
Exact “combinatorial” simulation of continuous
random variables

Philippe Duchon (LaBRI, U. Bordeaux)

Séminaire Flajolet, April 2, 2015



Simulating random variables
I All kinds of simulation problems require the use of random

numbers

I Many classical distributions, either discrete (uniform,
geometric, Poisson. . .) or continuous (uniform, exponential,
normal. . .)

I (Almost ?) all programming languages provide access to
pseudorandom numbers, either discrete (uniform integers over
[[a, b]]) or continuous (uniform over [0, 1]))

I Exact simulation algorithms are known for many distributions,
usually assuming exact computations over the reals

I The reference : Devroye (1986)



Simulating random variables
I All kinds of simulation problems require the use of random

numbers
I Many classical distributions, either discrete (uniform,

geometric, Poisson. . .) or continuous (uniform, exponential,
normal. . .)

I (Almost ?) all programming languages provide access to
pseudorandom numbers, either discrete (uniform integers over
[[a, b]]) or continuous (uniform over [0, 1]))

I Exact simulation algorithms are known for many distributions,
usually assuming exact computations over the reals

I The reference : Devroye (1986)



Simulating random variables
I All kinds of simulation problems require the use of random

numbers
I Many classical distributions, either discrete (uniform,

geometric, Poisson. . .) or continuous (uniform, exponential,
normal. . .)

I (Almost ?) all programming languages provide access to
pseudorandom numbers, either discrete (uniform integers over
[[a, b]]) or continuous (uniform over [0, 1]))

I Exact simulation algorithms are known for many distributions,
usually assuming exact computations over the reals

I The reference : Devroye (1986)



Simulating random variables
I All kinds of simulation problems require the use of random

numbers
I Many classical distributions, either discrete (uniform,

geometric, Poisson. . .) or continuous (uniform, exponential,
normal. . .)

I (Almost ?) all programming languages provide access to
pseudorandom numbers, either discrete (uniform integers over
[[a, b]]) or continuous (uniform over [0, 1]))

I Exact simulation algorithms are known for many distributions,
usually assuming exact computations over the reals

I The reference : Devroye (1986)



Simulating random variables
I All kinds of simulation problems require the use of random

numbers
I Many classical distributions, either discrete (uniform,

geometric, Poisson. . .) or continuous (uniform, exponential,
normal. . .)

I (Almost ?) all programming languages provide access to
pseudorandom numbers, either discrete (uniform integers over
[[a, b]]) or continuous (uniform over [0, 1]))

I Exact simulation algorithms are known for many distributions,
usually assuming exact computations over the reals

I The reference : Devroye (1986)



Basic simulation tricks

I Distribution function inversion : if U is uniform and F (x) is
the (continuous, strictly increasing) distribution function
(F (x) = P(X ≤ x)) for some distribution, X = F−1(U) has
repartition function F

I Rejection : if g is the density of some distribution (that one
knows how to simulate), f is some other density with
f (x) ≤ c.g(x) for some c and all x , the following rejection
algorithm loops, on average, 1/c times, and simulates density
f :

I draw X (g-distributed)
I with probability f (X )/(c.g(X )), output X ; otherwise, restart

I Rejection can be used when densities are only proportional to
functions f and g with, say, f ≤ g , without
identifying/computing the multiplicative constant



Basic simulation tricks

I Distribution function inversion : if U is uniform and F (x) is
the (continuous, strictly increasing) distribution function
(F (x) = P(X ≤ x)) for some distribution, X = F−1(U) has
repartition function F

I Rejection : if g is the density of some distribution (that one
knows how to simulate), f is some other density with
f (x) ≤ c.g(x) for some c and all x , the following rejection
algorithm loops, on average, 1/c times, and simulates density
f :

I draw X (g-distributed)
I with probability f (X )/(c.g(X )), output X ; otherwise, restart

I Rejection can be used when densities are only proportional to
functions f and g with, say, f ≤ g , without
identifying/computing the multiplicative constant



Basic simulation tricks

I Distribution function inversion : if U is uniform and F (x) is
the (continuous, strictly increasing) distribution function
(F (x) = P(X ≤ x)) for some distribution, X = F−1(U) has
repartition function F

I Rejection : if g is the density of some distribution (that one
knows how to simulate), f is some other density with
f (x) ≤ c.g(x) for some c and all x , the following rejection
algorithm loops, on average, 1/c times, and simulates density
f :

I draw X (g-distributed)
I with probability f (X )/(c.g(X )), output X ; otherwise, restart

I Rejection can be used when densities are only proportional to
functions f and g with, say, f ≤ g , without
identifying/computing the multiplicative constant



Typical basic examples

I If U is uniform over [0, 1], − ln(1− U) is exponentially
distributed (distribution function inversion)

I (Kahn 1954 ; rejection) For the (absolute value of) a normal
variable :

I draw E and X , independent exponentials
I if 2E ≥ (X − 1)2, return X ; otherwise, restart

(conditioned on X , the acceptance probability is
exp(−(X − 1)2/2) = exp(−x2/2)/ exp(−x))



Typical basic examples

I If U is uniform over [0, 1], − ln(1− U) is exponentially
distributed (distribution function inversion)

I (Kahn 1954 ; rejection) For the (absolute value of) a normal
variable :

I draw E and X , independent exponentials
I if 2E ≥ (X − 1)2, return X ; otherwise, restart

(conditioned on X , the acceptance probability is
exp(−(X − 1)2/2) = exp(−x2/2)/ exp(−x))



Typical basic examples

I If U is uniform over [0, 1], − ln(1− U) is exponentially
distributed (distribution function inversion)

I (Kahn 1954 ; rejection) For the (absolute value of) a normal
variable :

I draw E and X , independent exponentials
I if 2E ≥ (X − 1)2, return X ; otherwise, restart

(conditioned on X , the acceptance probability is
exp(−(X − 1)2/2) = exp(−x2/2)/ exp(−x))



I All the previous techniques require
1. a generator of independent, uniform variables on [0, 1]
2. exact evaluation of transcendental functions and constants,

integrals, etc.

I For many discrete distributions, the Buffon machines of
[Flajolet, Pelletier, Soria 2011] allow to only use

I flip() (Bernoulli with parameter 1/2 ; “coin flips”)
I Bern[p]() (Bernoulli with parameter p, for unknown

parameters p ∈ (0, 1))
I basic integer arithmetic and bookkeeping (small counters)

I Can we do the same for a variety of continuous distributions ?
In a more or less systematic way ?



