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Simulating random variables
I All kinds of simulation problems require the use of random

numbers

I Many classical distributions, either discrete (uniform,
geometric, Poisson. . .) or continuous (uniform, exponential,
normal. . .)

I (Almost ?) all programming languages provide access to
pseudorandom numbers, either discrete (uniform integers over
[[a, b]]) or continuous (uniform over [0, 1]))

I Exact simulation algorithms are known for many distributions,
usually assuming exact computations over the reals

I The reference : Devroye (1986)
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Basic simulation tricks

I Distribution function inversion : if U is uniform and F (x) is
the (continuous, strictly increasing) distribution function
(F (x) = P(X ≤ x)) for some distribution, X = F−1(U) has
repartition function F

I Rejection : if g is the density of some distribution (that one
knows how to simulate), f is some other density with
f (x) ≤ c.g(x) for some c and all x , the following rejection
algorithm loops, on average, 1/c times, and simulates density
f :

I draw X (g-distributed)
I with probability f (X )/(c.g(X )), output X ; otherwise, restart

I Rejection can be used when densities are only proportional to
functions f and g with, say, f ≤ g , without
identifying/computing the multiplicative constant
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Typical basic examples

I If U is uniform over [0, 1], − ln(1− U) is exponentially
distributed (distribution function inversion)

I (Kahn 1954 ; rejection) For the (absolute value of) a normal
variable :

I draw E and X , independent exponentials
I if 2E ≥ (X − 1)2, return X ; otherwise, restart

(conditioned on X , the acceptance probability is
exp(−(X − 1)2/2) = exp(−x2/2)/ exp(−x))
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I All the previous techniques require
1. a generator of independent, uniform variables on [0, 1]
2. exact evaluation of transcendental functions and constants,

integrals, etc.

I For many discrete distributions, the Buffon machines of
[Flajolet, Pelletier, Soria 2011] allow to only use

I flip() (Bernoulli with parameter 1/2 ; “coin flips”)
I Bern[p]() (Bernoulli with parameter p, for unknown

parameters p ∈ (0, 1))
I basic integer arithmetic and bookkeeping (small counters)

I Can we do the same for a variety of continuous distributions ?
In a more or less systematic way ?
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Precursor : von Neumann’s algorithm

I J. von Neumann, 1951 “Various techniques used in
connection with random digits” (3 pages)

I describes an exact algorithm for the exponential distribution,
using only

I independent uniforms on [0, 1]
I comparisons of reals
I (small) integer counters
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The algorithm

1. Initialize counter K to 0
2. Draw a sequence X1,X2, . . .Xn of independent uniforms on

[0, 1], until the first ascent (Xn > Xn−1)
3. If n is odd : failure ; increment failure counter K , and go to 2.
4. (Otherwise) n is even : success, return K + X1

Proposition (von Neumann) : This algorithm terminates with
probability 1, and its output follows the exponential distribution
(density f (x) = exp(−x)1x>0). The expected number of uniforms
used is e+e2

e−1 ' 5.88.



The algorithm

1. Initialize counter K to 0
2. Draw a sequence X1,X2, . . .Xn of independent uniforms on

[0, 1], until the first ascent (Xn > Xn−1)
3. If n is odd : failure ; increment failure counter K , and go to 2.
4. (Otherwise) n is even : success, return K + X1

Proposition (von Neumann) : This algorithm terminates with
probability 1, and its output follows the exponential distribution
(density f (x) = exp(−x)1x>0). The expected number of uniforms
used is e+e2

e−1 ' 5.88.



Running the algorithm : an example

I Uniform sequence : 0.78, 0.04, 0.92, 0.01, 0.83, 0.22 . . .

I First attempt : 0.78 > 0.04
I Second attempt : 0.01 < 0.83 : even length, stop
I The output value is 1+ 0.01 = 1.01
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Proof of the algorithm (sketch)
I The probability that, in an infinite sequence of iid uniforms,

the first ascent occurs with the n-th element is
1/(n − 1)!− 1/n!

I Summing, the probability of the first ascent being in an odd
position (restarting) is

p =
∑
k≥0

1
(2k)! −

1
(2k + 1)! = e−1

I For x ∈ [0, 1] and n ≥ 2, the probability of having X1 ≤ x and
first ascent on the n-th elements, is xn−1/(n − 1)!− xn/n!

