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LATTICE WALKS BY WINDING ANGLE

The model: count walks starting at by end point and winding angle
around .
Cell-centred lattices:

Kreweras lattice Triangular Lattice

Square Lattice King Lattice
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LATTICE WALKS BY WINDING ANGLE

The model: count walks starting at by end point and winding angle
around .
Vertex-centred lattices:

Kreweras lattice Triangular Lattice

Square Lattice King Lattice
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LATTICE WALKS BY WINDING ANGLE

The model: count walks starting at (by end point).

Left: Cell-centred triangular lattice
Right: Vertex-centred square lattice
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WHY STUDY WALKS BY WINDING ANGLE?

Physics motivation: Models a long-chain polymer growing in the
vicinity of a rod
Bélisle, Berger, Brereton, Butler, Duplantier, Durrett, Faraway, Fisher, Frish,

Grosberg, Hu, Le Gall, Privman, Redner, Roberts, Rudnick, Saluer, Shi, Spitzer, . . .

More real world applications:
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SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting
and ending on an axis or diagonal) by winding angle

Method: Matrices counting paths, eigenvalue decomposition etc.

Solution: Jacobi theta function expressions
Corollaries:

Square lattice walks in cones (eg. Gessel walks)
Loops around the origin (without a fixed starting point)
Algebraicity results, asymptotic results, etc.

This work:
Completely different method

Slightly different set of results

Extension to three other lattices (more coming)

This talk: Kreweras lattice (mostly)
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JACOBI THETA FUNCTION

All results are in terms of the series:

Tk(u, q) =

∞∑
n=0

(−1)n(2n + 1)kqn(n+1)/2(un+1 − (−1)ku−n)

= (u± 1)− 3kq(u2 ± u−1) + 5kq3(u3 ± u−2) + O(q6).

Related to Jacobi Theta function ϑ(z, τ) ≡ ϑ11(z, τ) by

ϑ(k)(z, τ) ≡
(
∂

∂z

)k

ϑ(z, τ) = e
(πτ−2z)i

2 ikTk(e2iz, e2iπτ ).
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PREVIEW: KREWERAS ALMOST-EXCURSIONS

Vertex-centred Kreweras latticeCell-centred Kreweras lattice

4π

3

Contributes s2t8 to E(t, s) Contributes s−1t6 to Ẽ(t, s)

On each lattice: count walks → ( or ). Walks with length n and
winding angle 2πk

3 contribute tnsk.

Cell-centred: E(t, s) = 1 + st +
(
s2 + s−1) t2 + . . .

Vertex-centred: Ẽ(t, s) = 1 +
(
s−1 + 4 + s

)
t3 + . . .
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PREVIEW: KREWERAS ALMOST-EXCURSIONS

Define Tk(u, q) =

∞∑
n=0

(−1)n(2n + 1)kqn(n+1)/2(un+1 − (−1)ku−n)

= (u± 1)− 3kq(u2 ± u−1) + 5kq3(u3 ± u−2) + O(q6).

Let q(t) ≡ q = t3 + 15t6 + 279t9 + · · · satisfy

t = q1/3 T1(1, q3)

4T0(q, q3) + 6T1(q, q3)
.

The gf for cell-centred Kreweras-lattice almost-excursions is:

E(t, s) =
s

(1− s3)t

(
s− q−1/3 T1(q2, q3)

T1(1, q3)
− q−1/3 T0(q, q3)T1(sq−2/3, q)

T1(1, q3)T0(sq−2/3, q)

)
.

The gf for vertex-centred Kreweras-lattice almost-excursions is:

Ẽ(t, s) =
s(1− s)q−

2
3

t(1− s3)

T0(q, q3)2

T1(1, q3)2

(
T1(q, q3)2

T0(q, q3)2
−

T2(q, q3)

T0(q, q3)
−

T2(s, q)
2T0(s, q)

+
T3(1, q)

6T1(1, q)
+

T3(1, q3)

3T1(1, q3)

)
.
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TALK OUTLINE

Focus: Kreweras lattice (for parts 1 to 4).
Part 1: Decomposition of lattice→ functional equations
Part 2: Solving the functional equations (with theta functions!)
Part 3: Corollaries: walks restricted to cones

New result: Excursions with step set
�6
@R avoiding a quadrant

Part 4: Analysing the solution
Algebraicity results using modular forms
Asymptotic results

Part 5: Square, triangular and king lattices
Part 6: Final comments and open problems
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Part 1: Functional equations for
Kreweras walks by winding angle

−
2π

3

Vertex-centred Kreweras latticeCell-centred Kreweras lattice

4π

3
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at by end point and winding
around .

This example contributes .
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at by end point.

×eiα (s) ×e−iα (s−1)

This example contributes .