I All the previous techniques require
1. a generator of independent, uniform variables on [0, 1]
2. exact evaluation of transcendental functions and constants,

integrals, etc.
I For many discrete distributions, the Buffon machines of
[Flajolet, Pelletier, Soria 2011] allow to only use

I flip() (Bernoulli with parameter 1/2 ; “coin flips”)
I Bern[p]() (Bernoulli with parameter p, for unknown

parameters p ∈ (0, 1))
I basic integer arithmetic and bookkeeping (small counters)

I Can we do the same for a variety of continuous distributions ?
In a more or less systematic way ?



I All the previous techniques require
1. a generator of independent, uniform variables on [0, 1]
2. exact evaluation of transcendental functions and constants,

integrals, etc.
I For many discrete distributions, the Buffon machines of
[Flajolet, Pelletier, Soria 2011] allow to only use

I flip() (Bernoulli with parameter 1/2 ; “coin flips”)
I Bern[p]() (Bernoulli with parameter p, for unknown

parameters p ∈ (0, 1))
I basic integer arithmetic and bookkeeping (small counters)

I Can we do the same for a variety of continuous distributions ?
In a more or less systematic way ?



Precursor : von Neumann’s algorithm

I J. von Neumann, 1951 “Various techniques used in
connection with random digits” (3 pages)

I describes an exact algorithm for the exponential distribution,
using only

I independent uniforms on [0, 1]
I comparisons of reals
I (small) integer counters



Precursor : von Neumann’s algorithm

I J. von Neumann, 1951 “Various techniques used in
connection with random digits” (3 pages)

I describes an exact algorithm for the exponential distribution,
using only

I independent uniforms on [0, 1]
I comparisons of reals
I (small) integer counters



The algorithm

1. Initialize counter K to 0
2. Draw a sequence X1,X2, . . .Xn of independent uniforms on

[0, 1], until the first ascent (Xn > Xn−1)
3. If n is odd : failure ; increment failure counter K , and go to 2.
4. (Otherwise) n is even : success, return K + X1

Proposition (von Neumann) : This algorithm terminates with
probability 1, and its output follows the exponential distribution
(density f (x) = exp(−x)1x>0). The expected number of uniforms
used is e+e2

e−1 ' 5.88.



The algorithm

1. Initialize counter K to 0
2. Draw a sequence X1,X2, . . .Xn of independent uniforms on

[0, 1], until the first ascent (Xn > Xn−1)
3. If n is odd : failure ; increment failure counter K , and go to 2.
4. (Otherwise) n is even : success, return K + X1

Proposition (von Neumann) : This algorithm terminates with
probability 1, and its output follows the exponential distribution
(density f (x) = exp(−x)1x>0). The expected number of uniforms
used is e+e2

e−1 ' 5.88.



Running the algorithm : an example

I Uniform sequence : 0.78, 0.04, 0.92, 0.01, 0.83, 0.22 . . .

I First attempt : 0.78 > 0.04
I Second attempt : 0.01 < 0.83 : even length, stop
I The output value is 1+ 0.01 = 1.01



Running the algorithm : an example

I Uniform sequence : 0.78, 0.04, 0.92, 0.01, 0.83, 0.22 . . .
I First attempt : 0.78 > 0.04

I Second attempt : 0.01 < 0.83 : even length, stop
I The output value is 1+ 0.01 = 1.01



Running the algorithm : an example

I Uniform sequence : 0.78, 0.04, 0.92, 0.01, 0.83, 0.22 . . .
I First attempt : 0.78 > 0.04< 0.92 : odd length series, restart

(K = 1)

I Second attempt : 0.01 < 0.83 : even length, stop
I The output value is 1+ 0.01 = 1.01



Running the algorithm : an example

I Uniform sequence : 0.78, 0.04, 0.92, 0.01, 0.83, 0.22 . . .
I First attempt : 0.78 > 0.04< 0.92 : odd length series, restart

(K = 1)
I Second attempt : 0.01 < 0.83 : even length, stop

I The output value is 1+ 0.01 = 1.01



Running the algorithm : an example

I Uniform sequence : 0.78, 0.04, 0.92, 0.01, 0.83, 0.22 . . .
I First attempt : 0.78 > 0.04< 0.92 : odd length series, restart

(K = 1)
I Second attempt : 0.01 < 0.83 : even length, stop
I The output value is 1+ 0.01 = 1.01



Proof of the algorithm (sketch)
I The probability that, in an infinite sequence of iid uniforms,

the first ascent occurs with the n-th element is
1/(n − 1)!− 1/n!

I Summing, the probability of the first ascent being in an odd
position (restarting) is

p =
∑
k≥0

1
(2k)! −

1
(2k + 1)! = e−1

I For x ∈ [0, 1] and n ≥ 2, the probability of having X1 ≤ x and
first ascent on the n-th elements, is xn−1/(n − 1)!− xn/n!

I Summing again : the probability of “success” with X1 ≤ x , is
1− e−x (the distribution function for an exponential on [0, 1])

I For the algorithm : the final value of K follows the geometric
distribution with parameter 1− e−1, and the (independent)
value of X1 conditioned on success is distributed as an
exponential, conditioned on being ≤ 1 ; the sum is
exponentially distributed.



Proof of the algorithm (sketch)
I The probability that, in an infinite sequence of iid uniforms,

the first ascent occurs with the n-th element is
1/(n − 1)!− 1/n!

I Summing, the probability of the first ascent being in an odd
position (restarting) is

p =
∑
k≥0

1
(2k)! −

1
(2k + 1)! = e−1

I For x ∈ [0, 1] and n ≥ 2, the probability of having X1 ≤ x and
first ascent on the n-th elements, is xn−1/(n − 1)!− xn/n!

I Summing again : the probability of “success” with X1 ≤ x , is
1− e−x (the distribution function for an exponential on [0, 1])

I For the algorithm : the final value of K follows the geometric
distribution with parameter 1− e−1, and the (independent)
value of X1 conditioned on success is distributed as an
exponential, conditioned on being ≤ 1 ; the sum is
exponentially distributed.



Proof of the algorithm (sketch)
I The probability that, in an infinite sequence of iid uniforms,

the first ascent occurs with the n-th element is
1/(n − 1)!− 1/n!

I Summing, the probability of the first ascent being in an odd
position (restarting) is

p =
∑
k≥0

1
(2k)! −

1
(2k + 1)! = e−1

I For x ∈ [0, 1] and n ≥ 2, the probability of having X1 ≤ x and
first ascent on the n-th elements, is xn−1/(n − 1)!− xn/n!

