1.

Left ternary tree = ternary tree
without negative labels.

• root vertex has label 0

0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

• vertex with label i ⇒ left child i+ 1,
central child i, right child i− 1.

Left ternary tree = ternary tree
without negative labels.

• root vertex has label 0

0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Core = binary subtree of the root
after pruning all right edges

0

0
0

01

1

1

2

0

Left ternary trees and further equidistributions

Theorem (DGRS 2016): The number of fighting fish with size
n+ 1 and fin length k equals the number of left ternary trees
with n nodes and core size k.

Natural embedding of a ternary tree:

• vertex with label i ⇒ left child i+ 1,
central child i, right child i− 1.

Left ternary tree = ternary tree
without negative labels.

• root vertex has label 0

0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Core = binary subtree of the root
after pruning all right edges

0

0
0

01

1

1

2

0

Left ternary trees and further equidistributions

Theorem (DGRS 2016): The number of fighting fish with size
n+ 1 and fin length k equals the number of left ternary trees
with n nodes and core size k.

Natural embedding of a ternary tree:

• vertex with label i ⇒ left child i+ 1,
central child i, right child i− 1.

Left ternary tree = ternary tree
without negative labels.

• root vertex has label 0

0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Core = binary subtree of the root
after pruning all right edges

0

0
0

01

1

1

2

0

Proof? We computed the gf of fighting fish wrt size and fin length.

Compute the gf of left ternary trees wrt size and core size...

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Core = binary subtree of the root
after pruning all right edges

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Easy for ternary trees:

Core = binary subtree of the root
after pruning all right edges

= · +

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Proposition The GF τ(u) of ternary trees wrt size and core size is

Easy for ternary trees:

Core = binary subtree of the root
after pruning all right edges

τ(u) = 1 + tuτ(u)2τ(1) generalizing τ(1) = 1 + tτ(1)3

= · +

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Proposition The GF τ(u) of ternary trees wrt size and core size is

Easy for ternary trees:

Core = binary subtree of the root
after pruning all right edges

τ(u) = 1 + tuτ(u)2τ(1) generalizing τ(1) = 1 + tτ(1)3

Known decompositions are complex and do not preserve core.

= · +

But: No known simple decomposition of left ternary trees.

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Proposition The GF τ(u) of ternary trees wrt size and core size is

Easy for ternary trees:

Core = binary subtree of the root
after pruning all right edges

τ(u) = 1 + tuτ(u)2τ(1) generalizing τ(1) = 1 + tτ(1)3

Known decompositions are complex and do not preserve core.

= · +

But: No known simple decomposition of left ternary trees.

Idea: Solve a more general problem...

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Proposition The GF τ(u) of ternary trees wrt size and core size is

τi(u) = 1 + tuτi+1(u)τi(u)τi−1(1) for i > 0

Easy for ternary trees:

Core = binary subtree of the root
after pruning all right edges

τ(u) = 1 + tuτ(u)2τ(1) generalizing τ(1) = 1 + tτ(1)3

Known decompositions are complex and do not preserve core.

Proposition The GFs wrt size and core size of left ternary trees with
root label i satisfy

= · +

But: No known simple decomposition of left ternary trees.

τ0(u) = 1 + tuτ1(u)τ0(u)
= · +

i i

i+1 i i-1

Idea: Solve a more general problem...

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Core = binary subtree of the root
after pruning all right edges

The solution of the previous infinite
system of equation is known for u = 1:

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Theorem (Di Francesco 05, Kuba 11) The size GF of left ternary
trees with root label i is

Core = binary subtree of the root
after pruning all right edges

τi = τ (1−Xi+5)
(1−Xi+4)

(1−Xi+2)
(1−Xi+3)

where
{

τ = 1 + tτ3

X = (1 +X +X2) τ−1
τ

.

The solution of the previous infinite
system of equation is known for u = 1:

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Theorem (Di Francesco 05, Kuba 11) The size GF of left ternary
trees with root label i is

Proof by guessing the formula and checking it satisfies the recurrence.

