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1. Rational sequences
with respect to a numeration system



Some divide-and-conquer recurrences: Rudin-Shapiro

3.23 We now prove some facts about D, for.large n. We
prove first: for n=2)-1, p > /I VAFL. Ve prove in
fact the following: for n=2J-1 there is a polynomial

£(z) of degree n with|coefficients ¥ 1[such that

(1) 1£(2)1% + )£(-2))2 = 2(n+1) for |z} =1, hence

£
1£(2)) €2 /neT] 80 that | 25| < 1, and tne
coefficient modulus sum is va/ms 1. We establish
therefore (1), by induction. For j=1, we have (1) with

£(z) = 1+ 2. Again, when k 1s an odd integer and

Shapiro, 1951

problem:
find the lowest constant A

and a polynomial P, with
degree n and all coefficients
equal to 1, that achieves
the bound

max |[P(z)| < Avn +1

|z[=1

SOME THEOREMS ON FOURIER COEFFICIENTS
WALTER RUDIN?!

I. Tri it 1 ials with
trigonometric polynomial

+1. Consider the

¥
1.1) P(ei®) = 3 enein®

If we set || P||.=maxs | P(e?)|, the Parseval theorem
shows that [|P]|.= N'/2, and the following problem arises: does there
exist an absolute constant A with the property that for each N one can
find &, - - -, ex, equal to +1, so that

(1.2) |7l = a5,
where P is given by (1.1)?

Rudin, 1959
A=12

P = Shapiro polynomial



Some divide-and-conquer recurrences: Rudin-Shapiro

Py(z) =1 Qi(x) =1

Peii(2) = Pu(a) +2” Qu(z)  Quai(@) = Pule) — 2 Qula)
Pl(:lj') =14z

Py(z) =14z + 2% —2°
Pyz)=1+z+a®>—a3+a +2° 25427

Pix)=1+zx+a? -2+t +2° -2 + 27+ 28 + 2% 4 210 — 21!

12 13y 14 15
P = Shapiro polynomial

Po(x)=14z+2? —a®+at +2° - 20 + 2" + 28+ 2% + 20 — 2
L1218 0405 06 AT s 09 20 21 20
g2 2425 096 27 28 029 80 81 82

11

coefficients — Rudin-Shapiro sequence a,,



Some divide-and-conquer recurrences: Rudin-Shapiro

ap =1 a; =1 (sequence A020985 in OEIS)

ag2n = Qn A2n+1 = (_1)nan

A2n = Gn Q4n4+1 = Qnp

U4n+3 = —A2n+1

an
The Rudin-Shapiro sequence is /
rational for the radix 2. \
a2n

a2n+1

VA

A4n+1 A4n+3

G, —a2n+1



2-rational sequences: a definition

A sequence u is rational for the radix 2 if there
exists a finite dimensional vector space U, that

— contains the sequence u,

— is left stable by the operators v,, — wva,,

Up Von+1-

M AUTOMATIC
SEQUENCES

Theory, Applications, Generalizations

Fundamental Study

The ring of k-regular sequences*®

Jean-Paul Allouche**
C.N.RS. (U.RA. 226, Mathématiques et Informatique, 33405 Talence Cedex. France

Jeffrey Shallit***
Department of Computer Science, University of Waterloo, Waterloo, Ontario N3G, Canada

Allouche, Shallit, 1992 Allouche, Shallit, 2003




Some divide-and-conquer recurrences: dichopile algo.
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Some divide-and-conquer recurrences: dichopile algo.

problem:

draw with uniform
distribution a length n word
from a regular language
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Some divide-and-conquer recurrences: dichopile algo.

problem:
gain:
draw with uniform
distribution a length n word space O(n) — O(logn)
from a regular language time O(n) — O(nlogn)
that is
draw with uniform #(575) = number _Of paths
distribution a length n path starting from s ending in a
ending in a final state final state with £ steps
— storing all #(s,¢) for 0 </ <n
1 3 7
idea: storing only #(s,¢) for £ = 3™ = e (= g

and recompute when necessary



Some divide-and-conquer recurrences: dichopile algo.

