Exact "combinatorial" simulation of continuous random variables

Philippe Duchon (LaBRI, U. Bordeaux)

Séminaire Flajolet, April 2, 2015

Simulating random variables

- All kinds of simulation problems require the use of random numbers

Simulating random variables

- All kinds of simulation problems require the use of random numbers
- Many classical distributions, either discrete (uniform, geometric, Poisson...) or continuous (uniform, exponential, normal. ..)

Simulating random variables

- All kinds of simulation problems require the use of random numbers
- Many classical distributions, either discrete (uniform, geometric, Poisson...) or continuous (uniform, exponential, normal...)
- (Almost ?) all programming languages provide access to pseudorandom numbers, either discrete (uniform integers over [$[a, b]]$) or continuous (uniform over $[0,1])$)

Simulating random variables

- All kinds of simulation problems require the use of random numbers
- Many classical distributions, either discrete (uniform, geometric, Poisson...) or continuous (uniform, exponential, normal. ..)
- (Almost ?) all programming languages provide access to pseudorandom numbers, either discrete (uniform integers over [$[a, b]]$) or continuous (uniform over [0,1$]$))
- Exact simulation algorithms are known for many distributions, usually assuming exact computations over the reals

Simulating random variables

- All kinds of simulation problems require the use of random numbers
- Many classical distributions, either discrete (uniform, geometric, Poisson...) or continuous (uniform, exponential, normal. ..)
- (Almost?) all programming languages provide access to pseudorandom numbers, either discrete (uniform integers over [$[a, b]]$) or continuous (uniform over $[0,1]$))
- Exact simulation algorithms are known for many distributions, usually assuming exact computations over the reals
- The reference : Devroye (1986)

Basic simulation tricks

- Distribution function inversion : if U is uniform and $F(x)$ is the (continuous, strictly increasing) distribution function $(F(x)=\mathbb{P}(X \leq x))$ for some distribution, $X=F^{-1}(U)$ has repartition function F

Basic simulation tricks

- Distribution function inversion : if U is uniform and $F(x)$ is the (continuous, strictly increasing) distribution function $(F(x)=\mathbb{P}(X \leq x))$ for some distribution, $X=F^{-1}(U)$ has repartition function F
- Rejection : if g is the density of some distribution (that one knows how to simulate), f is some other density with $f(x) \leq c . g(x)$ for some c and all x, the following rejection algorithm loops, on average, $1 / c$ times, and simulates density f :
- draw X (g-distributed)
- with probability $f(X) /(c . g(X))$, output X; otherwise, restart

Basic simulation tricks

- Distribution function inversion : if U is uniform and $F(x)$ is the (continuous, strictly increasing) distribution function $(F(x)=\mathbb{P}(X \leq x))$ for some distribution, $X=F^{-1}(U)$ has repartition function F
- Rejection : if g is the density of some distribution (that one knows how to simulate), f is some other density with $f(x) \leq c . g(x)$ for some c and all x, the following rejection algorithm loops, on average, $1 / c$ times, and simulates density f :
- draw X (g-distributed)
- with probability $f(X) /(c . g(X))$, output X; otherwise, restart
- Rejection can be used when densities are only proportional to functions f and g with, say, $f \leq g$, without identifying/computing the multiplicative constant

Typical basic examples

- If U is uniform over $[0,1],-\ln (1-U)$ is exponentially distributed (distribution function inversion)

Typical basic examples

- If U is uniform over $[0,1],-\ln (1-U)$ is exponentially distributed (distribution function inversion)
- (Kahn 1954 ; rejection) For the (absolute value of) a normal variable :
- draw E and X, independent exponentials
- if $2 E \geq(X-1)^{2}$, return X; otherwise, restart

Typical basic examples

- If U is uniform over $[0,1],-\ln (1-U)$ is exponentially distributed (distribution function inversion)
- (Kahn 1954 ; rejection) For the (absolute value of) a normal variable:
- draw E and X, independent exponentials
- if $2 E \geq(X-1)^{2}$, return X; otherwise, restart (conditioned on X, the acceptance probability is $\left.\exp \left(-(X-1)^{2} / 2\right)=\exp \left(-x^{2} / 2\right) / \exp (-x)\right)$
- All the previous techniques require

1. a generator of independent, uniform variables on $[0,1]$
2. exact evaluation of transcendental functions and constants, integrals, etc.

- All the previous techniques require

1. a generator of independent, uniform variables on $[0,1]$
2. exact evaluation of transcendental functions and constants, integrals, etc.