Core = binary subtree of the root
after pruning all right edges

τi = τ (1−Xi+5)
(1−Xi+4)

(1−Xi+2)
(1−Xi+3)

where
{

τ = 1 + tτ3

X = (1 +X +X2) τ−1
τ

.

The solution of the previous infinite
system of equation is known for u = 1:

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Theorem (Di Francesco 05, Kuba 11) The size GF of left ternary
trees with root label i is

Proof by guessing the formula and checking it satisfies the recurrence.

Core = binary subtree of the root
after pruning all right edges

τi = τ (1−Xi+5)
(1−Xi+4)

(1−Xi+2)
(1−Xi+3)

where
{

τ = 1 + tτ3

X = (1 +X +X2) τ−1
τ

.

Case i = 0 of this thm gives formula for left ternary trees of size n

The solution of the previous infinite
system of equation is known for u = 1:

Left ternary trees and further equidistributions
0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Theorem (Di Francesco 05, Kuba 11) The size GF of left ternary
trees with root label i is

τi(u) = τ(u) Hi(u)
Hi−1(u)

1−Xi+2

1−Xi+3 where

{
τ(u) = 1 + tuττ(u)2

Hj(u) = (1−Xj+1)XT (u)
−(1 +X)(1−Xj+2)

.

Proof by guessing the formula and checking it satisfies the recurrence.

Core = binary subtree of the root
after pruning all right edges

τi = τ (1−Xi+5)
(1−Xi+4)

(1−Xi+2)
(1−Xi+3)

where
{

τ = 1 + tτ3

X = (1 +X +X2) τ−1
τ

.

Case i = 0 of this thm gives formula for left ternary trees of size n

Theorem (DGRS16) The bivariate size and core size GF of left ternary
trees with label i is

We extend the theorem and its proof by guessing the bivariate formula

The solution of the previous infinite
system of equation is known for u = 1:

Left ternary trees and further equidistributions

Conjecture (DGRS 2016): The previous computation can be refined
to prove joined equidistribution of:

fin length ↔ core size
number of tails ↔ number of right branches
number of left/right free edges ↔ number of even/odd labels

0

0
0

01

1

1

2

-1

0

0
0

01

1

1

2

0

Core = binary subtree of the root
after pruning all right edges

Theorem (DGRS 2016): The number of fighting fish with size
n+ 1 and fin length k equals the number of left ternary trees
with n nodes and core size k.

The solution of the previous infinite
system of equation is known for u = 1:

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Tutte

recursive decomposition + GF

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Goulden-West
(isomorphic recursive decompositions)

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Goulden-West
(isomorphic recursive decompositions)

Del Lungo et al
(isomorphic recursive decompositions)

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Goulden-West
(isomorphic recursive decompositions)

Del Lungo et al
(isomorphic recursive decompositions)

Schaeffer
(direct bijection)

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Schaeffer

direct enumeration

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Goulden-West
(isomorphic recursive decompositions)

Del Lungo et al
(isomorphic recursive decompositions)

Schaeffer
(direct bijection)

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Schaeffer

direct enumeration

today’s talk
recursive decomposition + GF

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Goulden-West
(isomorphic recursive decompositions)

Del Lungo et al
(isomorphic recursive decompositions)

Schaeffer
(direct bijection)

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Schaeffer

direct enumeration

today’s talk
recursive decomposition + GF

direct bijection?

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Goulden-West
(isomorphic recursive decompositions)

Del Lungo et al
(isomorphic recursive decompositions)

Schaeffer
(direct bijection)

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Schaeffer

direct enumeration

today’s talk
recursive decomposition + GF

direct bijection?

direct enumeration?

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Goulden-West
(isomorphic recursive decompositions)

Del Lungo et al
(isomorphic recursive decompositions)

Schaeffer
(direct bijection)

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Schaeffer

direct enumeration

today’s talk
recursive decomposition + GF

Fang (2017)
(isomorphic recursive decompositions)

direct bijection?

direct enumeration?