Definition: Q(t, α, x, y) ≡ Q(x, y) =
∑

paths p

t|p|xx(p)yy(p)eiαn(p)

Note: Q(0, 0) = E(t, eiα)

Counting lattice walks by winding angle Andrew Elvey Price



KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at by end point.

×eiα (s) ×e−iα (s−1)

This example contributes txy.
Definition: Q(t, α, x, y) ≡ Q(x, y) =

∑
paths p

t|p|xx(p)yy(p)eiαn(p)

Note: Q(0, 0) = E(t, eiα)

Counting lattice walks by winding angle Andrew Elvey Price



KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at by end point.

×eiα (s) ×e−iα (s−1)

This example contributes t2y.
Definition: Q(t, α, x, y) ≡ Q(x, y) =

∑
paths p

t|p|xx(p)yy(p)eiαn(p)

Note: Q(0, 0) = E(t, eiα)

Counting lattice walks by winding angle Andrew Elvey Price



KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at by end point.

×eiα (s) ×e−iα (s−1)

This example contributes t3xeiα.
Definition: Q(t, α, x, y) ≡ Q(x, y) =

∑
paths p

t|p|xx(p)yy(p)eiαn(p)

Note: Q(0, 0) = E(t, eiα)

Counting lattice walks by winding angle Andrew Elvey Price



KREWERAS WALKS BY WINDING NUMBER
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The model: Count walks starting at by end point.
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The model: Count walks starting at by end point.
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at by end point.

×eiα (s) ×e−iα (s−1)

This example contributes t8x.
Definition: Q(t, α, x, y) ≡ Q(x, y) =

∑
paths p

t|p|xx(p)yy(p)eiαn(p)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at by end point.

×eiα (s) ×e−iα (s−1)

This example contributes t9y2e−iα.
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at by end point.

×eiα (s) ×e−iα (s−1)

This example contributes t10xy3e−iα.
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FUNCTIONAL EQUATION

Recursion→ functional equation: separate by type of final step.

Q(x, y) = 1

xytQ(x, y)

t
x(Q(x, y)−Q(0, y))

t
y(Q(x, y)−Q(x, 0))

+

+

+

+ eiαtQ(0, x)

+ e−iαtyQ(y, 0)

(Final step goes through
left wall)

(Final step goes through
bottom wall)
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KREWERAS WALKS BY WINDING NUMBER

The model: Count walks starting at the red point by end point.

×eiα (s) ×e−iα (s−1)

Definition: Q(t, α, x, y) ≡ Q(x, y) =
∑

paths p

t|p|xx(p)yy(p)eiαn(p).

Characterised by:

Q(x, y) = 1 + txyQ(x, y) + t
Q(x, y)− Q(0, y)

x
+ t

Q(x, y)− Q(x, 0)

y
+eiαtQ(0, x) + e−iαtyQ(y, 0).
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Part 2: Solution (using theta
functions)
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

Q(x, y) = 1 + txyQ(x, y) + t
Q(x, y)− Q(0, y)

x
+ t

Q(x, y)− Q(x, 0)

y
+ eiαtQ(0, x) + e−iαtyQ(y, 0).

Solution:
Step 1: Fix t ∈ [0, 1/3), α ∈ R. All series converge for |x|, |y| < 1.
Step 2: Write equation as K(x, y)Q(x, y) = R(x, y), where

K(x, y) = 1− txy− t/y− t/x

R(x, y) = 1− t
x

Q(0, y)− t
y

Q(x, 0) + eiαtQ(0, x) + e−iαtyQ(y, 0).

Step 3: Consider the curve K(x, y) = 0 (Then R(x, y) = 0).
Parameterisation involves the Jacobi theta function ϑ(z, τ).
So far: Similar to elliptic approaches to quadrant models [Bernardi,
Bousquet-Mélou, Fayolle, Iasnogorodski, Kurkova, Malyshev,
Raschel, Trotignon]

Counting lattice walks by winding angle Andrew Elvey Price



SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

Q(x, y) = 1 + txyQ(x, y) + t
Q(x, y)− Q(0, y)

x
+ t

Q(x, y)− Q(x, 0)

y
+ eiαtQ(0, x) + e−iαtyQ(y, 0).

Solution:
Step 1: Fix t ∈ [0, 1/3), α ∈ R. All series converge for |x|, |y| < 1.

Step 2: Write equation as K(x, y)Q(x, y) = R(x, y), where

K(x, y) = 1− txy− t/y− t/x

R(x, y) = 1− t
x

Q(0, y)− t
y

Q(x, 0) + eiαtQ(0, x) + e−iαtyQ(y, 0).