- For many discrete distributions, the Buffon machines of [Flajolet, Pelletier, Soria 2011] allow to only use
- flip() (Bernoulli with parameter $1 / 2$; "coin flips")
- Bern[p]() (Bernoulli with parameter p, for unknown parameters $p \in(0,1))$
- basic integer arithmetic and bookkeeping (small counters)
- All the previous techniques require

1. a generator of independent, uniform variables on $[0,1]$
2. exact evaluation of transcendental functions and constants, integrals, etc.

- For many discrete distributions, the Buffon machines of [Flajolet, Pelletier, Soria 2011] allow to only use
- flip() (Bernoulli with parameter $1 / 2$; "coin flips")
- Bern[p]() (Bernoulli with parameter p, for unknown parameters $p \in(0,1))$
- basic integer arithmetic and bookkeeping (small counters)
- Can we do the same for a variety of continuous distributions? In a more or less systematic way?

Precursor : von Neumann's algorithm

- J. von Neumann, 1951 "Various techniques used in connection with random digits" (3 pages)

Precursor : von Neumann's algorithm

- J. von Neumann, 1951 "Various techniques used in connection with random digits" (3 pages)

- describes an exact algorithm for the exponential distribution, using only
- independent uniforms on $[0,1]$
- comparisons of reals
- (small) integer counters

The algorithm

1. Initialize counter K to 0
2. Draw a sequence $X_{1}, X_{2}, \ldots X_{n}$ of independent uniforms on $[0,1]$, until the first ascent $\left(X_{n}>X_{n-1}\right)$
3. If n is odd : failure ; increment failure counter K, and go to 2 .
4. (Otherwise) n is even : success, return $K+X_{1}$

The algorithm

1. Initialize counter K to 0
2. Draw a sequence $X_{1}, X_{2}, \ldots X_{n}$ of independent uniforms on $[0,1]$, until the first ascent $\left(X_{n}>X_{n-1}\right)$
3. If n is odd : failure ; increment failure counter K, and go to 2 .
4. (Otherwise) n is even : success, return $K+X_{1}$

Proposition (von Neumann) : This algorithm terminates with probability 1, and its output follows the exponential distribution (density $\left.f(x)=\exp (-x) \mathbf{1}_{x>0}\right)$. The expected number of uniforms used is $\frac{e+e^{2}}{e-1} \simeq 5.88$.

Running the algorithm : an example

- Uniform sequence : $0.78,0.04,0.92,0.01,0.83,0.22 \ldots$

Running the algorithm : an example

- Uniform sequence : $0.78,0.04,0.92,0.01,0.83,0.22 \ldots$
- First attempt : $0.78>0.04$

Running the algorithm : an example

- Uniform sequence : $0.78,0.04,0.92,0.01,0.83,0.22 \ldots$
- First attempt : $0.78>0.04<0.92$: odd length series, restart ($K=1$)

Running the algorithm : an example

- Uniform sequence : $0.78,0.04,0.92,0.01,0.83,0.22 \ldots$
- First attempt : $0.78>0.04<0.92$: odd length series, restart ($K=1$)
- Second attempt : $0.01<0.83$: even length, stop

Running the algorithm : an example

- Uniform sequence : $0.78,0.04,0.92,0.01,0.83,0.22 \ldots$
- First attempt : $0.78>0.04<0.92$: odd length series, restart ($K=1$)
- Second attempt: $0.01<0.83$: even length, stop
- The output value is $1+0.01=1.01$

Proof of the algorithm (sketch)

- The probability that, in an infinite sequence of iid uniforms, the first ascent occurs with the n-th element is $1 /(n-1)!-1 / n$!

Proof of the algorithm (sketch)

- The probability that, in an infinite sequence of iid uniforms, the first ascent occurs with the n-th element is $1 /(n-1)!-1 / n$!
- Summing, the probability of the first ascent being in an odd position (restarting) is

$$
p=\sum_{k \geq 0} \frac{1}{(2 k)!}-\frac{1}{(2 k+1)!}=e^{-1}
$$

Proof of the algorithm (sketch)

- The probability that, in an infinite sequence of iid uniforms, the first ascent occurs with the n-th element is $1 /(n-1)!-1 / n$!
- Summing, the probability of the first ascent being in an odd position (restarting) is

$$
p=\sum_{k \geq 0} \frac{1}{(2 k)!}-\frac{1}{(2 k+1)!}=e^{-1}
$$

- For $x \in[0,1]$ and $n \geq 2$, the probability of having $X_{1} \leq x$ and first ascent on the n-th elements, is $x^{n-1} /(n-1)!-x^{n} / n$!