Fn) = n+ f(Ln/2) = 1) + g(In/2)) System of
g(n) = £(In/2] — 1) + g(Tn/2)) linear
f)y=1 g¢g(1)=0 divide-and-conquer equations
f(0)=0 9(0) =0 On =V fn = fn— fa-1
f(z) = 4 21+ 2)f(2%) + (1 + E g(#%) System of

(1—2)2 z

1 /13 'S e i S

g(z) = ZQ(l n z)f(ZQ) n <1 n Z) 9(22) Mahler’s equations

0(z) = (1 = 2)f(2)
0=1,1,1,2,1,2,2,2,1,3,2,2,2,3,2,3,1,3,3,2,2...

(not yet in OEIS :-)



Some divide-and-conquer recurrences: dichopile algo.

6(2) = (1= 2)f(2)

section operators

+o0o +oo +o0 +o0

So Z U2 = Z Uon 2" Sy Z U2 = Z Uopt12"
n=0 n=0 n=0 n=0

Sou(z?) = u(2) Siu(z?) =0

So(uv) = Sou Sov + zS1u S1v S1(uv) = S1uSov + Spu Syv



Some divide-and-conquer recurrences: dichopile algo.

5(2) = (1 - 2)(2)

iz) eV
1—=z
V= Qi +Qlehi(1 - 2)f(2) + Qleh——g(2)
SV Vv
The dichopile algorithm defines a
sequence 0, which is a 2-rational
sequence.
Siyycy



Some divide-and-conquer recurrences: binary partitions

XXXVIL On a Problem in the Partition of Numbers. o
By A. Cavrey, Esq.t b(z) = H —

IT is required to find the number of partitions into a given k=0 1-2

number of parts, such that the first part is unity, and that
no part is greater than twice the preceding part.

Commencing to form the partitions in question, these are (1 -z )b(Z ) = b(Z2>
11111111111 &e.;
' 12 2

121 bn = bn—1 + by

222
234
[

And we are thus led to the series

6
, 2, 4, 6, 10, 14, 20, 26

where, considering O as the first term of each series, the first
differences of any series are the terms twice repeated of the next
preceding series: thus the differences of the fourth series are
1,1,2,2,4,4,6,6. It is moreover clear that the first half
of each series is precisely the series which immediately precedes
it. We need, in fact, only consider a single infinite series, 1, 2,
4, 6, &c. It is to be remarked, moreover, that in the column of
totals, the t;)tal tzf any line is precisely the first number in the

. L



Some divide-and-conquer recurrences: binary partitions

(sequence A000123 in OEIS)

And we are thus led to the series

6
,» 6, 10, 14, 20, 26

where, considering O as the first term of each series, the first bn = bp—1 + bn/ 2
differences of any series are the terms twice repeated of the next
preceding series: thus the differences of the fourth series are
1,1,2,2,4,4,6,6. It is moreover clear that the first half
of each series is precisely the series which immediately precedes
it. We need, in fact, only consider a single infinite series, 1, 2,

4, 6, &c. It is to be remarked, moreover, that in the column of InZn
totals, the total of any line is precisely the first number in the ), ~ exp(i)
next succeeding line. n n——+oo 2

Cayley, 1857 Mabhler, 1940



Some divide-and-conquer recurrences: binary partitions

(sequence A000123 in OEIS)

The binary partitions do not
define a 2-rational sequence.



2-rational sequences: linear representation — 1

1-=2 1
V= Qleh(1 - 9)f(2) + QEl - Zg(2) + Qleh - 5 4(2)
B=(1-2)f(2), 2(1— 2)f(2), ~—2g(2), (1-2)g(z), ——) —
=1-=2)f(2), 2(1 —2)f(z z —2)g(z —
) ) 2 g ) g 71_2:7 1—Z
So, S1 — square matrices Ag, Ay d(z) — column vector C
[0 0 0 0 0 0] [0 0 1 0 0 0] [ 1]
1 0 01 0 0 01 0 0 0 O 0
00 1 0 00 1 0 01 0 O 0
AO: Alz C:
01 0 0 0O 0 00 0 00 0
00 0010 10 0 011 0
(1100 0 1] (001000 0] L0 |




2-rational sequences: evaluation

generating function

= i Op2"

column vector

¢ evaluation at 0
— row vector L
515 52n 12: A1C
Z ! L=[0 0001 0]
SOS15 Z54n+12 A()AlC
S150918(= Z Ognt52"  A1AgALC
S515180516(2 2516n+132 A1A1A AL C
013 =LA A1 A)AC 13 = (1101),



2-rational sequences: linear representation — 2

A linear representation of a 2-rational sequence is a triple
L, (Ap, A1), C such that for every nonnegative integer
n = (bx ...b1bg)2 the value of the sequence is

Up = LAbK s AblAbOC-

A 2-rational sequence has an order of growth at most
polynomial:

[n] < LI Abill - [[As, [11Ab [ICIl < yMoE2" = Am.