Step 3: Consider the curve K(x, y) = 0 (Then R(x, y) = 0).
Parameterisation involves the Jacobi theta function ϑ(z, τ).
So far: Similar to elliptic approaches to quadrant models [Bernardi,
Bousquet-Mélou, Fayolle, Iasnogorodski, Kurkova, Malyshev,
Raschel, Trotignon]

Counting lattice walks by winding angle Andrew Elvey Price



SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

Q(x, y) = 1 + txyQ(x, y) + t
Q(x, y)− Q(0, y)

x
+ t

Q(x, y)− Q(x, 0)

y
+ eiαtQ(0, x) + e−iαtyQ(y, 0).

Solution:
Step 1: Fix t ∈ [0, 1/3), α ∈ R. All series converge for |x|, |y| < 1.
Step 2: Write equation as K(x, y)Q(x, y) = R(x, y), where

K(x, y) = 1− txy− t/y− t/x

R(x, y) = 1− t
x

Q(0, y)− t
y

Q(x, 0) + eiαtQ(0, x) + e−iαtyQ(y, 0).

Step 3: Consider the curve K(x, y) = 0 (Then R(x, y) = 0).
Parameterisation involves the Jacobi theta function ϑ(z, τ).
So far: Similar to elliptic approaches to quadrant models [Bernardi,
Bousquet-Mélou, Fayolle, Iasnogorodski, Kurkova, Malyshev,
Raschel, Trotignon]

Counting lattice walks by winding angle Andrew Elvey Price



SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

Q(x, y) = 1 + txyQ(x, y) + t
Q(x, y)− Q(0, y)

x
+ t

Q(x, y)− Q(x, 0)

y
+ eiαtQ(0, x) + e−iαtyQ(y, 0).

Solution:
Step 1: Fix t ∈ [0, 1/3), α ∈ R. All series converge for |x|, |y| < 1.
Step 2: Write equation as K(x, y)Q(x, y) = R(x, y), where

K(x, y) = 1− txy− t/y− t/x

R(x, y) = 1− t
x

Q(0, y)− t
y

Q(x, 0) + eiαtQ(0, x) + e−iαtyQ(y, 0).

Step 3: Consider the curve K(x, y) = 0 (Then R(x, y) = 0).

Parameterisation involves the Jacobi theta function ϑ(z, τ).
So far: Similar to elliptic approaches to quadrant models [Bernardi,
Bousquet-Mélou, Fayolle, Iasnogorodski, Kurkova, Malyshev,
Raschel, Trotignon]

Counting lattice walks by winding angle Andrew Elvey Price



SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

Q(x, y) = 1 + txyQ(x, y) + t
Q(x, y)− Q(0, y)

x
+ t

Q(x, y)− Q(x, 0)

y
+ eiαtQ(0, x) + e−iαtyQ(y, 0).

Solution:
Step 1: Fix t ∈ [0, 1/3), α ∈ R. All series converge for |x|, |y| < 1.
Step 2: Write equation as K(x, y)Q(x, y) = R(x, y), where

K(x, y) = 1− txy− t/y− t/x

R(x, y) = 1− t
x

Q(0, y)− t
y

Q(x, 0) + eiαtQ(0, x) + e−iαtyQ(y, 0).

Step 3: Consider the curve K(x, y) = 0 (Then R(x, y) = 0).
Parameterisation involves the Jacobi theta function ϑ(z, τ).
So far: Similar to elliptic approaches to quadrant models [Bernardi,
Bousquet-Mélou, Fayolle, Iasnogorodski, Kurkova, Malyshev,
Raschel, Trotignon]

Counting lattice walks by winding angle Andrew Elvey Price



JACOBI THETA FUNCTION ϑ(z, τ)

Definition: For τ, z ∈ C, im(τ) > 0,

ϑ(z, τ) =

∞∑
n=−∞

(−1)ne( 2n+1
2 )

2
iπτ+(2n+1)iz

Useful facts (for fixed τ ):
ϑ(z + π, τ) = −ϑ(z, τ)
ϑ(z + πτ, τ) = −e−2iz−iπτϑ(z, τ)
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PARAMETERISATION OF K(x, y) = 0 USING ϑ(z, τ)

Definition: For τ, z ∈ C, im(τ) > 0,

ϑ(z, τ) =

∞∑
n=−∞

(−1)ne( 2n+1
2 )

2
iπτ+(2n+1)iz

Useful facts (for fixed τ ):
ϑ(z + π, τ) = −ϑ(z, τ)
ϑ(z + πτ, τ) = −e−2iz−iπτϑ(z, τ)

Parameterisation: The curve

K(x, y) := 1− txy− t/y− t/x = 0

is parameterised by

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
and Y(z) = X(z + πτ),

where τ is determined by t = e−
πτ i

3
ϑ′(0, 3τ)

4iϑ(πτ, 3τ) + 6ϑ′(πτ, 3τ)
.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve:

K(x, y)Q(x, y) = R(x, y),

where

K(x, y) = 1− txy− t/y− t/x,

R(x, y) = 1− t
x

Q(0, y)− t
y

Q(x, 0) + eiαtQ(0, x) + e−iαtyQ(y, 0).