Proof of the algorithm (sketch)

- The probability that, in an infinite sequence of iid uniforms, the first ascent occurs with the n-th element is $1 /(n-1)!-1 / n$!
- Summing, the probability of the first ascent being in an odd position (restarting) is

$$
p=\sum_{k \geq 0} \frac{1}{(2 k)!}-\frac{1}{(2 k+1)!}=e^{-1}
$$

- For $x \in[0,1]$ and $n \geq 2$, the probability of having $X_{1} \leq x$ and first ascent on the n-th elements, is $x^{n-1} /(n-1)!-x^{n} / n$!
- Summing again : the probability of "success" with $X_{1} \leq x$, is $1-e^{-x}$ (the distribution function for an exponential on $[0,1]$)

Proof of the algorithm (sketch)

- The probability that, in an infinite sequence of iid uniforms, the first ascent occurs with the n-th element is $1 /(n-1)!-1 / n$!
- Summing, the probability of the first ascent being in an odd position (restarting) is

$$
p=\sum_{k \geq 0} \frac{1}{(2 k)!}-\frac{1}{(2 k+1)!}=e^{-1}
$$

- For $x \in[0,1]$ and $n \geq 2$, the probability of having $X_{1} \leq x$ and first ascent on the n-th elements, is $x^{n-1} /(n-1)!-x^{n} / n$!
- Summing again : the probability of "success" with $X_{1} \leq x$, is $1-e^{-x}$ (the distribution function for an exponential on $[0,1]$)
- For the algorithm : the final value of K follows the geometric distribution with parameter $1-e^{-1}$, and the (independent) value of X_{1} conditioned on success is distributed as an exponential, conditioned on being ≤ 1; the sum is exponentially distributed.

"Combinatorial simulation" of continuous distributions

- What we would like to obtain : exact simulation algorithms for a large enough family of continuous probability distributions, not requiring the use of "complex" operations over the reals

"Combinatorial simulation" of continuous distributions

- What we would like to obtain : exact simulation algorithms for a large enough family of continuous probability distributions, not requiring the use of "complex" operations over the reals
- Certainly no evaluations of transcendental functions; if possible, only basic arithmetic operations

"Combinatorial simulation" of continuous distributions

- What we would like to obtain : exact simulation algorithms for a large enough family of continuous probability distributions, not requiring the use of "complex" operations over the reals
- Certainly no evaluations of transcendental functions; if possible, only basic arithmetic operations
- Ideally : algorithms that could be "humanly" run by treating reals as infinite digit strings (and only using finite prefixes) no multiplications other than by powers of 2

"Combinatorial simulation" of continuous distributions

- What we would like to obtain : exact simulation algorithms for a large enough family of continuous probability distributions, not requiring the use of "complex" operations over the reals
- Certainly no evaluations of transcendental functions; if possible, only basic arithmetic operations
- Ideally: algorithms that could be "humanly" run by treating reals as infinite digit strings (and only using finite prefixes) no multiplications other than by powers of 2
- If we allow arbitrary products, then Kahn's method (and von Neumann's algorithm for the exponential) shows that the normal distribution admits such a restricted simulation algorithm.

"Combinatorial simulation" of continuous distributions

- What we would like to obtain : exact simulation algorithms for a large enough family of continuous probability distributions, not requiring the use of "complex" operations over the reals
- Certainly no evaluations of transcendental functions; if possible, only basic arithmetic operations
- Ideally: algorithms that could be "humanly" run by treating reals as infinite digit strings (and only using finite prefixes) no multiplications other than by powers of 2
- If we allow arbitrary products, then Kahn's method (and von Neumann's algorithm for the exponential) shows that the normal distribution admits such a restricted simulation algorithm.
- [Karney, 2013] describes such a product-less algorithm.

Extending the method

- "the above method can be modified to yield a distribution satisfying any first-order differential equation" (von Neumann)

Extending the method

- "the above method can be modified to yield a distribution satisfying any first-order differential equation" (von Neumann)
- Natural interpretation : assume the target density satisfies a linear first-order differential equation $y^{\prime}(t)=g(t) \cdot y(t)$, for some given function g

Extending the method

- "the above method can be modified to yield a distribution satisfying any first-order differential equation" (von Neumann)
- Natural interpretation : assume the target density satisfies a linear first-order differential equation $y^{\prime}(t)=g(t) \cdot y(t)$, for some given function g
- (This includes the density for the normal distribution : $\left.y^{\prime}(t)=-t . y(t)\right)$