2. Asymptotics by linear algebra
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A process of computation—1

Linear Algebra and its Applications 438 (2013) 2107-2126

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications Rpiaons

journal homepage: www.elsevier.com/locate/laa

Joint spectral radius, dilation equations, and asymptotic
behavior of radix-rational sequences



A process of computation—1

Data: a linear representation L, Ag, Ay, C for the backward differ-
ences u, = Vs, of a 2-rational sequence s,

Result: an asymptotic expansion

logy N Wlogy N
— Nlogz P w 10gy 0] 1 N
SN N oo ; < m > X € X p,ﬂ,m( 0g9 )
pHY,m
+0 NlogQ r
p>1r>0 ( )
¥ real

m nonnegative integer

@ 1-periodic function



A mere idea

notation:
SN = Z Up = Z LAwC w wy “Awsg wp
0<n<N 0<n<N for w = wiwsy ... wy
n=(w)2

Sk(z) = Z LA,C for0<z<1

|w|=K
(0.w)2<z
K t =logy N
sy =L(la—A0) > Q"C + Sk (271 K=1t] {t}=t-K

k=0 Q:A0+A1



A mere idea

K t =logya N
sv=L0a—A0) Y Q' C+ Sk K=lt] {}=t-K
k=0 Q=A0+ 4

K
L(I;—Ap) Z QFC  classical rational sequence
k=0

Sr41(271) to be studied



A process of computation—2

Process:

1. compute the joint spectral radius p. of (Ag, A1)

2. compute a reduced Jordan form for Q = Ag + A

3. the eigenvalues with modulus < p, contributes to the error term
4. expand C' over the Jordan basis and retain only the part for the
eigenvalues > p,

5. solve the dilation equations

6. write the asymptotic expansion for Sk (x)

7. translate it into an asymptotic expansion for sy

8. gaze at the result



Joint spectral radius

KONINKL. NEDERL. AKADEMIE VAN WETENSCHAPPEN ~ AMSTERDAM
Reprinted from Proceedings, Series A, 63, No. 4 and Indag. Math., 22, No. 4, 1960

MATHEMATICS

A NOTE ON THE JOINT SPECTRAL RADIUS
BY

GIAN-CARLO ROTA Axp W. GILBERT STRANG 1)

(Communicated by Prof. H. Fr L at the ing of April 30, 1960)

The notion of joint spectral radius of a set of elements of a normed
algebra, introduced below, was obtained in the course of some work in
matrix theory. It was later noticed that the same considerations are valid
in any normed algebra, irrespective of dimension. The notion seems to be

useful enough in certain contexts to warrant the following elemental

o Y Y pe= lim max [l Aull YK
Let B be any bounded subset of the normed algebra 9 with identity e. K—+o0 |w|=K

Let P, be the set of all elements of % which are the products of n elements = inf max ” A || 1/K

of B. The joint spectral radius of the set B is defined to be the non- K>1 | |

negative number
r(B) = lim sup |7'|'».
nco TeP,

That this number is well-defined follows just as in the by now classical
case of the spectral radius of a single element, to which this notion reduces
when the set B consists of a single element. Indeed, notice that log sup ||7|

TeP,



Joint spectral radius

Process:

1. compute the joint spectral radius p. of (Ap, A1)



Joint spectral radius

| —1= 1 Ay || YK
P K—1>r£oo|n|1aXH wlloh




Jordan reduction

Process:

2. compute a reduced Jordan form for Q = Ag + A



Jordan reduction

Q=Ap+ A =

o O o o O N

o O O O N o=

o O O = O O

o O R R O O

0

— = O =

S O O o O R O = O

=
—

o O O = O

o o o o o o

o o o ~ R~ o©

SO N O O O O
= =0 O o O

R=P QP
0 2 0 6 -2
0 4 0 -6 2
0 4 0 6 2
0 2 0 -6 -2
12 -16 6 15 1

oSy O o O O




Jordan reduction

Process:

3. the eigenvalues with modulus < p, contributes to the error term



Jordan reduction

2100 0 0 0 2 0
0200 0 0 0 4 0
0 0 0 0 1o 4 o
R= P=—
0 0 0 0 1210 2 o
0000 M0 12 -16 6
0000 0 X L0 10 -6
px =1

error termg = O(r

6 =2
-6 2
6 2
-6 -2
15 1
-15 -1

DS O oy O O




Jordan reduction

Process:

4. expand C' over the Jordan basis and retain only the part for the
eigenvalues > p,



Jordan reduction

2100 0 0
0200 0 0

0 0 0 0 1

P=—

0 0 0 0 12
0000 Mo
0000 0 X
px =1

0
0
0
0

12
0

‘/20

2
4
4
2

—16
10

‘/21

0 6 -2 —6]
0 -6 2 0
0 6 2 0
0 -6 -2 6
6 15 1 0
-6 —15 -1 6 |
VO Vl VO VO




Dilation equations

Process:

5. solve the dilation equations



Dilation equations

S9.(1) =28Lvy

8% (z) = 2KLF°(z) + O(+%)

K K-1
Jordan cell J¥ = [ 2 K2K ]
0 2
2
SL(1) = K25 tLv) + 2K v}
Sk (z) = K28 'LFO(2) 4+ 28 LF (2) + O(+F)
(6x2)(2x2)(6x6)(6x2) (6x6) (6x2) F(l’):() forz <0

F(x)J = AgF(2z) + A1 F(2z — 1)
F(z)=Vy forz>1



Dilation equations

SIAM J. MATH. ANAL © 1991 Society for Industrial and Applicd Mathematics

Vol. 22, No. 5, pp. 1388-1410, September 1991 oz

TWO-SCALE DIFFERENCE EQUATIONS
1. EXISTENCE AND GLOBAL REGULARITY OF SOLUTIONS*

INGRID DAUBECHIESt: AND JEFFREY C. LAGARIAST

Abstract. A two-scale difference equation is a functional equation of the form /(x) =X, c, f(ax—8,),
where a>1 and B,<p,<---<p, are real constants, and ¢, are complex constants. Solutions of such
equations arise in spline theory, in i ion schemes for ing curves, in wavelets
of compact support, in constructing fractals, and in probability theory. This paper studies the existence and
uniqueness of L'-solutions to such equations. In particular, it characterizes L'-solutions having compact
support. A time-domain method is introduced for studying the special case of such equations where
{a, Bo, " - -, B} are integers, which are called lattice two-scale difference equations. It is shown that if a lattice
two-scale difference equation has a compactly supported solution in C™(R), then m < (8, —Bo)/(a 1)~ 1.

Key words. wavelets, subdivision algorithms, fractals

Daubechies-Lagarias, 1991

F(x)J = AgF (2z) + A F(2z — 1)

Uniform Refinement of Curves

Charles A. Micchelli

Department of Mathematical Sciences
IBM Research Center

T. ]. Watson Research Center

P.O. Box 218

Yorktown Heights, New York 10598
and

Hartmut Prautzsch*

Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Troy, New York 12180

Dedicated to Alan J. Hoffman with friendship and esteem on the occasion of
his 65th birthday.

Submilted by Hans Schneider

Miccheli-Prautzsch, 1989

ABSTRACT

‘We propose and analyze a class of algorithms for the generation of curves and
surfaces. These algorithms pass some well-k methods of i for
Bernstein-Bézier curves (de Casteljau's algorithm) and Bespline curves (Lane and
Riesenteld’s algorithm). Several results concerning properties of the limiting curves as
well as related questions are discussed.




Dilation equations

Subdivision Schemes in Geometric
Modelling

Nira Dyn and David Levin
School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv 69978, Isracl

Ten Lectures on
I EVEEE

Dyn-Levin, 2002

INGRID DAUBEC

.BMS-NSF

hies, 1992



Dilation equations

1
FP(z) = 5 F{(2x — 1)

1 1 1
Fo(z) = 3 FY(2x) + 3 FO(2z) + 3 F)(2x — 1)

1 1 1

F)(x) = 3 FY(2z) + 3 FY(2x — 1)+ 3 F)(2z — 1)
1

Fi(z) = §F2°(2x)

0 1 0 1 0 1 0 1 0

F(z) = §F5(2x)+§F1(2x—1)+§F5(2x—1)+§F6(2x—1)
1 1 1 1

FQ(z) = = FY(22) + = F3(2z) + = F{(22) + = Fy(2x — 1)