I Summing again : the probability of “success” with X1 ≤ x , is
1− e−x (the distribution function for an exponential on [0, 1])

I For the algorithm : the final value of K follows the geometric
distribution with parameter 1− e−1, and the (independent)
value of X1 conditioned on success is distributed as an
exponential, conditioned on being ≤ 1 ; the sum is
exponentially distributed.



Proof of the algorithm (sketch)
I The probability that, in an infinite sequence of iid uniforms,

the first ascent occurs with the n-th element is
1/(n − 1)!− 1/n!

I Summing, the probability of the first ascent being in an odd
position (restarting) is

p =
∑
k≥0

1
(2k)! −

1
(2k + 1)! = e−1

I For x ∈ [0, 1] and n ≥ 2, the probability of having X1 ≤ x and
first ascent on the n-th elements, is xn−1/(n − 1)!− xn/n!

I Summing again : the probability of “success” with X1 ≤ x , is
1− e−x (the distribution function for an exponential on [0, 1])

I For the algorithm : the final value of K follows the geometric
distribution with parameter 1− e−1, and the (independent)
value of X1 conditioned on success is distributed as an
exponential, conditioned on being ≤ 1 ; the sum is
exponentially distributed.



Proof of the algorithm (sketch)
I The probability that, in an infinite sequence of iid uniforms,

the first ascent occurs with the n-th element is
1/(n − 1)!− 1/n!

I Summing, the probability of the first ascent being in an odd
position (restarting) is

p =
∑
k≥0

1
(2k)! −

1
(2k + 1)! = e−1

I For x ∈ [0, 1] and n ≥ 2, the probability of having X1 ≤ x and
first ascent on the n-th elements, is xn−1/(n − 1)!− xn/n!

I Summing again : the probability of “success” with X1 ≤ x , is
1− e−x (the distribution function for an exponential on [0, 1])

I For the algorithm : the final value of K follows the geometric
distribution with parameter 1− e−1, and the (independent)
value of X1 conditioned on success is distributed as an
exponential, conditioned on being ≤ 1 ; the sum is
exponentially distributed.



“Combinatorial simulation” of continuous distributions

I What we would like to obtain : exact simulation algorithms for
a large enough family of continuous probability distributions,
not requiring the use of “complex” operations over the reals

I Certainly no evaluations of transcendental functions ; if
possible, only basic arithmetic operations

I Ideally : algorithms that could be “humanly” run by treating
reals as infinite digit strings (and only using finite prefixes) -
no multiplications other than by powers of 2

I If we allow arbitrary products, then Kahn’s method (and von
Neumann’s algorithm for the exponential) shows that the
normal distribution admits such a restricted simulation
algorithm.

I [Karney, 2013] describes such a product-less algorithm.



“Combinatorial simulation” of continuous distributions

I What we would like to obtain : exact simulation algorithms for
a large enough family of continuous probability distributions,
not requiring the use of “complex” operations over the reals

I Certainly no evaluations of transcendental functions ; if
possible, only basic arithmetic operations

I Ideally : algorithms that could be “humanly” run by treating
reals as infinite digit strings (and only using finite prefixes) -
no multiplications other than by powers of 2

I If we allow arbitrary products, then Kahn’s method (and von
Neumann’s algorithm for the exponential) shows that the
normal distribution admits such a restricted simulation
algorithm.

I [Karney, 2013] describes such a product-less algorithm.



“Combinatorial simulation” of continuous distributions

I What we would like to obtain : exact simulation algorithms for
a large enough family of continuous probability distributions,
not requiring the use of “complex” operations over the reals

I Certainly no evaluations of transcendental functions ; if
possible, only basic arithmetic operations

I Ideally : algorithms that could be “humanly” run by treating
reals as infinite digit strings (and only using finite prefixes) -
no multiplications other than by powers of 2

I If we allow arbitrary products, then Kahn’s method (and von
Neumann’s algorithm for the exponential) shows that the
normal distribution admits such a restricted simulation
algorithm.

I [Karney, 2013] describes such a product-less algorithm.



“Combinatorial simulation” of continuous distributions

I What we would like to obtain : exact simulation algorithms for
a large enough family of continuous probability distributions,
not requiring the use of “complex” operations over the reals

I Certainly no evaluations of transcendental functions ; if
possible, only basic arithmetic operations

I Ideally : algorithms that could be “humanly” run by treating
reals as infinite digit strings (and only using finite prefixes) -
no multiplications other than by powers of 2

I If we allow arbitrary products, then Kahn’s method (and von
Neumann’s algorithm for the exponential) shows that the
normal distribution admits such a restricted simulation
algorithm.

I [Karney, 2013] describes such a product-less algorithm.



“Combinatorial simulation” of continuous distributions

I What we would like to obtain : exact simulation algorithms for
a large enough family of continuous probability distributions,
not requiring the use of “complex” operations over the reals

I Certainly no evaluations of transcendental functions ; if
possible, only basic arithmetic operations

I Ideally : algorithms that could be “humanly” run by treating
reals as infinite digit strings (and only using finite prefixes) -
no multiplications other than by powers of 2

I If we allow arbitrary products, then Kahn’s method (and von
Neumann’s algorithm for the exponential) shows that the
normal distribution admits such a restricted simulation
algorithm.

I [Karney, 2013] describes such a product-less algorithm.



Extending the method

I “the above method can be modified to yield a distribution
satisfying any first-order differential equation” (von Neumann)

I Natural interpretation : assume the target density satisfies a
linear first-order differential equation y ′(t) = g(t).y(t), for
some given function g

I (This includes the density for the normal distribution :
y ′(t) = −t.y(t))

I This is essentially the interpretation of [Forsythe, 1972] ; but
the described method involves computing integrals based on
solving the equation (to tabulate the probability that the
target random variable takes values in a collection of disjoint
intervals)

I Today : description of an exact simulation method that is
slightly more involved, but does not require the evaluation of
any integrals or transcendental functions not in g .



Extending the method

I “the above method can be modified to yield a distribution
satisfying any first-order differential equation” (von Neumann)

I Natural interpretation : assume the target density satisfies a
linear first-order differential equation y ′(t) = g(t).y(t), for
some given function g

I (This includes the density for the normal distribution :
y ′(t) = −t.y(t))

I This is essentially the interpretation of [Forsythe, 1972] ; but
the described method involves computing integrals based on
solving the equation (to tabulate the probability that the
target random variable takes values in a collection of disjoint
intervals)

I Today : description of an exact simulation method that is
slightly more involved, but does not require the evaluation of
any integrals or transcendental functions not in g .