Extending the method

- "the above method can be modified to yield a distribution satisfying any first-order differential equation" (von Neumann)
- Natural interpretation : assume the target density satisfies a linear first-order differential equation $y^{\prime}(t)=g(t) \cdot y(t)$, for some given function g
- (This includes the density for the normal distribution : $\left.y^{\prime}(t)=-t . y(t)\right)$
- This is essentially the interpretation of [Forsythe, 1972] ; but the described method involves computing integrals based on solving the equation (to tabulate the probability that the target random variable takes values in a collection of disjoint intervals)

Extending the method

- "the above method can be modified to yield a distribution satisfying any first-order differential equation" (von Neumann)
- Natural interpretation : assume the target density satisfies a linear first-order differential equation $y^{\prime}(t)=g(t) \cdot y(t)$, for some given function g
- (This includes the density for the normal distribution : $\left.y^{\prime}(t)=-t . y(t)\right)$
- This is essentially the interpretation of [Forsythe, 1972] ; but the described method involves computing integrals based on solving the equation (to tabulate the probability that the target random variable takes values in a collection of disjoint intervals)
- Today: description of an exact simulation method that is slightly more involved, but does not require the evaluation of any integrals or transcendental functions not in g.

Main result

- Suppose our target distribution (over the positive reals) has a density f, satisfying differential equation $y^{\prime}(t)=-g(t) \cdot y(t)$ for some given function g (at most one solution is a probability density)

Main result

- Suppose our target distribution (over the positive reals) has a density f, satisfying differential equation $y^{\prime}(t)=-g(t) \cdot y(t)$ for some given function g (at most one solution is a probability density)
- Assume g satisfies some "quadrant" condition : there should exist some $a \geq 0$ with $m=g(a)>0$, such that
- $g(t) \leq g(a)$ if $t \leq a$
- $g(t) \geq g(a)$ if $t \geq a$

Main result

- Suppose our target distribution (over the positive reals) has a density f, satisfying differential equation $y^{\prime}(t)=-g(t) \cdot y(t)$ for some given function g (at most one solution is a probability density)
- Assume g satisfies some "quadrant" condition : there should exist some $a \geq 0$ with $m=g(a)>0$, such that
- $g(t) \leq g(a)$ if $t \leq a$
- $g(t) \geq g(a)$ if $t \geq a$
- Assume we are given g (as a "black box" function), a, and some (black box) "upper bounding" function $h(t, u)$ such that, for any $t \leq u, h(t, u) \geq \sup _{t \leq x \leq u} g(x)$

Main result

- Suppose our target distribution (over the positive reals) has a density f, satisfying differential equation $y^{\prime}(t)=-g(t) \cdot y(t)$ for some given function g (at most one solution is a probability density)
- Assume g satisfies some "quadrant" condition : there should exist some $a \geq 0$ with $m=g(a)>0$, such that
- $g(t) \leq g(a)$ if $t \leq a$
- $g(t) \geq g(a)$ if $t \geq a$
- Assume we are given g (as a "black box" function), a, and some (black box) "upper bounding" function $h(t, u)$ such that, for any $t \leq u, h(t, u) \geq \sup _{t \leq x \leq u} g(x)$
- Then we provide an exact simulation algorithm, using only uniform reals, additions, division by m, comparisons, and evaluations of g and h

Main result

- Suppose our target distribution (over the positive reals) has a density f, satisfying differential equation $y^{\prime}(t)=-g(t) \cdot y(t)$ for some given function g (at most one solution is a probability density)
- Assume g satisfies some "quadrant" condition : there should exist some $a \geq 0$ with $m=g(a)>0$, such that
- $g(t) \leq g(a)$ if $t \leq a$
- $g(t) \geq g(a)$ if $t \geq a$
- Assume we are given g (as a "black box" function), a, and some (black box) "upper bounding" function $h(t, u)$ such that, for any $t \leq u, h(t, u) \geq \sup _{t \leq x \leq u} g(x)$
- Then we provide an exact simulation algorithm, using only uniform reals, additions, division by m, comparisons, and evaluations of g and h
- (Notice that the conditions reduce to g as a black box if g is known to be nondecreasing)

The "quadrant condition"

The differential equation

- The differential equation has solutions
$f(t)=f\left(t_{0}\right) e^{-\int_{t_{0}}^{t} g(u) d u}$; initial condition $f\left(t_{0}\right)$ would be determined by condition $\int_{0}^{\infty} f(t) d t=1$ (but we will be proceeding by rejection and thus need not compute them)