I Summing again : the probability of “success” with X1 ≤ x , is
1− e−x (the distribution function for an exponential on [0, 1])

I For the algorithm : the final value of K follows the geometric
distribution with parameter 1− e−1, and the (independent)
value of X1 conditioned on success is distributed as an
exponential, conditioned on being ≤ 1 ; the sum is
exponentially distributed.
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“Combinatorial simulation” of continuous distributions

I What we would like to obtain : exact simulation algorithms for
a large enough family of continuous probability distributions,
not requiring the use of “complex” operations over the reals

I Certainly no evaluations of transcendental functions ; if
possible, only basic arithmetic operations

I Ideally : algorithms that could be “humanly” run by treating
reals as infinite digit strings (and only using finite prefixes) -
no multiplications other than by powers of 2

I If we allow arbitrary products, then Kahn’s method (and von
Neumann’s algorithm for the exponential) shows that the
normal distribution admits such a restricted simulation
algorithm.

I [Karney, 2013] describes such a product-less algorithm.
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Extending the method

I “the above method can be modified to yield a distribution
satisfying any first-order differential equation” (von Neumann)

I Natural interpretation : assume the target density satisfies a
linear first-order differential equation y ′(t) = g(t).y(t), for
some given function g

I (This includes the density for the normal distribution :
y ′(t) = −t.y(t))

I This is essentially the interpretation of [Forsythe, 1972] ; but
the described method involves computing integrals based on
solving the equation (to tabulate the probability that the
target random variable takes values in a collection of disjoint
intervals)

I Today : description of an exact simulation method that is
slightly more involved, but does not require the evaluation of
any integrals or transcendental functions not in g .
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Main result
I Suppose our target distribution (over the positive reals) has a

density f , satisfying differential equation y ′(t) = −g(t).y(t)
for some given function g (at most one solution is a
probability density)

I Assume g satisfies some “quadrant” condition : there should
exist some a ≥ 0 with m = g(a) > 0, such that

I g(t) ≤ g(a) if t ≤ a
I g(t) ≥ g(a) if t ≥ a

I Assume we are given g (as a “black box” function), a, and
some (black box) “upper bounding” function h(t, u) such
that, for any t ≤ u, h(t, u) ≥ supt≤x≤u g(x)

I Then we provide an exact simulation algorithm, using only
uniform reals, additions, division by m, comparisons, and
evaluations of g and h

I (Notice that the conditions reduce to g as a black box if g is
known to be nondecreasing)
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The “quadrant condition”
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The differential equation
I The differential equation has solutions

f (t) = f (t0)e
−
∫ t

t0
g(u)du ; initial condition f (t0) would be

determined by condition
∫∞

0 f (t)dt = 1 (but we will be
proceeding by rejection and thus need not compute them)

I Taking t0 = a for the initial condition, the “quadrant”
condition implies that the density is upper bounded by the
solution to y ′(t) = −m.y(t) with the same initial condition :
for all t ≥ 0,

f (t) ≤ f (a)e−m(t−a)

I We could try a rejection scheme : simulate an exponential E
(using the von Neumann algorithm) and set X = E/m, then
return X with appropriate probability, or restart.

I Only, the acceptance probability is not something we are
allowed to compute :

exp
(
−
∫ X

a
g(t)dt +m(X − a)

)
= exp

(
−
∫ X

a
(g(t)−m)dt

)
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Digression : “Buffon generator” for x 7→ e−x

(Flajolet, Pelletier, Soria 2011)
I Hypothesis : we can draw uniforms, and have access to a

Bernoulli generator with parameter p, for some unknown
0 < p < 1, Bern() (i.e., Bern() returns 1 with probability p
and 0 with probability 1− p on each call, with calls being
independent)

I Then we have a von Neumann-like algorithm for a Bernoulli
with parameter e−p



Digression : “Buffon generator” for x 7→ e−x

(Flajolet, Pelletier, Soria 2011)
I Hypothesis : we can draw uniforms, and have access to a

Bernoulli generator with parameter p, for some unknown
0 < p < 1, Bern() (i.e., Bern() returns 1 with probability p
and 0 with probability 1− p on each call, with calls being
independent)

I Then we have a von Neumann-like algorithm for a Bernoulli
with parameter e−p



I Draw a sequence of independent pairs (Xi ,Bi) with Xi
uniform on [0, 1], and Bi an independent Bernoulli with
parameter p

I Stop at the first n such that Bn = 0 or Xn−1 < Xn (Bernoulli
fails, or ascent in the X sequence)

I Return 1 if n is odd, 0 if n is even

(proof along the same line as for von Neumann’s algorithm, with
powers of p addded, hence the e−p instead of e−1)
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Back to the simulation algorithm

I We need to “accept with probability exp(−I)”, i.e. draw a
Bernoulli whose parameter is the exponential of some integral.