Bijections ?

fighting fish

2SS-permutations

ns planar maps

left ternary trees

Goulden-West
(isomorphic recursive decompositions)

Del Lungo et al
(isomorphic recursive decompositions)

Schaeffer
(direct bijection)

Tutte

recursive decomposition + GF

Zeilberger
recursive decomposition + GF

Schaeffer

direct enumeration

today’s talk
recursive decomposition + GF

Fang (2017)
(isomorphic recursive decompositions)

direct bijection?

direct enumeration?

THANK YOU

THANK YOU

The area generatin function

The average area An of fighting fish with size n+ 1 grows like n
5
4

The area generatin function

The average area An of fighting fish with size n+ 1 grows like n
5
4

Indeed, let us reconsider the equation for V , f , and A,

V = t
(1−V)2

f = V − V 3

(1−V)2

A = 1
V −

√
(1+V)(1−3V)
V (1−V)

and get asymptotics by singularity analysis

The area generatin function

The average area An of fighting fish with size n+ 1 grows like n
5
4

Indeed, let us reconsider the equation for V , f , and A,

V = t
(1−V)2

f = V − V 3

(1−V)2

A = 1
V −

√
(1+V)(1−3V)
V (1−V)

and get asymptotics by singularity analysis

V = generating function of a simple
family of trees.

Square root singularity expansion
near dominant singularity

V = 1
3 − cte

√
(1− t

tc
) +O(1− t

tc
) with tc =

4
27

The area generatin function

The average area An of fighting fish with size n+ 1 grows like n
5
4

Indeed, let us reconsider the equation for V , f , and A,

V = t
(1−V)2

f = V − V 3

(1−V)2

A = 1
V −

√
(1+V)(1−3V)
V (1−V)

and get asymptotics by singularity analysis

V = generating function of a simple
family of trees.

Square root singularity expansion
near dominant singularity

V = 1
3 − cte

√
(1− t

tc
) +O(1− t

tc
)

f = 1
4 −

3
4 (1−

t
tc
) +

√
3

2 (1− t
tc
)

3
2 +O((1− t

tc
)2)

with tc =
4
27

The area generatin function

The average area An of fighting fish with size n+ 1 grows like n
5
4

Indeed, let us reconsider the equation for V , f , and A,

V = t
(1−V)2

f = V − V 3

(1−V)2

A = 1
V −

√
(1+V)(1−3V)
V (1−V)

and get asymptotics by singularity analysis

V = generating function of a simple
family of trees.

Square root singularity expansion
near dominant singularity

V = 1
3 − cte

√
(1− t

tc
) +O(1− t

tc
)

A = 3−
√
cte ·

√
1− t

tc
+O(

√
1− t

tc
) = 3− cte · (1− t

tc
)
1
4 +O((1− t

tc
)
1
2)

f = 1
4 −

3
4 (1−

t
tc
) +

√
3

2 (1− t
tc
)

3
2 +O((1− t

tc
)2)

with tc =
4
27

The area generating function

From transfert theorems: g ∼ (1− t
tc
)α ⇒ [tn]g ∼ n−1−α

Γ(−α) t
−n
c

we obtain:

[tn]f ∼
n→∞

cte · n− 5
2 t−nc

Then the average area is

[tn]A

[tn]f
∼

n→∞
cte · n 5

4

[tn]A ∼
n→∞

cte · n−
5
4 t−nc

A = 3− cte · (1− t
tc
)
1
4 +O((1− t

tc
)
1
2)

f = 1
4 −

3
4 (1−

t
tc
) +

√
3

2 (1− t
tc
)

3
2 +O((1− t

tc
)2)

We have the singular expansions:

	A recursive definition
	Enumeration wrt semi-perimeter and number of tails
	Enumeration wrt semi-perimeter and number of tails.
	Enumeration of fighting fish wrt the area
	The area generating function
	The area generatin function
	A refinement of the main formula
	An algebraic decomposition for parallelogram polyominoes.
	A new decomposition
	The area generatin function
	The area generating function