The differential equation

- The differential equation has solutions
$f(t)=f\left(t_{0}\right) e^{-\int_{t_{0}}^{t} g(u) d u}$; initial condition $f\left(t_{0}\right)$ would be determined by condition $\int_{0}^{\infty} f(t) d t=1$ (but we will be proceeding by rejection and thus need not compute them)
- Taking $t_{0}=a$ for the initial condition, the "quadrant" condition implies that the density is upper bounded by the solution to $y^{\prime}(t)=-m . y(t)$ with the same initial condition : for all $t \geq 0$,

$$
f(t) \leq f(a) e^{-m(t-a)}
$$

The differential equation

- The differential equation has solutions
$f(t)=f\left(t_{0}\right) e^{-\int_{t_{0}}^{t} g(u) d u}$; initial condition $f\left(t_{0}\right)$ would be determined by condition $\int_{0}^{\infty} f(t) d t=1$ (but we will be proceeding by rejection and thus need not compute them)
- Taking $t_{0}=a$ for the initial condition, the "quadrant" condition implies that the density is upper bounded by the solution to $y^{\prime}(t)=-m . y(t)$ with the same initial condition : for all $t \geq 0$,

$$
f(t) \leq f(a) e^{-m(t-a)}
$$

- We could try a rejection scheme : simulate an exponential E (using the von Neumann algorithm) and set $X=E / m$, then return X with appropriate probability, or restart.

The differential equation

- The differential equation has solutions
$f(t)=f\left(t_{0}\right) e^{-\int_{t_{0}}^{t} g(u) d u}$; initial condition $f\left(t_{0}\right)$ would be determined by condition $\int_{0}^{\infty} f(t) d t=1$ (but we will be proceeding by rejection and thus need not compute them)
- Taking $t_{0}=a$ for the initial condition, the "quadrant" condition implies that the density is upper bounded by the solution to $y^{\prime}(t)=-m \cdot y(t)$ with the same initial condition: for all $t \geq 0$,

$$
f(t) \leq f(a) e^{-m(t-a)}
$$

- We could try a rejection scheme : simulate an exponential E (using the von Neumann algorithm) and set $X=E / m$, then return X with appropriate probability, or restart.
- Only, the acceptance probability is not something we are allowed to compute :

$$
\exp \left(-\int_{a}^{X} g(t) d t+m(X-a)\right)=\exp \left(-\int_{a}^{X}(g(t)-m) d t\right)
$$

Digression: "Buffon generator" for $x \mapsto e^{-x}$

(Flajolet, Pelletier, Soria 2011)

- Hypothesis : we can draw uniforms, and have access to a Bernoulli generator with parameter p, for some unknown $0<p<1$, Bern() (i.e., Bern() returns 1 with probability p and 0 with probability $1-p$ on each call, with calls being independent)

Digression: "Buffon generator" for $x \mapsto e^{-x}$

(Flajolet, Pelletier, Soria 2011)

- Hypothesis : we can draw uniforms, and have access to a Bernoulli generator with parameter p, for some unknown $0<p<1$, Bern() (i.e., Bern() returns 1 with probability p and 0 with probability $1-p$ on each call, with calls being independent)
- Then we have a von Neumann-like algorithm for a Bernoulli with parameter e^{-p}
- Draw a sequence of independent pairs $\left(X_{i}, B_{i}\right)$ with X_{i} uniform on $[0,1]$, and B_{i} an independent Bernoulli with parameter p
- Stop at the first n such that $B_{n}=0$ or $X_{n-1}<X_{n}$ (Bernoulli fails, or ascent in the X sequence)
- Return 1 if n is odd, 0 if n is even
- Draw a sequence of independent pairs $\left(X_{i}, B_{i}\right)$ with X_{i} uniform on $[0,1]$, and B_{i} an independent Bernoulli with parameter p
- Stop at the first n such that $B_{n}=0$ or $X_{n-1}<X_{n}$ (Bernoulli fails, or ascent in the X sequence)
- Return 1 if n is odd, 0 if n is even
(proof along the same line as for von Neumann's algorithm, with powers of p addded, hence the e^{-p} instead of e^{-1})

Back to the simulation algorithm

- We need to "accept with probability $\exp (-I)$ ", i.e. draw a Bernoulli whose parameter is the exponential of some integral.