Define

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
.

Then K(X(z),X(z + πτ)) = 0. Hence R(X(z),X(z + πτ)) = 0
(assuming |X(z)| ≤ 1 and |X(z + πτ)| ≤ 1).
New equation to solve:

R(X(z),X(z + πτ)) = 0,
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Q(x, 0) + eiαtQ(0, x) + e−iαtyQ(y, 0).

Define

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
.

Then K(X(z),X(z + πτ)) = 0. Hence R(X(z),X(z + πτ)) = 0
(assuming |X(z)| ≤ 1 and |X(z + πτ)| ≤ 1).
New equation to solve:

R(X(z),X(z + πτ)) = 0,

Counting lattice walks by winding angle Andrew Elvey Price



SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Plot of
{

z : |X(z)| ∈
[

0,
1
3

)
,
(

1
3
, 1
)

, (1, 3), (3, 9), (9,∞]

}
.

Ω

0 π 2π 3π−π

πτ

−πτ

−2πτ

2πτ

For z ∈ Ω, |X(z)| < 1⇒ Q(X(z), 0) and Q(0,X(z)) are well defined.

Near Re(z) = 0, we have z ∈ Ω and z + πτ ∈ Ω.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

R(X(z),X(z + πτ)) = 0

where

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
.

R(x, y) = 1− t
x

Q(0, y)− t
y

Q(x, 0) + eiαtQ(0, x) + e−iαtyQ(y, 0).
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

1 =
t

X(z)
Q(0,X(z + πτ)) +

t
X(z + πτ)

Q(X(z), 0)

− eiαtQ(0,X(z))− e−iαtX(z + πτ)Q(X(z + πτ), 0),

where

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

1 =
t

X(z)
Q(0,X(z + πτ)) +

t
X(z + πτ)

Q(X(z), 0)

− eiαtQ(0,X(z))− e−iαtX(z + πτ)Q(X(z + πτ), 0),

where

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
.

For z near 0, define

L(z) =
t

X(z + πτ)
Q(X(z), 0)− eiαtQ(0,X(z)).

Both L(z) and L(z + πτ) converge.
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

1 = −e−iα

X(z)
L(z + πτ) + L(z).

where
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)
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X(z)
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where
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

1 = −e−iα

X(z)
L(z + πτ) + L(z).

where

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
.

We can solve this exactly:

L(z) = − e3iα

1− e3iα

(
1 +

e−iα

X(z)
+ e−2iαX(z− πτ)

)
− eiα+ 5iπτ

3 ϑ(πτ, 3τ)ϑ′(0, τ)

(1− e3iα)ϑ(α2 −
2πτ

3 , τ)ϑ′(0, 3τ)

ϑ(z− 2πτ, 3τ)ϑ(z− α
2 + 2πτ

3 , τ)

ϑ(z, τ)ϑ(z, 3τ)
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SOLUTION TO KREWERAS WALKS BY WINDING NUMBER

Equation to solve: (near Re(z) = 0)

1 = −e−iα

X(z)
L(z + πτ) + L(z).

where

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
.

We can solve this exactly:

L(z) = − e3iα

1− e3iα

(
1 +

e−iα

X(z)
+ e−2iαX(z− πτ)

)
− eiα+ 5iπτ

3 ϑ(πτ, 3τ)ϑ′(0, τ)

(1− e3iα)ϑ(α2 −
2πτ

3 , τ)ϑ′(0, 3τ)

ϑ(z− 2πτ, 3τ)ϑ(z− α
2 + 2πτ

3 , τ)

ϑ(z, τ)ϑ(z, 3τ)

We can extract E(t, eiα) = Q(0, 0)...
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KREWERAS WALKS BY WINDING NUMBER: SOLUTION

Recall: τ is determined by

t = e−
πτ i

3
ϑ′(0, 3τ)

4iϑ(πτ, 3τ) + 6ϑ′(πτ, 3τ)
.

The gf E(t, eiα) = Q(0, 0) ≡ Q(t, α, 0, 0) is given by:

E(t, eiα) =
eiα

t(1 − e3iα)

(
eiα − e

4πτ i
3
ϑ′(2πτ, 3τ)
ϑ′(0, 3τ)

− e
πτ i

3
ϑ(πτ, 3τ)ϑ′(α2 − 2πτ

3 , τ)

ϑ′(0, 3τ)ϑ(α2 − 2πτ
3 , τ)

)
.

Equivalently:
Let q(t) ≡ q = t3 + 15t6 + 279t9 + · · · satisfy

t = q1/3 T1(1, q3)

4T0(q, q3) + 6T1(q, q3)
.