Extending the method

I “the above method can be modified to yield a distribution
satisfying any first-order differential equation” (von Neumann)

I Natural interpretation : assume the target density satisfies a
linear first-order differential equation y ′(t) = g(t).y(t), for
some given function g

I (This includes the density for the normal distribution :
y ′(t) = −t.y(t))

I This is essentially the interpretation of [Forsythe, 1972] ; but
the described method involves computing integrals based on
solving the equation (to tabulate the probability that the
target random variable takes values in a collection of disjoint
intervals)

I Today : description of an exact simulation method that is
slightly more involved, but does not require the evaluation of
any integrals or transcendental functions not in g .



Extending the method

I “the above method can be modified to yield a distribution
satisfying any first-order differential equation” (von Neumann)

I Natural interpretation : assume the target density satisfies a
linear first-order differential equation y ′(t) = g(t).y(t), for
some given function g

I (This includes the density for the normal distribution :
y ′(t) = −t.y(t))

I This is essentially the interpretation of [Forsythe, 1972] ; but
the described method involves computing integrals based on
solving the equation (to tabulate the probability that the
target random variable takes values in a collection of disjoint
intervals)

I Today : description of an exact simulation method that is
slightly more involved, but does not require the evaluation of
any integrals or transcendental functions not in g .



Extending the method

I “the above method can be modified to yield a distribution
satisfying any first-order differential equation” (von Neumann)

I Natural interpretation : assume the target density satisfies a
linear first-order differential equation y ′(t) = g(t).y(t), for
some given function g

I (This includes the density for the normal distribution :
y ′(t) = −t.y(t))

I This is essentially the interpretation of [Forsythe, 1972] ; but
the described method involves computing integrals based on
solving the equation (to tabulate the probability that the
target random variable takes values in a collection of disjoint
intervals)

I Today : description of an exact simulation method that is
slightly more involved, but does not require the evaluation of
any integrals or transcendental functions not in g .



Main result
I Suppose our target distribution (over the positive reals) has a

density f , satisfying differential equation y ′(t) = −g(t).y(t)
for some given function g (at most one solution is a
probability density)

I Assume g satisfies some “quadrant” condition : there should
exist some a ≥ 0 with m = g(a) > 0, such that

I g(t) ≤ g(a) if t ≤ a
I g(t) ≥ g(a) if t ≥ a

I Assume we are given g (as a “black box” function), a, and
some (black box) “upper bounding” function h(t, u) such
that, for any t ≤ u, h(t, u) ≥ supt≤x≤u g(x)

I Then we provide an exact simulation algorithm, using only
uniform reals, additions, division by m, comparisons, and
evaluations of g and h

I (Notice that the conditions reduce to g as a black box if g is
known to be nondecreasing)



Main result
I Suppose our target distribution (over the positive reals) has a

density f , satisfying differential equation y ′(t) = −g(t).y(t)
for some given function g (at most one solution is a
probability density)

I Assume g satisfies some “quadrant” condition : there should
exist some a ≥ 0 with m = g(a) > 0, such that

I g(t) ≤ g(a) if t ≤ a
I g(t) ≥ g(a) if t ≥ a

I Assume we are given g (as a “black box” function), a, and
some (black box) “upper bounding” function h(t, u) such
that, for any t ≤ u, h(t, u) ≥ supt≤x≤u g(x)

I Then we provide an exact simulation algorithm, using only
uniform reals, additions, division by m, comparisons, and
evaluations of g and h

I (Notice that the conditions reduce to g as a black box if g is
known to be nondecreasing)



Main result
I Suppose our target distribution (over the positive reals) has a

density f , satisfying differential equation y ′(t) = −g(t).y(t)
for some given function g (at most one solution is a
probability density)

I Assume g satisfies some “quadrant” condition : there should
exist some a ≥ 0 with m = g(a) > 0, such that

I g(t) ≤ g(a) if t ≤ a
I g(t) ≥ g(a) if t ≥ a

I Assume we are given g (as a “black box” function), a, and
some (black box) “upper bounding” function h(t, u) such
that, for any t ≤ u, h(t, u) ≥ supt≤x≤u g(x)

I Then we provide an exact simulation algorithm, using only
uniform reals, additions, division by m, comparisons, and
evaluations of g and h

I (Notice that the conditions reduce to g as a black box if g is
known to be nondecreasing)



Main result
I Suppose our target distribution (over the positive reals) has a

density f , satisfying differential equation y ′(t) = −g(t).y(t)
for some given function g (at most one solution is a
probability density)

I Assume g satisfies some “quadrant” condition : there should
exist some a ≥ 0 with m = g(a) > 0, such that

I g(t) ≤ g(a) if t ≤ a
I g(t) ≥ g(a) if t ≥ a

I Assume we are given g (as a “black box” function), a, and
some (black box) “upper bounding” function h(t, u) such
that, for any t ≤ u, h(t, u) ≥ supt≤x≤u g(x)

I Then we provide an exact simulation algorithm, using only
uniform reals, additions, division by m, comparisons, and
evaluations of g and h

I (Notice that the conditions reduce to g as a black box if g is
known to be nondecreasing)



Main result
I Suppose our target distribution (over the positive reals) has a

density f , satisfying differential equation y ′(t) = −g(t).y(t)
for some given function g (at most one solution is a
probability density)

I Assume g satisfies some “quadrant” condition : there should
exist some a ≥ 0 with m = g(a) > 0, such that

I g(t) ≤ g(a) if t ≤ a
I g(t) ≥ g(a) if t ≥ a

I Assume we are given g (as a “black box” function), a, and
some (black box) “upper bounding” function h(t, u) such
that, for any t ≤ u, h(t, u) ≥ supt≤x≤u g(x)

I Then we provide an exact simulation algorithm, using only
uniform reals, additions, division by m, comparisons, and
evaluations of g and h

I (Notice that the conditions reduce to g as a black box if g is
known to be nondecreasing)



The “quadrant condition”

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

a

m



The differential equation
I The differential equation has solutions

f (t) = f (t0)e
−
∫ t

t0
g(u)du ; initial condition f (t0) would be

determined by condition
∫∞

0 f (t)dt = 1 (but we will be
proceeding by rejection and thus need not compute them)

I Taking t0 = a for the initial condition, the “quadrant”
condition implies that the density is upper bounded by the
solution to y ′(t) = −m.y(t) with the same initial condition :
for all t ≥ 0,

f (t) ≤ f (a)e−m(t−a)

I We could try a rejection scheme : simulate an exponential E
(using the von Neumann algorithm) and set X = E/m, then
return X with appropriate probability, or restart.