2 2 2 2



Dilation equations

Fl(z) = -F§(2z — 1) — - F)(2)
1 1
F21(:v) = 11(2:10) + 7F41(2x) + §F21(2x -1) - §F20(m)
1 1

Fi(z) = —Fy(2z) + = F!(2x — 1) + §1}7’41(23: —1) - 5173?(3:)

1 1
Fi(z) = =Fy(2z) — §Ff(aﬂ)

1 1 1 1
Fl(z) = 512;(23:) + 5F}(zx ~1)+ 5Fgm ~1)+ 5Fg(zgc —1)—

1 1 1 1 1
Fé(m) = §F11(2$L‘) + §F21(2x) + 3 61(235) + §F21(2x -1)— §Fg(x)



Dilation equations

F(x) F3(x) | F(@)

| F@) A Fo) | R

[ — - cascade algorithm



Dilation equations

0.16
03 03

" () () Fy ()

1 3
0.1
0.10 02 02
008
006

01 01

004
002

02 04 06 08 04 06 08 0 02 04 06 08
0.16 08
0.14 Fl(ﬂf 07 F (CC)
012 4 06 6
0.10 05
008 04
006 03
004 02
002 01

02 04 06 08 0 02 04 06 08

2 T



Asymptotic expansion for Sk(z)

Process:

6. write the asymptotic expansion for Sk (x)



Asymptotic expansion for Sk(z)

S9 () = 2 FO (@) + O()

Sh(z) = K25 R (x) + 25 Fl (2) + O(+F) l<r<?2

Sk(@) = 2KV K +2)z 4+ 2K Fl(2) + O(+F)



Asymptotic expansion for sy

Process:

7. translate it into an asymptotic expansion for sy



Asymptotic expansion for sy

K
sn=L{Ig—A0) > Q"C+ Sia (2171

k=0
Sr(z) = 28°YK +2)z 4+ 28 Fl(x) + O(F) l<r<?
K—+o00
N
In = —=logg N+ N&(logy N) + O(N*®) 0<ex<l1
N—+4oco 2

B(t) = it U4 _2{t} + 2=l ot
&(t) 1-periodic

&(t) Holder with exponent logy(2/r) =1 —¢



Asymptotic expansion for sy

Process:

8. gaze at the result



Picture

-0.20
N
IN — b} logy N
N -0.254
against
P(logy N)
-0.30
-0.35




3. Asymptotics by analysis
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D& C from standpoint of analytic number theory

‘Theoretical Computer Science 123 (1994) 291-314 1
Elsevier

Mellin transforms and asymptotics:
digital sums PACIFIC JOURNAL OF MATHENATICS

Vol. 107, No. 1. 1983

Philippe Flajolet® **
INRIA Rocquencourt, B.P. 105, F-78153 Le Chesnay Cedex, France

ON SUMS OF RUDIN-SHAPIRO COEFFICIENTS II

Peter Grabner*** JOHN BRILLHART, PAUL ERDOS AND PATRICK MORTON
Institut fir Mathematik, Technische Universitdt Graz, Steyrergasse 30, A-8010 Graz, Austria
Peter Kirschenhofer* Let (a(n)) be the Rudin-Shapiro sequence, and let s(n) =
Abeilung fir Diskrete Mathematik, Institut fiir Algebra und Diskrete Mathematik, Technische =0 a(k) and 1(n) = 3{—o(~1)"a(k). In this paper we show that the
Universitit Wien, Wiedner Haupistr. 8-10. A-1040 Vienna, Austria sequences (s(n)/Vn'} and (¢(n)/ Vi } do not have cumulative distribu-
Hel Prodi % tion functions, but do have logarithmic distribution functions (given by a
elmut Prodinger specific Lebesgue integral) at each point of the respective intervals [/3/3,
Abteilung fiir Theoretische Informatik, Institut fiir Algebra und Diskrete Mathematik, Technische V6] and (0,V3]. The functions a(x) and s(x) are also defined for real
Universitit Wien, Wiedner Haupisir. 8-10, A-1040 Vienna, Austria x =0, and the function [s(x) — a(x)]/Jx is shown to have a Fourier
Robert F. Tichy* *** expansion whose coefficients are related to the poles of the Dirichlet

Institut fiir Mathematik, Technische Universitat Graz, Steyrergasse 30, A-8010 Graz, Austria series 3., a(n)/n’, where Re 7 > }.