The gf for cell-centred Kreweras-lattice almost-excursions is:

E(t, s) =
s

(1− s3)t

(
s− q−1/3 T1(q2, q3)

T1(1, q3)
− q−1/3 T0(q, q3)T1(sq−2/3, q)

T1(1, q3)T0(sq−2/3, q)

)
.
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Part 3: Walks in cones
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WALKS IN CONES WITH SMALL STEPS

Quarter plane walks: Completely classified into rational,
algebraic, D-finite, D-algebraic cases.
[Mishna, Rechnitzer 09], [Bousquet-Mélou, Mishna 10], [Bostan, Kauers 10],

[Fayolle, Raschel 10], [Kurkova, Raschel 12], [Melczer, Mishna 13], [Bostan,

Raschel, Salvy 14], [Bernardi, Bousquet-Mélou, Raschel 17], [Dreyfus,

Hardouin, Roques, Singer 18]

Half plane walks: Easy

Three quarter plane walks: Active area of research
(Previously) solved in 6-12 of the 74 non-trivial cases
[Bousquet-Mélou 16], [Raschel-Trotignon 19], [Budd 20], [Bousquet-Mélou,

Wallner 20+]

Walks on the slit plane C \ R<0: solved in all cases
[Bousquet-Mélou, 01], [Bousquet-Mélou, Schaeffer, 02], [Rubey 05]
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WALKS IN THE 3/4-PLANE: SOLVED CASES

Not D-finiteD-finite

[Budd 20]

[B-M 16]

[B-M, W 20+]

This work

[R,T 19]

[D,T 20]

[Bousquet-Mélou 16],[Raschel, Trotignon 19], [Budd 20], [Bousquet-Mélou,

Wallner 20+]
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WALKS IN THE 5/4-PLANE: SOLVED CASES

D-finite

[Budd 20]

This work

[Budd 20]
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WALKS IN THE 6/4-PLANE: SOLVED CASES

D-finite

[Budd 20]

This work

[Budd 20]
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WALKS IN THE 7/4-PLANE: SOLVED CASES

D-finite

[Budd 20]

This work

[Budd 20]
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COUNTING KREWERAS WALKS IN A CONE

B

B

A

R

In the upper half plane: Use reflection principle

#(Walks from A to B above R)

= #(Walks from A to B)−#(Walks from A to B through R)

= #(Walks from A to B)−#(Walks from A to B)
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COUNTING KREWERAS EXCURSIONS IN 5/6-PLANE

New result:
�6
@R-excursions avoiding a quadrant.

≡

Winding angle 10πk
3 → − 4π

3 + 10πj
3 .

#(Walks → avoiding lines)

=

(∑
k∈Z

[s5k]Ẽ(t, s)

)
−

(∑
k∈Z

[s5k−2]Ẽ(t, s)

)

=
1
5

4∑
j=1

(
1− e

4πij
5

)
Ẽ
(

t, e
2πi

5

)
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COUNTING KREWERAS EXCURSIONS IN k/6-PLANE

More generally: Let Ck,r(t) count whole-plane Kreweras
excursions...

Starting adjacent to the origin,
Avoiding the origin,
Having winding angle 0,
Having intermediate winding angles restricted to

[
− rπ

3 ,
(k−r)π

3

]
I.e., Kreweras excursions in the k/6-plane

Previous slide:

C5,2(t) =
1
5

4∑
j=1

(
1− e

4πij
5

)
Ẽ
(

t, e
2πi

5

)
.

More generally:

Ck,r(t) =
1
k

k−1∑
j=1

(
1− e

2πijr
k

)
Ẽ
(

t, e
2πij

k

)
.

Counting lattice walks by winding angle Andrew Elvey Price



COUNTING KREWERAS EXCURSIONS IN k/6-PLANE

More generally: Let Ck,r(t) count whole-plane Kreweras
excursions...

Starting adjacent to the origin,
Avoiding the origin,
Having winding angle 0,
Having intermediate winding angles restricted to

[
− rπ

3 ,
(k−r)π

3

]
I.e., Kreweras excursions in the k/6-plane
Previous slide:

C5,2(t) =
1
5

4∑
j=1

(
1− e

4πij
5

)
Ẽ
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Part 4: Analysis of solutions
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ANALYSIS OF SOLUTION

From the exact solution we extract:
Asymptotic distribution ([Bélisle, 1989]): For random
excursions of length n, winding angle

c log(n) has asymptotic density

4
(x− 1)ex + (x + 1)e−x

(ex − e−x)2 .

Asymptotics ([Denisov, Wachtel, 2015]): Let cn count
Kreweras-lattice excursions in a cone of angle α ∈ π

3N.

cn ∼ −
2 · 35− 6

k sin2 (π
k

)
πk2

(
1 + 2 cos

(2π
k

))
Γ
(
− 3

k

)n−1− 3
k 3n.