I Only, the acceptance probability is not something we are
allowed to compute :

exp
(
−
∫ X

a
g(t)dt +m(X − a)

)
= exp

(
−
∫ X

a
(g(t)−m)dt

)



The differential equation
I The differential equation has solutions

f (t) = f (t0)e
−
∫ t

t0
g(u)du ; initial condition f (t0) would be

determined by condition
∫∞

0 f (t)dt = 1 (but we will be
proceeding by rejection and thus need not compute them)

I Taking t0 = a for the initial condition, the “quadrant”
condition implies that the density is upper bounded by the
solution to y ′(t) = −m.y(t) with the same initial condition :
for all t ≥ 0,

f (t) ≤ f (a)e−m(t−a)

I We could try a rejection scheme : simulate an exponential E
(using the von Neumann algorithm) and set X = E/m, then
return X with appropriate probability, or restart.

I Only, the acceptance probability is not something we are
allowed to compute :

exp
(
−
∫ X

a
g(t)dt +m(X − a)

)
= exp

(
−
∫ X

a
(g(t)−m)dt

)



The differential equation
I The differential equation has solutions

f (t) = f (t0)e
−
∫ t

t0
g(u)du ; initial condition f (t0) would be

determined by condition
∫∞

0 f (t)dt = 1 (but we will be
proceeding by rejection and thus need not compute them)

I Taking t0 = a for the initial condition, the “quadrant”
condition implies that the density is upper bounded by the
solution to y ′(t) = −m.y(t) with the same initial condition :
for all t ≥ 0,

f (t) ≤ f (a)e−m(t−a)

I We could try a rejection scheme : simulate an exponential E
(using the von Neumann algorithm) and set X = E/m, then
return X with appropriate probability, or restart.

I Only, the acceptance probability is not something we are
allowed to compute :

exp
(
−
∫ X

a
g(t)dt +m(X − a)

)
= exp

(
−
∫ X

a
(g(t)−m)dt

)



The differential equation
I The differential equation has solutions

f (t) = f (t0)e
−
∫ t

t0
g(u)du ; initial condition f (t0) would be

determined by condition
∫∞

0 f (t)dt = 1 (but we will be
proceeding by rejection and thus need not compute them)

I Taking t0 = a for the initial condition, the “quadrant”
condition implies that the density is upper bounded by the
solution to y ′(t) = −m.y(t) with the same initial condition :
for all t ≥ 0,

f (t) ≤ f (a)e−m(t−a)

I We could try a rejection scheme : simulate an exponential E
(using the von Neumann algorithm) and set X = E/m, then
return X with appropriate probability, or restart.

I Only, the acceptance probability is not something we are
allowed to compute :

exp
(
−
∫ X

a
g(t)dt +m(X − a)

)
= exp

(
−
∫ X

a
(g(t)−m)dt

)



Digression : “Buffon generator” for x 7→ e−x

(Flajolet, Pelletier, Soria 2011)
I Hypothesis : we can draw uniforms, and have access to a

Bernoulli generator with parameter p, for some unknown
0 < p < 1, Bern() (i.e., Bern() returns 1 with probability p
and 0 with probability 1− p on each call, with calls being
independent)

I Then we have a von Neumann-like algorithm for a Bernoulli
with parameter e−p



Digression : “Buffon generator” for x 7→ e−x

(Flajolet, Pelletier, Soria 2011)
I Hypothesis : we can draw uniforms, and have access to a

Bernoulli generator with parameter p, for some unknown
0 < p < 1, Bern() (i.e., Bern() returns 1 with probability p
and 0 with probability 1− p on each call, with calls being
independent)

I Then we have a von Neumann-like algorithm for a Bernoulli
with parameter e−p



I Draw a sequence of independent pairs (Xi ,Bi) with Xi
uniform on [0, 1], and Bi an independent Bernoulli with
parameter p

I Stop at the first n such that Bn = 0 or Xn−1 < Xn (Bernoulli
fails, or ascent in the X sequence)

I Return 1 if n is odd, 0 if n is even

(proof along the same line as for von Neumann’s algorithm, with
powers of p addded, hence the e−p instead of e−1)



I Draw a sequence of independent pairs (Xi ,Bi) with Xi
uniform on [0, 1], and Bi an independent Bernoulli with
parameter p

I Stop at the first n such that Bn = 0 or Xn−1 < Xn (Bernoulli
fails, or ascent in the X sequence)

I Return 1 if n is odd, 0 if n is even

(proof along the same line as for von Neumann’s algorithm, with
powers of p addded, hence the e−p instead of e−1)



Back to the simulation algorithm

I We need to “accept with probability exp(−I)”, i.e. draw a
Bernoulli whose parameter is the exponential of some integral.

I Under suitable conditions, an integral can be interpreted as a
probability for an easy-to-simulate event (that a random point
falls into some domain)

I If needed, the integral can be written as a sum of integrals on
smaller intervals (and the exponential becomes a product of
exponentials ; the Bernoulli variable becomes a product of
Bernoulli variables).



Back to the simulation algorithm

I We need to “accept with probability exp(−I)”, i.e. draw a
Bernoulli whose parameter is the exponential of some integral.

I Under suitable conditions, an integral can be interpreted as a
probability for an easy-to-simulate event (that a random point
falls into some domain)

I If needed, the integral can be written as a sum of integrals on
smaller intervals (and the exponential becomes a product of
exponentials ; the Bernoulli variable becomes a product of
Bernoulli variables).



Back to the simulation algorithm

I We need to “accept with probability exp(−I)”, i.e. draw a
Bernoulli whose parameter is the exponential of some integral.

I Under suitable conditions, an integral can be interpreted as a
probability for an easy-to-simulate event (that a random point
falls into some domain)

I If needed, the integral can be written as a sum of integrals on
smaller intervals (and the exponential becomes a product of
exponentials ; the Bernoulli variable becomes a product of
Bernoulli variables).



Picking intervals

Assume X > a ; the case X < a is treated analogously)
I We need to split the interval [a,X ] into a number of smaller

intervals A1, . . . ,AK ; Ai = [ai−1, ai ].

I Set a0 = 0.
I Assume ai is known : compute M = h(ai , 1+ ai). If M ≤ 1,

then set ai+1 = 1+ ai , and repeat.
I If M > 1, then let M ′ denote the smallest power of 2 larger

than M, and, for each 1 ≤ k ≤ M ′, set ai+k = ai + k/M ′ (M ′
intervals of length 1/M ′), and repeat

I Stop at the first K such that ak ≥ X ; instead set aK = X



Picking intervals

Assume X > a ; the case X < a is treated analogously)
I We need to split the interval [a,X ] into a number of smaller

intervals A1, . . . ,AK ; Ai = [ai−1, ai ].
I Set a0 = 0.