I Under suitable conditions, an integral can be interpreted as a
probability for an easy-to-simulate event (that a random point
falls into some domain)

I If needed, the integral can be written as a sum of integrals on
smaller intervals (and the exponential becomes a product of
exponentials ; the Bernoulli variable becomes a product of
Bernoulli variables).
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Picking intervals

Assume X > a ; the case X < a is treated analogously)
I We need to split the interval [a,X ] into a number of smaller

intervals A1, . . . ,AK ; Ai = [ai−1, ai ].

I Set a0 = 0.
I Assume ai is known : compute M = h(ai , 1+ ai). If M ≤ 1,

then set ai+1 = 1+ ai , and repeat.
I If M > 1, then let M ′ denote the smallest power of 2 larger

than M, and, for each 1 ≤ k ≤ M ′, set ai+k = ai + k/M ′ (M ′
intervals of length 1/M ′), and repeat

I Stop at the first K such that ak ≥ X ; instead set aK = X
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Rejection probability

I Now the wanted integral is

∫ X

a
(g(t)−m)dt =

K∑
i=0

∫
Ai
(g(t)−m)dt =

∑
i
Pi

I Each smaller integral can be interpreted as a probability, i.e.
the probability that a uniform random point (X ,Y ) in the
rectangle Ai × [0, 1/(ai − ai−1)] (with area 1) satisfies
m ≤ Y ≤ g(X )

I Thus we can apply the “exponential Buffon” construction to
obtain a Bernoulli with parameter exp(−Pi)

I and in turn, obtain the wanted Bernoulli with parameter
exp(−

∑
i Pi), by taking the product (conjunction) of each

individual Bernoulli for each smaller interval : this completes
the algorithm.
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The case of the normal distribution
I Take the normal density, f (t) =

√
2π−1 exp(−x2/2), as the

target density.

I (We simulate the absolute value, then add a random sign)
I Differential equation : y ′(t) = −t.y(t), g(t) = t.
I g is increasing, any value of a > 0 will do ; a = 1 is Kahn’s

method (and minimizes the rejection probability)
I The upper bounding function is naturally h(t, u) = max(t, u)
I Strictly applying the previous interval description yields 2

intervals [1, 3/2] and [3/2, 2], then 4 intervals for each of
[2, 3] and [3, 4], then 8 intervals for each of [k, k + 1] for
k = 4, 5, 6, 7, and so on.

I (In practice, large values of X are very likely to be rejected ;
the rejection part should be run after each increment of the K
counter for the exponential after K = 1, so as to allow early
rejection)
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Running the algorithm digit-by-digit
I The previous algorithms are very suitable to an adaptation to

bit-by-bit computations

I In any base B, uniforms over [0, 1] have a B-ary development
made of independent uniform {0, . . . ,B − 1} digits

I Comparisons of reals reduce to lexicographic order of strings
I The algorithms can be adapted to bit-by-bit simulation : each

uniform is only simulated up to the precision required by
comparisons, and later completed as needed

I Such algorithms output a finite B-ary string, with the
meaning “if more precision is needed, add random digits”

I von Neumann’s algorithm was analysed by [Flajolet, Saheb,
1986] ; uses on average k + 5.72.. bits to output k bits of the
exponential random variable

I In our general differential equation algorithm, we need a bit
more than just a black box function g (unless g is known to
be increasing)
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Conclusion

I We obtain exact, “von-Neumann-Buffon-like” algorithms for
the simulation of a (not too well-defined) class of distributions
that includes the normal distribution

I For the normal distribution, this is very similar to Karney’s
algorithm, described at the digit level

I In the general case, this is very close to what Devroye
described as “the von Neumann-Forsythe method”

I No analysis of the expected (bit) complexity yet (will depend
on the quality of upper bound h in the general method)

I The method is unlikely to be competitive with numerical
methods (possibly paired with certified floating point
calculations), unless one needs very high precision on their
random variables
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