Conditions for algebraicity: Let Cα(t) count Kreweras-lattice
excursions in a cone of angle α ∈ π

3N. This satisfies a non-trivial
polynomial equation P(Cα(t), t) = 0 if and only if α /∈ πZ.
(uses modular forms as in [Zagier, 08] and [E.P., Zinn-Justin, 20])
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ANALYSIS OF SOLUTION: ASYMPTOTICS

Fix α.
Writing τ̂ = − 1

3τ and q̂ = e2πiτ̂ , the dominant singularity t = 1/3 of
Ẽ(t, eiα) corresponds to q̂ = 0.

Series in q̂:

t =
1
3
− 3q̂ + 18q̂2 + O(q̂3)

tẼ(t, eiα) = a0 + a1q̂− 27αeiα

2π(1 + eiα + e2iα)
q̂

3α
2π + o

(
q̂

3α
2π

)
,

→ Ẽ(t, eiα) as a series in (1− 3t),→

[tn]Ẽ(t, eiα) ∼ − 35− 3α
π eαiα

2π(1 + eαi + e2αi)Γ
(
−3α

2π

)n−
3α
2π−13n,

[tn]Ck,r(t) ∼ −
2 · 35− 6

k sin2 ( rπ
k

)
πk2

(
1 + 2 cos

(2π
k

))
Γ
(
−3

k

)n−1− 3
k 3n.

Previously: Terms 3n and n−1− 3
k known [Denisov, Wachtel, 2015].
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[tn]Ẽ(t, eiα) ∼ − 35− 3α
π eαiα

2π(1 + eαi + e2αi)Γ
(
−3α

2π

)n−
3α
2π−13n,

[tn]Ck,r(t) ∼ −
2 · 35− 6

k sin2 ( rπ
k

)
πk2

(
1 + 2 cos

(2π
k

))
Γ
(
−3

k

)n−1− 3
k 3n.

Previously: Terms 3n and n−1− 3
k known [Denisov, Wachtel, 2015].

Counting lattice walks by winding angle Andrew Elvey Price



ANALYSIS OF SOLUTION: ASYMPTOTICS

Fix α.
Writing τ̂ = − 1

3τ and q̂ = e2πiτ̂ , the dominant singularity t = 1/3 of
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ANALYSIS OF SOLUTION: ALGEBRAICITY

Recall: ϑ(z, τ) is differentially algebraic→ so are Ẽ(t, s) and
Q(t, α, x, y).
For α ∈ π

3 (Q \ Z) we get algebraicity (Ideas from [Zagier, 08] and
[E.P., Zinn-Justin, 20+]):

Q(t, α,X(z), 0) and X(z) are elliptic functions with the same
periods⇒ Q(t, α, x, 0) is algebraic in x.

E(t(τ), eiα) and t(τ) are modular functions of τ
⇒ E(t, eiα) is algebraic in t. Same for Ẽ(t(τ), eiα).

Combining these ideas: Q(t, α, x, y) is algebraic in t, x and y.

Recall: The gf for excursions in the k/6-plane is

Ck,r(t) =
1
k

k−1∑
j=1

(
1− e

2πijr
k

)
Ẽ
(

t, e
2πij

k

)
.

Algebraic iff 3 - k. (always D-finite).
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Q(t, α, x, y).
For α ∈ π

3 (Q \ Z) we get algebraicity (Ideas from [Zagier, 08] and
[E.P., Zinn-Justin, 20+]):

Q(t, α,X(z), 0) and X(z) are elliptic functions with the same
periods⇒ Q(t, α, x, 0) is algebraic in x.

E(t(τ), eiα) and t(τ) are modular functions of τ
⇒ E(t, eiα) is algebraic in t. Same for Ẽ(t(τ), eiα).
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Part 5: Other lattices

Kreweras lattice Triangular Lattice

Square Lattice King Lattice
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CELL-CENTRED LATTICES

Important property: Decomposable into congruent sectors

Kreweras lattice Triangular Lattice

Square Lattice King Lattice
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VERTEX-CENTRED LATTICES

Decompose into rotationally congruent sectors

Kreweras lattice Triangular Lattice

Square Lattice King Lattice
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RECALL: KREWERAS ALMOST-EXCURSIONS

Define Tk(u, q) =

∞∑
n=0

(−1)n(2n + 1)kqn(n+1)/2(un+1 − (−1)ku−n)

= (u± 1)− 3kq(u2 ± u−1) + 5kq3(u3 ± u−2) + O(q6).

Let q(t) ≡ q = t3 + 15t6 + 279t9 + · · · satisfy

t = q1/3 T1(1, q3)

4T0(q, q3) + 6T1(q, q3)
.

The gf for cell-centred Kreweras-lattice almost-excursions is:

E(t, s) =
s

(1− s3)t

(
s− q−1/3 T1(q2, q3)

T1(1, q3)
− q−1/3 T0(q, q3)T1(sq−2/3, q)

T1(1, q3)T0(sq−2/3, q)

)
.