I Assume ai is known : compute M = h(ai , 1+ ai). If M ≤ 1,
then set ai+1 = 1+ ai , and repeat.

I If M > 1, then let M ′ denote the smallest power of 2 larger
than M, and, for each 1 ≤ k ≤ M ′, set ai+k = ai + k/M ′ (M ′
intervals of length 1/M ′), and repeat

I Stop at the first K such that ak ≥ X ; instead set aK = X



Picking intervals

Assume X > a ; the case X < a is treated analogously)
I We need to split the interval [a,X ] into a number of smaller

intervals A1, . . . ,AK ; Ai = [ai−1, ai ].
I Set a0 = 0.
I Assume ai is known : compute M = h(ai , 1+ ai). If M ≤ 1,

then set ai+1 = 1+ ai , and repeat.

I If M > 1, then let M ′ denote the smallest power of 2 larger
than M, and, for each 1 ≤ k ≤ M ′, set ai+k = ai + k/M ′ (M ′
intervals of length 1/M ′), and repeat

I Stop at the first K such that ak ≥ X ; instead set aK = X



Picking intervals

Assume X > a ; the case X < a is treated analogously)
I We need to split the interval [a,X ] into a number of smaller

intervals A1, . . . ,AK ; Ai = [ai−1, ai ].
I Set a0 = 0.
I Assume ai is known : compute M = h(ai , 1+ ai). If M ≤ 1,

then set ai+1 = 1+ ai , and repeat.
I If M > 1, then let M ′ denote the smallest power of 2 larger

than M, and, for each 1 ≤ k ≤ M ′, set ai+k = ai + k/M ′ (M ′
intervals of length 1/M ′), and repeat

I Stop at the first K such that ak ≥ X ; instead set aK = X



Picking intervals

Assume X > a ; the case X < a is treated analogously)
I We need to split the interval [a,X ] into a number of smaller

intervals A1, . . . ,AK ; Ai = [ai−1, ai ].
I Set a0 = 0.
I Assume ai is known : compute M = h(ai , 1+ ai). If M ≤ 1,

then set ai+1 = 1+ ai , and repeat.
I If M > 1, then let M ′ denote the smallest power of 2 larger

than M, and, for each 1 ≤ k ≤ M ′, set ai+k = ai + k/M ′ (M ′
intervals of length 1/M ′), and repeat

I Stop at the first K such that ak ≥ X ; instead set aK = X



Rejection probability

I Now the wanted integral is

∫ X

a
(g(t)−m)dt =

K∑
i=0

∫
Ai
(g(t)−m)dt =

∑
i
Pi

I Each smaller integral can be interpreted as a probability, i.e.
the probability that a uniform random point (X ,Y ) in the
rectangle Ai × [0, 1/(ai − ai−1)] (with area 1) satisfies
m ≤ Y ≤ g(X )

I Thus we can apply the “exponential Buffon” construction to
obtain a Bernoulli with parameter exp(−Pi)

I and in turn, obtain the wanted Bernoulli with parameter
exp(−

∑
i Pi), by taking the product (conjunction) of each

individual Bernoulli for each smaller interval : this completes
the algorithm.



Rejection probability

I Now the wanted integral is

∫ X

a
(g(t)−m)dt =

K∑
i=0

∫
Ai
(g(t)−m)dt =

∑
i
Pi

I Each smaller integral can be interpreted as a probability, i.e.
the probability that a uniform random point (X ,Y ) in the
rectangle Ai × [0, 1/(ai − ai−1)] (with area 1) satisfies
m ≤ Y ≤ g(X )

I Thus we can apply the “exponential Buffon” construction to
obtain a Bernoulli with parameter exp(−Pi)

I and in turn, obtain the wanted Bernoulli with parameter
exp(−

∑
i Pi), by taking the product (conjunction) of each

individual Bernoulli for each smaller interval : this completes
the algorithm.



Rejection probability

I Now the wanted integral is

∫ X

a
(g(t)−m)dt =

K∑
i=0

∫
Ai
(g(t)−m)dt =

∑
i
Pi

I Each smaller integral can be interpreted as a probability, i.e.
the probability that a uniform random point (X ,Y ) in the
rectangle Ai × [0, 1/(ai − ai−1)] (with area 1) satisfies
m ≤ Y ≤ g(X )

I Thus we can apply the “exponential Buffon” construction to
obtain a Bernoulli with parameter exp(−Pi)

I and in turn, obtain the wanted Bernoulli with parameter
exp(−

∑
i Pi), by taking the product (conjunction) of each

individual Bernoulli for each smaller interval : this completes
the algorithm.



Rejection probability

I Now the wanted integral is

∫ X

a
(g(t)−m)dt =

K∑
i=0

∫
Ai
(g(t)−m)dt =

∑
i
Pi

I Each smaller integral can be interpreted as a probability, i.e.
the probability that a uniform random point (X ,Y ) in the
rectangle Ai × [0, 1/(ai − ai−1)] (with area 1) satisfies
m ≤ Y ≤ g(X )

I Thus we can apply the “exponential Buffon” construction to
obtain a Bernoulli with parameter exp(−Pi)

I and in turn, obtain the wanted Bernoulli with parameter
exp(−

∑
i Pi), by taking the product (conjunction) of each

individual Bernoulli for each smaller interval : this completes
the algorithm.



The case of the normal distribution
I Take the normal density, f (t) =

√
2π−1 exp(−x2/2), as the

target density.

I (We simulate the absolute value, then add a random sign)
I Differential equation : y ′(t) = −t.y(t), g(t) = t.
I g is increasing, any value of a > 0 will do ; a = 1 is Kahn’s

method (and minimizes the rejection probability)
I The upper bounding function is naturally h(t, u) = max(t, u)
I Strictly applying the previous interval description yields 2

intervals [1, 3/2] and [3/2, 2], then 4 intervals for each of
[2, 3] and [3, 4], then 8 intervals for each of [k, k + 1] for
k = 4, 5, 6, 7, and so on.