Back to the simulation algorithm

- We need to "accept with probability $\exp (-I)$ ", i.e. draw a Bernoulli whose parameter is the exponential of some integral.
- Under suitable conditions, an integral can be interpreted as a probability for an easy-to-simulate event (that a random point falls into some domain)

Back to the simulation algorithm

- We need to "accept with probability $\exp (-I)$ ", i.e. draw a Bernoulli whose parameter is the exponential of some integral.
- Under suitable conditions, an integral can be interpreted as a probability for an easy-to-simulate event (that a random point falls into some domain)
- If needed, the integral can be written as a sum of integrals on smaller intervals (and the exponential becomes a product of exponentials; the Bernoulli variable becomes a product of Bernoulli variables).

Picking intervals

Assume $X>a$; the case $X<a$ is treated analogously)

- We need to split the interval $[a, X]$ into a number of smaller intervals $A_{1}, \ldots, A_{K} ; A_{i}=\left[a_{i-1}, a_{i}\right]$.

Picking intervals

Assume $X>a$; the case $X<a$ is treated analogously)

- We need to split the interval $[a, X]$ into a number of smaller intervals $A_{1}, \ldots, A_{K} ; A_{i}=\left[a_{i-1}, a_{i}\right]$.
- Set $a_{0}=0$.

Picking intervals

Assume $X>a$; the case $X<a$ is treated analogously)

- We need to split the interval $[a, X]$ into a number of smaller intervals $A_{1}, \ldots, A_{K} ; A_{i}=\left[a_{i-1}, a_{i}\right]$.
- Set $a_{0}=0$.
- Assume a_{i} is known : compute $M=h\left(a_{i}, 1+a_{i}\right)$. If $M \leq 1$, then set $a_{i+1}=1+a_{i}$, and repeat.

Picking intervals

Assume $X>a$; the case $X<a$ is treated analogously)

- We need to split the interval $[a, X]$ into a number of smaller intervals $A_{1}, \ldots, A_{K} ; A_{i}=\left[a_{i-1}, a_{i}\right]$.
- Set $a_{0}=0$.
- Assume a_{i} is known : compute $M=h\left(a_{i}, 1+a_{i}\right)$. If $M \leq 1$, then set $a_{i+1}=1+a_{i}$, and repeat.
- If $M>1$, then let M^{\prime} denote the smallest power of 2 larger than M, and, for each $1 \leq k \leq M^{\prime}$, set $a_{i+k}=a_{i}+k / M^{\prime}\left(M^{\prime}\right.$ intervals of length $1 / M^{\prime}$), and repeat

Picking intervals

Assume $X>a$; the case $X<a$ is treated analogously)

- We need to split the interval $[a, X]$ into a number of smaller intervals $A_{1}, \ldots, A_{K} ; A_{i}=\left[a_{i-1}, a_{i}\right]$.
- Set $a_{0}=0$.
- Assume a_{i} is known : compute $M=h\left(a_{i}, 1+a_{i}\right)$. If $M \leq 1$, then set $a_{i+1}=1+a_{i}$, and repeat.
- If $M>1$, then let M^{\prime} denote the smallest power of 2 larger than M, and, for each $1 \leq k \leq M^{\prime}$, set $a_{i+k}=a_{i}+k / M^{\prime}\left(M^{\prime}\right.$ intervals of length $1 / M^{\prime}$), and repeat
- Stop at the first K such that $a_{k} \geq X$; instead set $a_{K}=X$

Rejection probability

- Now the wanted integral is

$$
\int_{a}^{X}(g(t)-m) d t=\sum_{i=0}^{K} \int_{A_{i}}(g(t)-m) d t=\sum_{i} P_{i}
$$

Rejection probability

- Now the wanted integral is

$$
\int_{a}^{X}(g(t)-m) d t=\sum_{i=0}^{K} \int_{A_{i}}(g(t)-m) d t=\sum_{i} P_{i}
$$

- Each smaller integral can be interpreted as a probability, i.e. the probability that a uniform random point (X, Y) in the rectangle $A_{i} \times\left[0,1 /\left(a_{i}-a_{i-1}\right)\right]$ (with area 1) satisfies $m \leq Y \leq g(X)$

Rejection probability

- Now the wanted integral is

$$
\int_{a}^{X}(g(t)-m) d t=\sum_{i=0}^{K} \int_{A_{i}}(g(t)-m) d t=\sum_{i} P_{i}
$$

- Each smaller integral can be interpreted as a probability, i.e. the probability that a uniform random point (X, Y) in the rectangle $A_{i} \times\left[0,1 /\left(a_{i}-a_{i-1}\right)\right]$ (with area 1) satisfies $m \leq Y \leq g(X)$
- Thus we can apply the "exponential Buffon" construction to obtain a Bernoulli with parameter $\exp \left(-P_{i}\right)$