The gf for vertex-centred Kreweras-lattice almost-excursions is:

Ẽ(t, s) =
s(1− s)q−

2
3

t(1− s3)

T0(q, q3)2

T1(1, q3)2

(
T1(q, q3)2

T0(q, q3)2
−

T2(q, q3)

T0(q, q3)
−

T2(s, q)
2T0(s, q)

+
T3(1, q)

6T1(1, q)
+

T3(1, q3)

3T1(1, q3)

)
.
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SQUARE LATTICE ALMOST-EXCURSIONS

Define Tk(u, q) =

∞∑
n=0

(−1)n(2n + 1)kqn(n+1)/2(un+1 − (−1)ku−n)

= (u± 1)− 3kq(u2 ± u−1) + 5kq3(u3 ± u−2) + O(q6).

Let q(t) ≡ q = t + 4t3 + 34t5 + 360t7 + · · · satisfy

t =
qT0(q2, q8)T1(1, q8)

2T0(q4, q8)(T0(q2, q8) + 2T1(q2, q8))
.

The gf for cell-centred Square-lattice almost-excursions is:

s2

(1− s4)t

(
s− s−1 +

T0(q4, q8)

qT1(1, q8)
− T0(q4, q8)T1(s−1q, q2)

qT1(1, q8)T0(s−1q, q2)

)
.

The gf for vertex-centred Square-lattice almost-excursions is:

sT0(q4, q8)

qt(1 + s2)T1(1, q8)

(
1 +

2T1(q2, q8)

T0(q2, q8)
+

(1− s)T1(s−1, q2)

(1 + s)T0(s−1, q2)

)
.
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Part 6: Final comments
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JACOBI THETA FUNCTION/ WEIERSTRASS FUNCTION

PARAMETERISATION COMBINATORIAL FUNCTIONAL

EQUATION SOLUTION METHOD

This method...
Sometimes works on equations with two catalytic variables
Successful on

Various 2 dimensional lattice walk models [Bernardi,
Bousquet-Mélou, E.P., Fayolle, Kurkova, Raschel, Trotignon]
Some planar map models [Bousquet Mélou, E.P., Kostov,
Zinn-Justin].

Questions for the audience:
Does anyone have a nice equation to try?
Can anyone suggest a better name for the method?

Thank you!
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Thank you!
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

Write K(x, y) = A(x)y2 + B(x)y + C(x), then

Y(x) =
−B(x)±

√
B(x)2 − 4A(x)C(x)

2A(x)

parameterizes K(x,Y(x)) = 0. Typically, Y+(x) is meromorphic on:

x3x1

0

πτ
2

π

π+ πτ
2

X(z)

x2 x4
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

x3x1

0

πτ
2

π

π+ πτ
2

x2 x4
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

π+ πτ
2

x1 x4x3x2
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

π+ πτ
2

x4x3
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π+ πτ
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

0

πτ
2

π

π+ πτ
2

X(z)
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

X
(
π+πτ

2

)
X(0)

0

πτ
2

π

π+ πτ
2

X(z)

X
(
π
2

)
X

(
πτ
2

)
π+πτ

2

π
2

Counting lattice walks by winding angle Andrew Elvey Price



BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

X
(
π+πτ

2

)
X(0)

0

πτ
2

π

π+ πτ
2

X(z)

X
(
π
2

)
X

(
πτ
2

)
π+πτ

2

π
2

By symmetry, for r ∈ R:
X(r) = X(π − r) = X(−r)
X(πτ2 + r) = X(πτ2 − r)
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

X
(
π+πτ

2

)
X(0)

0

πτ
2

π

π+ πτ
2

X(z)

X
(
π
2

)
X

(
πτ
2

)
π+πτ

2

π
2

For z ∈ C:
X(z) = X(π − z) = X(−z) = X(πτ + z)

X(z) = c
ϑ(z− α)ϑ(z + α)

ϑ(z− β)ϑ(z + β)
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

X
(
π+πτ

2

)
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πτ
2

π

π+ πτ
2

X(z)

X
(
π
2

)
X

(
πτ
2
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π+πτ

2

π
2

Recall:

y(x) =
−B(x)±

√
B(x)2 − 4A(x)C(x)

2A(x)
.

Consider Y(z) = y(X(z)). By symmetry, for r ∈ R:
X(r) = X(−r), so Y(r) + Y(−r) = −B(X(r))

A(X(r)) .

Similarly, Y
(πτ

2
+ r
)

+ Y
(πτ

2
− r
)

= −
B
(
X
(
πτ
2 + r

))
A
(
X
(
πτ
2 + r

)) .
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X
(
π+πτ

2

)
X(0)

0

πτ
2

π

π+ πτ
2

X(z)

X
(
π
2

)
X

(
πτ
2

)
π+πτ

2

π
2

Recall:

y(x) =
−B(x)±

√
B(x)2 − 4A(x)C(x)

2A(x)
.