I (In practice, large values of X are very likely to be rejected ;
the rejection part should be run after each increment of the K
counter for the exponential after K = 1, so as to allow early
rejection)



The case of the normal distribution
I Take the normal density, f (t) =

√
2π−1 exp(−x2/2), as the

target density.
I (We simulate the absolute value, then add a random sign)

I Differential equation : y ′(t) = −t.y(t), g(t) = t.
I g is increasing, any value of a > 0 will do ; a = 1 is Kahn’s

method (and minimizes the rejection probability)
I The upper bounding function is naturally h(t, u) = max(t, u)
I Strictly applying the previous interval description yields 2

intervals [1, 3/2] and [3/2, 2], then 4 intervals for each of
[2, 3] and [3, 4], then 8 intervals for each of [k, k + 1] for
k = 4, 5, 6, 7, and so on.

I (In practice, large values of X are very likely to be rejected ;
the rejection part should be run after each increment of the K
counter for the exponential after K = 1, so as to allow early
rejection)



The case of the normal distribution
I Take the normal density, f (t) =

√
2π−1 exp(−x2/2), as the

target density.
I (We simulate the absolute value, then add a random sign)
I Differential equation : y ′(t) = −t.y(t), g(t) = t.

I g is increasing, any value of a > 0 will do ; a = 1 is Kahn’s
method (and minimizes the rejection probability)

I The upper bounding function is naturally h(t, u) = max(t, u)
I Strictly applying the previous interval description yields 2

intervals [1, 3/2] and [3/2, 2], then 4 intervals for each of
[2, 3] and [3, 4], then 8 intervals for each of [k, k + 1] for
k = 4, 5, 6, 7, and so on.

I (In practice, large values of X are very likely to be rejected ;
the rejection part should be run after each increment of the K
counter for the exponential after K = 1, so as to allow early
rejection)



The case of the normal distribution
I Take the normal density, f (t) =

√
2π−1 exp(−x2/2), as the

target density.
I (We simulate the absolute value, then add a random sign)
I Differential equation : y ′(t) = −t.y(t), g(t) = t.
I g is increasing, any value of a > 0 will do ; a = 1 is Kahn’s

method (and minimizes the rejection probability)

I The upper bounding function is naturally h(t, u) = max(t, u)
I Strictly applying the previous interval description yields 2

intervals [1, 3/2] and [3/2, 2], then 4 intervals for each of
[2, 3] and [3, 4], then 8 intervals for each of [k, k + 1] for
k = 4, 5, 6, 7, and so on.

I (In practice, large values of X are very likely to be rejected ;
the rejection part should be run after each increment of the K
counter for the exponential after K = 1, so as to allow early
rejection)



The case of the normal distribution
I Take the normal density, f (t) =

√
2π−1 exp(−x2/2), as the

target density.
I (We simulate the absolute value, then add a random sign)
I Differential equation : y ′(t) = −t.y(t), g(t) = t.
I g is increasing, any value of a > 0 will do ; a = 1 is Kahn’s

method (and minimizes the rejection probability)
I The upper bounding function is naturally h(t, u) = max(t, u)

I Strictly applying the previous interval description yields 2
intervals [1, 3/2] and [3/2, 2], then 4 intervals for each of
[2, 3] and [3, 4], then 8 intervals for each of [k, k + 1] for
k = 4, 5, 6, 7, and so on.

I (In practice, large values of X are very likely to be rejected ;
the rejection part should be run after each increment of the K
counter for the exponential after K = 1, so as to allow early
rejection)



The case of the normal distribution
I Take the normal density, f (t) =

√
2π−1 exp(−x2/2), as the

target density.
I (We simulate the absolute value, then add a random sign)
I Differential equation : y ′(t) = −t.y(t), g(t) = t.
I g is increasing, any value of a > 0 will do ; a = 1 is Kahn’s

method (and minimizes the rejection probability)
I The upper bounding function is naturally h(t, u) = max(t, u)
I Strictly applying the previous interval description yields 2

intervals [1, 3/2] and [3/2, 2], then 4 intervals for each of
[2, 3] and [3, 4], then 8 intervals for each of [k, k + 1] for
k = 4, 5, 6, 7, and so on.

I (In practice, large values of X are very likely to be rejected ;
the rejection part should be run after each increment of the K
counter for the exponential after K = 1, so as to allow early
rejection)



The case of the normal distribution
I Take the normal density, f (t) =

√
2π−1 exp(−x2/2), as the

target density.
I (We simulate the absolute value, then add a random sign)
I Differential equation : y ′(t) = −t.y(t), g(t) = t.
I g is increasing, any value of a > 0 will do ; a = 1 is Kahn’s

method (and minimizes the rejection probability)
I The upper bounding function is naturally h(t, u) = max(t, u)
I Strictly applying the previous interval description yields 2

intervals [1, 3/2] and [3/2, 2], then 4 intervals for each of
[2, 3] and [3, 4], then 8 intervals for each of [k, k + 1] for
k = 4, 5, 6, 7, and so on.

I (In practice, large values of X are very likely to be rejected ;
the rejection part should be run after each increment of the K
counter for the exponential after K = 1, so as to allow early
rejection)



Running the algorithm digit-by-digit
I The previous algorithms are very suitable to an adaptation to

bit-by-bit computations

I In any base B, uniforms over [0, 1] have a B-ary development
made of independent uniform {0, . . . ,B − 1} digits

I Comparisons of reals reduce to lexicographic order of strings
I The algorithms can be adapted to bit-by-bit simulation : each

uniform is only simulated up to the precision required by
comparisons, and later completed as needed

I Such algorithms output a finite B-ary string, with the
meaning “if more precision is needed, add random digits”

I von Neumann’s algorithm was analysed by [Flajolet, Saheb,
1986] ; uses on average k + 5.72.. bits to output k bits of the
exponential random variable

I In our general differential equation algorithm, we need a bit
more than just a black box function g (unless g is known to
be increasing)



Running the algorithm digit-by-digit
I The previous algorithms are very suitable to an adaptation to

bit-by-bit computations
I In any base B, uniforms over [0, 1] have a B-ary development

made of independent uniform {0, . . . ,B − 1} digits

I Comparisons of reals reduce to lexicographic order of strings
I The algorithms can be adapted to bit-by-bit simulation : each

uniform is only simulated up to the precision required by
comparisons, and later completed as needed

I Such algorithms output a finite B-ary string, with the
meaning “if more precision is needed, add random digits”

I von Neumann’s algorithm was analysed by [Flajolet, Saheb,
1986] ; uses on average k + 5.72.. bits to output k bits of the
exponential random variable

I In our general differential equation algorithm, we need a bit
more than just a black box function g (unless g is known to
be increasing)



Running the algorithm digit-by-digit
I The previous algorithms are very suitable to an adaptation to

bit-by-bit computations
I In any base B, uniforms over [0, 1] have a B-ary development

made of independent uniform {0, . . . ,B − 1} digits
I Comparisons of reals reduce to lexicographic order of strings