Flajolet et aliz, 1994 Brillhart, Erdds, Morton, 1983



D& C from standpoint of analytic number theory

Encyclopedia of Mathematics and Its Applications 135

COMBINATORICS,
AUTOMATA AND
NUMBER THEORY

8

Analysis of digital functions and applications

8.1 Introduction: digital functions

Digital functions in a rather informal and general sense are functions de-
fined in a way depending on the digits in some digital representation of
the integers. In the simplest case the digital representation is the g-adic
representation and the dependence of the function on the digits s additive

as for the sum-of-digits function given by

i

which also serves as the most prominent example for such functions.
As a very general reference for results on digital functions, we refer to
(Allouche and Shallit 2003). We remark that depending on the point of
view such maps f : N — A can be scen as (arithmetic) functions or se-
quences. The aim of this chapter is to study various asymptotic and limiting
properties of such functions.

For the convenience of the reader we collect the basic definitions as given
in (Allouche and Shallit 2003)

Drmota, Grabner, 2010



A process of computation, anew

The analytic approach

— has a wider scope of application than the linear algebra
approach,

— is trickier to apply.



A process of computation, anew

Process:

. define the Dirichlet series associated to the backward differences
. compute its absolute convergence abscissa o
. extend it to the left

. apply the Mellin-Perron formula

=~ W N

5. shift the vertical line of integration to the left and collect the
residues

6. write the asymptotic expansion for sy
7. gaze at the result



Dirichlet series

Process:

1. define the Dirichlet series associated to the backward differences



Dirichlet series

U,
Dirichlet series: U(s) = Z an

n>1



Abscissa of absolute convergence

Process:

2. compute its absolute convergence abscissa o



Abscissa of absolute convergence

.. ) U,
Dirichlet series: U(s) = E —
n>1
Abscissa: 0, = 1 + logy ps«

Usually difficult to compute.

Oa




Extension as a meromorphic function

Process:

3. extend it to the left



Extension as a meromorphic function

Dirichlet series: U(s Z —

n>1
Abscissa: 0, = 1 + logy ps«

Extension: U(s)(Iz—27°Q) = VU(s)

Oa X

27

" In2

=l Z ( 2n + 1 (2711)s> Unts

Perhaps no pole.

Ta




Mellin-Perron formula

Process:

4. apply the Mellin-Perron formula



Mellin-Perron formula

Uy,
Dirichlet series: U(s) = —
irichlet series: U(s) ,; e
Abscissa: o4, =1+ logy ps
Extension: U(s)(Iz—27°Q) = VU(s)

Mellin-Perron formula:

1 1 d
Y Ui+ sUv=o— | UsNE
2 211 () S
1<k<N

Oa X

27

x=-—
In2

Ta




Cauchy’s residues theorem

Process:

5. shift the vertical line of integration to the left and collect the
residues



Cauchy’s residue theorem
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Perhaps divergence of the trigonometric series.
Order of growth at +ico difficult to evaluate. (Yoo)

Mellin-Perron formula may not apply directly.



Virtuosity
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Digital Sums and Divide-and-Conquer Recurrences:
Fourier Expansions and Absolute Convergence

Peter J. Grabner and Hsien-Kuei Hwang
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4. Addition
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Lazy approach

Lazy process:

1. evaluate the joint spectral radius

2. take into account only the dominant eigenvalue
3. solve only the first dilation equation

4. find an equivalent for Sk (x)

5. translate it for sy

max || Ay||*/? ~ 1.3 < 2

|w|=2

@’s dominant eigenvalue A = 2
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Autosimilarity loss: Newman-Coquet
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Symmetry loss: Rudin-Shapiro
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Symmetry loss: Rudin-Shapiro
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25¢(s) + 2'®(t) = 4 for s € [0,1/2] and t € [log, 3,1] with 4" — 45 =2
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Periodicity versus pseudo-periodicity

Result: an asymptotic expansion for sy
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Periodicity versus pseudo-periodicity: rosette

L= [ * ok ],
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Periodicity versus pseudo-periodicity: rosette
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Conclusion

Rational sequences with respect to a numeration system
— are a direct generalization of classical rational sequences,

— provide the most basic case of linear divide-and-conquer
recurrences (constant coefficients),

— have an asymptotic behaviour that can be made known both by
algebra and analysis.

The linear approach provides us with a
— not too sophisticated,
— not too difficult method

to deal with the asymptotic behaviour of 2-rational sequence.
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