Rejection probability

- Now the wanted integral is

$$
\int_{a}^{X}(g(t)-m) d t=\sum_{i=0}^{K} \int_{A_{i}}(g(t)-m) d t=\sum_{i} P_{i}
$$

- Each smaller integral can be interpreted as a probability, i.e. the probability that a uniform random point (X, Y) in the rectangle $A_{i} \times\left[0,1 /\left(a_{i}-a_{i-1}\right)\right]$ (with area 1) satisfies $m \leq Y \leq g(X)$
- Thus we can apply the "exponential Buffon" construction to obtain a Bernoulli with parameter $\exp \left(-P_{i}\right)$
- and in turn, obtain the wanted Bernoulli with parameter $\exp \left(-\sum_{i} P_{i}\right)$, by taking the product (conjunction) of each individual Bernoulli for each smaller interval : this completes the algorithm.

The case of the normal distribution

- Take the normal density, $f(t)=\sqrt{2 \pi}^{-1} \exp \left(-x^{2} / 2\right)$, as the target density.

The case of the normal distribution

- Take the normal density, $f(t)=\sqrt{2 \pi}^{-1} \exp \left(-x^{2} / 2\right)$, as the target density.
- (We simulate the absolute value, then add a random sign)

The case of the normal distribution

- Take the normal density, $f(t)=\sqrt{2 \pi}^{-1} \exp \left(-x^{2} / 2\right)$, as the target density.
- (We simulate the absolute value, then add a random sign)
- Differential equation : $y^{\prime}(t)=-t . y(t), g(t)=t$.

The case of the normal distribution

- Take the normal density, $f(t)=\sqrt{2 \pi}^{-1} \exp \left(-x^{2} / 2\right)$, as the target density.
- (We simulate the absolute value, then add a random sign)
- Differential equation : $y^{\prime}(t)=-t . y(t), g(t)=t$.
- g is increasing, any value of $a>0$ will do ; $a=1$ is Kahn's method (and minimizes the rejection probability)

The case of the normal distribution

- Take the normal density, $f(t)=\sqrt{2 \pi}^{-1} \exp \left(-x^{2} / 2\right)$, as the target density.
- (We simulate the absolute value, then add a random sign)
- Differential equation : $y^{\prime}(t)=-t . y(t), g(t)=t$.
- g is increasing, any value of $a>0$ will do ; $a=1$ is Kahn's method (and minimizes the rejection probability)
- The upper bounding function is naturally $h(t, u)=\max (t, u)$

The case of the normal distribution

- Take the normal density, $f(t)=\sqrt{2 \pi}^{-1} \exp \left(-x^{2} / 2\right)$, as the target density.
- (We simulate the absolute value, then add a random sign)
- Differential equation : $y^{\prime}(t)=-t . y(t), g(t)=t$.
- g is increasing, any value of $a>0$ will do ; $a=1$ is Kahn's method (and minimizes the rejection probability)
- The upper bounding function is naturally $h(t, u)=\max (t, u)$
- Strictly applying the previous interval description yields 2 intervals [1,3/2] and [3/2, 2], then 4 intervals for each of $[2,3]$ and $[3,4]$, then 8 intervals for each of $[k, k+1]$ for $k=4,5,6,7$, and so on.

The case of the normal distribution

- Take the normal density, $f(t)=\sqrt{2 \pi}^{-1} \exp \left(-x^{2} / 2\right)$, as the target density.
- (We simulate the absolute value, then add a random sign)
- Differential equation : $y^{\prime}(t)=-t . y(t), g(t)=t$.
- g is increasing, any value of $a>0$ will do; $a=1$ is Kahn's method (and minimizes the rejection probability)
- The upper bounding function is naturally $h(t, u)=\max (t, u)$
- Strictly applying the previous interval description yields 2 intervals [$1,3 / 2$] and $[3 / 2,2$], then 4 intervals for each of $[2,3]$ and $[3,4]$, then 8 intervals for each of $[k, k+1]$ for $k=4,5,6,7$, and so on.
- (In practice, large values of X are very likely to be rejected; the rejection part should be run after each increment of the K counter for the exponential after $K=1$, so as to allow early rejection)

Running the algorithm digit-by-digit

- The previous algorithms are very suitable to an adaptation to bit-by-bit computations

Running the algorithm digit-by-digit

- The previous algorithms are very suitable to an adaptation to bit-by-bit computations
- In any base B, uniforms over $[0,1]$ have a B-ary development made of independent uniform $\{0, \ldots, B-1\}$ digits