I The algorithms can be adapted to bit-by-bit simulation : each
uniform is only simulated up to the precision required by
comparisons, and later completed as needed

I Such algorithms output a finite B-ary string, with the
meaning “if more precision is needed, add random digits”

I von Neumann’s algorithm was analysed by [Flajolet, Saheb,
1986] ; uses on average k + 5.72.. bits to output k bits of the
exponential random variable

I In our general differential equation algorithm, we need a bit
more than just a black box function g (unless g is known to
be increasing)



Running the algorithm digit-by-digit
I The previous algorithms are very suitable to an adaptation to

bit-by-bit computations
I In any base B, uniforms over [0, 1] have a B-ary development

made of independent uniform {0, . . . ,B − 1} digits
I Comparisons of reals reduce to lexicographic order of strings
I The algorithms can be adapted to bit-by-bit simulation : each

uniform is only simulated up to the precision required by
comparisons, and later completed as needed

I Such algorithms output a finite B-ary string, with the
meaning “if more precision is needed, add random digits”

I von Neumann’s algorithm was analysed by [Flajolet, Saheb,
1986] ; uses on average k + 5.72.. bits to output k bits of the
exponential random variable

I In our general differential equation algorithm, we need a bit
more than just a black box function g (unless g is known to
be increasing)



Running the algorithm digit-by-digit
I The previous algorithms are very suitable to an adaptation to

bit-by-bit computations
I In any base B, uniforms over [0, 1] have a B-ary development

made of independent uniform {0, . . . ,B − 1} digits
I Comparisons of reals reduce to lexicographic order of strings
I The algorithms can be adapted to bit-by-bit simulation : each

uniform is only simulated up to the precision required by
comparisons, and later completed as needed

I Such algorithms output a finite B-ary string, with the
meaning “if more precision is needed, add random digits”

I von Neumann’s algorithm was analysed by [Flajolet, Saheb,
1986] ; uses on average k + 5.72.. bits to output k bits of the
exponential random variable

I In our general differential equation algorithm, we need a bit
more than just a black box function g (unless g is known to
be increasing)



Running the algorithm digit-by-digit
I The previous algorithms are very suitable to an adaptation to

bit-by-bit computations
I In any base B, uniforms over [0, 1] have a B-ary development

made of independent uniform {0, . . . ,B − 1} digits
I Comparisons of reals reduce to lexicographic order of strings
I The algorithms can be adapted to bit-by-bit simulation : each

uniform is only simulated up to the precision required by
comparisons, and later completed as needed

I Such algorithms output a finite B-ary string, with the
meaning “if more precision is needed, add random digits”

I von Neumann’s algorithm was analysed by [Flajolet, Saheb,
1986] ; uses on average k + 5.72.. bits to output k bits of the
exponential random variable

I In our general differential equation algorithm, we need a bit
more than just a black box function g (unless g is known to
be increasing)



Running the algorithm digit-by-digit
I The previous algorithms are very suitable to an adaptation to

bit-by-bit computations
I In any base B, uniforms over [0, 1] have a B-ary development

made of independent uniform {0, . . . ,B − 1} digits
I Comparisons of reals reduce to lexicographic order of strings
I The algorithms can be adapted to bit-by-bit simulation : each

uniform is only simulated up to the precision required by
comparisons, and later completed as needed

I Such algorithms output a finite B-ary string, with the
meaning “if more precision is needed, add random digits”

I von Neumann’s algorithm was analysed by [Flajolet, Saheb,
1986] ; uses on average k + 5.72.. bits to output k bits of the
exponential random variable

I In our general differential equation algorithm, we need a bit
more than just a black box function g (unless g is known to
be increasing)



Conclusion

I We obtain exact, “von-Neumann-Buffon-like” algorithms for
the simulation of a (not too well-defined) class of distributions
that includes the normal distribution

I For the normal distribution, this is very similar to Karney’s
algorithm, described at the digit level

I In the general case, this is very close to what Devroye
described as “the von Neumann-Forsythe method”

I No analysis of the expected (bit) complexity yet (will depend
on the quality of upper bound h in the general method)

I The method is unlikely to be competitive with numerical
methods (possibly paired with certified floating point
calculations), unless one needs very high precision on their
random variables



Conclusion

I We obtain exact, “von-Neumann-Buffon-like” algorithms for
the simulation of a (not too well-defined) class of distributions
that includes the normal distribution

I For the normal distribution, this is very similar to Karney’s
algorithm, described at the digit level

I In the general case, this is very close to what Devroye
described as “the von Neumann-Forsythe method”

I No analysis of the expected (bit) complexity yet (will depend
on the quality of upper bound h in the general method)

I The method is unlikely to be competitive with numerical
methods (possibly paired with certified floating point
calculations), unless one needs very high precision on their
random variables



Conclusion

I We obtain exact, “von-Neumann-Buffon-like” algorithms for
the simulation of a (not too well-defined) class of distributions
that includes the normal distribution

I For the normal distribution, this is very similar to Karney’s
algorithm, described at the digit level

I In the general case, this is very close to what Devroye
described as “the von Neumann-Forsythe method”

I No analysis of the expected (bit) complexity yet (will depend
on the quality of upper bound h in the general method)

I The method is unlikely to be competitive with numerical
methods (possibly paired with certified floating point
calculations), unless one needs very high precision on their
random variables



Conclusion

I We obtain exact, “von-Neumann-Buffon-like” algorithms for
the simulation of a (not too well-defined) class of distributions
that includes the normal distribution

I For the normal distribution, this is very similar to Karney’s
algorithm, described at the digit level

I In the general case, this is very close to what Devroye
described as “the von Neumann-Forsythe method”

I No analysis of the expected (bit) complexity yet (will depend
on the quality of upper bound h in the general method)

I The method is unlikely to be competitive with numerical
methods (possibly paired with certified floating point
calculations), unless one needs very high precision on their
random variables



Conclusion

I We obtain exact, “von-Neumann-Buffon-like” algorithms for
the simulation of a (not too well-defined) class of distributions
that includes the normal distribution

I For the normal distribution, this is very similar to Karney’s
algorithm, described at the digit level

I In the general case, this is very close to what Devroye
described as “the von Neumann-Forsythe method”

I No analysis of the expected (bit) complexity yet (will depend
on the quality of upper bound h in the general method)

I The method is unlikely to be competitive with numerical
methods (possibly paired with certified floating point
calculations), unless one needs very high precision on their
random variables



Thank you for your attention