Running the algorithm digit-by-digit

- The previous algorithms are very suitable to an adaptation to bit-by-bit computations
- In any base B, uniforms over $[0,1]$ have a B-ary development made of independent uniform $\{0, \ldots, B-1\}$ digits
- Comparisons of reals reduce to lexicographic order of strings

Running the algorithm digit-by-digit

- The previous algorithms are very suitable to an adaptation to bit-by-bit computations
- In any base B, uniforms over $[0,1]$ have a B-ary development made of independent uniform $\{0, \ldots, B-1\}$ digits
- Comparisons of reals reduce to lexicographic order of strings
- The algorithms can be adapted to bit-by-bit simulation : each uniform is only simulated up to the precision required by comparisons, and later completed as needed

Running the algorithm digit-by-digit

- The previous algorithms are very suitable to an adaptation to bit-by-bit computations
- In any base B, uniforms over $[0,1]$ have a B-ary development made of independent uniform $\{0, \ldots, B-1\}$ digits
- Comparisons of reals reduce to lexicographic order of strings
- The algorithms can be adapted to bit-by-bit simulation : each uniform is only simulated up to the precision required by comparisons, and later completed as needed
- Such algorithms output a finite B-ary string, with the meaning "if more precision is needed, add random digits"

Running the algorithm digit-by-digit

- The previous algorithms are very suitable to an adaptation to bit-by-bit computations
- In any base B, uniforms over $[0,1]$ have a B-ary development made of independent uniform $\{0, \ldots, B-1\}$ digits
- Comparisons of reals reduce to lexicographic order of strings
- The algorithms can be adapted to bit-by-bit simulation : each uniform is only simulated up to the precision required by comparisons, and later completed as needed
- Such algorithms output a finite B-ary string, with the meaning "if more precision is needed, add random digits"
- von Neumann's algorithm was analysed by [Flajolet, Saheb, 1986] ; uses on average $k+5.72$.. bits to output k bits of the exponential random variable

Running the algorithm digit-by-digit

- The previous algorithms are very suitable to an adaptation to bit-by-bit computations
- In any base B, uniforms over $[0,1]$ have a B-ary development made of independent uniform $\{0, \ldots, B-1\}$ digits
- Comparisons of reals reduce to lexicographic order of strings
- The algorithms can be adapted to bit-by-bit simulation : each uniform is only simulated up to the precision required by comparisons, and later completed as needed
- Such algorithms output a finite B-ary string, with the meaning "if more precision is needed, add random digits"
- von Neumann's algorithm was analysed by [Flajolet, Saheb, 1986] ; uses on average $k+5.72$.. bits to output k bits of the exponential random variable
- In our general differential equation algorithm, we need a bit more than just a black box function g (unless g is known to be increasing)

Conclusion

- We obtain exact, "von-Neumann-Buffon-like" algorithms for the simulation of a (not too well-defined) class of distributions that includes the normal distribution

Conclusion

- We obtain exact, "von-Neumann-Buffon-like" algorithms for the simulation of a (not too well-defined) class of distributions that includes the normal distribution
- For the normal distribution, this is very similar to Karney's algorithm, described at the digit level

Conclusion

- We obtain exact, "von-Neumann-Buffon-like" algorithms for the simulation of a (not too well-defined) class of distributions that includes the normal distribution
- For the normal distribution, this is very similar to Karney's algorithm, described at the digit level
- In the general case, this is very close to what Devroye described as "the von Neumann-Forsythe method"

Conclusion

- We obtain exact, "von-Neumann-Buffon-like" algorithms for the simulation of a (not too well-defined) class of distributions that includes the normal distribution
- For the normal distribution, this is very similar to Karney's algorithm, described at the digit level
- In the general case, this is very close to what Devroye described as "the von Neumann-Forsythe method"
- No analysis of the expected (bit) complexity yet (will depend on the quality of upper bound h in the general method)

Conclusion

- We obtain exact, "von-Neumann-Buffon-like" algorithms for the simulation of a (not too well-defined) class of distributions that includes the normal distribution
- For the normal distribution, this is very similar to Karney's algorithm, described at the digit level
- In the general case, this is very close to what Devroye described as "the von Neumann-Forsythe method"
- No analysis of the expected (bit) complexity yet (will depend on the quality of upper bound h in the general method)
- The method is unlikely to be competitive with numerical methods (possibly paired with certified floating point calculations), unless one needs very high precision on their random variables

Thank you for your attention