Consider Y(z) = y(X(z)). For z ∈ C:
Y(z) + Y(−z) = −B(X(z))

A(X(z)) .

Y (z) + Y (πτ − z) = −B (X (z))
A (X (z))

.
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X
(
π+πτ

2

)
X(0)

0

πτ
2

π

π+ πτ
2

X(z)

X
(
π
2

)
X

(
πτ
2

)
π+πτ

2

π
2

For z ∈ C:
Y(z) + Y(−z) = −B(X(z))

A(X(z)) .

Y (z) + Y (πτ − z) = −B (X (z))
A (X (z))

.

So Y(z) = Y(z + πτ) = Y(z + π)

⇒ Y(z) = c
ϑ(z− γ)ϑ(z− δ)

ϑ(z− ε)ϑ(z− γ − δ + ε)
.
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

Equation characterising Q(x, y) ≡ Q(t, x, y) for quadrant walks:

K(x, y)Q(x, y) + R(x, y) = 0.

K(x, y) = 0 is parameterised by

X(z) = c1
ϑ(z− α1)ϑ(z− β1)

ϑ(z− γ1)ϑ(z− δ1)
and Y(z) = c2

ϑ(z− α2)ϑ(z− β2)

ϑ(z− γ2)ϑ(z− δ2)
,

where the constants satisfy αj + βj = γj + δj for j = 1, 2.
So, R(X(z),Y(z)) = 0.
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

For Kreweras paths:

Q(x, y) = 1+xytQ(x, y)+
t
x

(Q(x, y)− Q(0, y))+
t
y

(Q(x, y)− Q(x, 0)) .

In general: K(x, y) = 0 is parameterised by

X(z) = c1
ϑ(z− α1)ϑ(z− β1)

ϑ(z− γ1)ϑ(z− δ1)
and Y(z) = c2

ϑ(z− α2)ϑ(z− β2)

ϑ(z− γ2)ϑ(z− δ2)
,

with αj + βj = γj + δj for j = 1, 2.

K(0, 0) = 0, so WLOG α1 = α2 = 0.

as x→ 0, we have y(x) ∼ −x or y(x) ∼ − 1
x2 , so Y(z) has a

double pole at z = β1.

Similarly: X(z) has a double pole at z = β2 = 2β1.

So 3β1 = πτ .
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For Kreweras paths:

Q(x, y) = 1+xytQ(x, y)+
t
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t
y

(Q(x, y)− Q(x, 0)) .
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For Kreweras paths:

Q(x, y) = 1+xytQ(x, y)+
t
x

(Q(x, y)− Q(0, y))+
t
y

(Q(x, y)− Q(x, 0)) .

Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) = c1
ϑ(z)ϑ(z− β1)

ϑ(z + β1)ϑ(z− 2β1)
and Y(z) = c2

ϑ(z)ϑ(z− 2β1)

ϑ(z− β1)2 ,

with αj + βj = γj + δj for j = 1, 2.

K(0, 0) = 0, so WLOG α1 = α2 = 0.
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double pole at z = β1.

Similarly: X(z) has a double pole at z = β2 = 2β1.

So 3β1 = πτ .
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For Kreweras paths:

Q(x, y) = 1+xytQ(x, y)+
t
x

(Q(x, y)− Q(0, y))+
t
y

(Q(x, y)− Q(x, 0)) .

Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) = c1
ϑ(z)ϑ(z− β1)

ϑ(z + β1)ϑ(z− 2β1)
and Y(z) = c2

ϑ(z)ϑ(z− 2β1)

ϑ(z− β1)2 ,

with αj + βj = γj + δj for j = 1, 2.

K(0, 0) = 0, so WLOG α1 = α2 = 0.

as x→ 0, we have y(x) ∼ −x or y(x) ∼ − 1
x2 , so Y(z) has a

double pole at z = β1.

Similarly: X(z) has a double pole at z = β2 = 2β1.

So 3β1 = πτ .
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

For Kreweras paths:

Q(x, y) = 1+xytQ(x, y)+
t
x

(Q(x, y)− Q(0, y))+
t
y

(Q(x, y)− Q(x, 0)) .

Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) = c1
ϑ(z)ϑ

(
z− πτ

3

)
ϑ
(
z + πτ

3

)
ϑ
(
z− 2πτ

3

) and Y(z) = c2
ϑ(z)ϑ

(
z− 2πτ

3

)
ϑ
(
z− πτ

3

)2 ,

with αj + βj = γj + δj for j = 1, 2.

K(0, 0) = 0, so WLOG α1 = α2 = 0.

as x→ 0, we have y(x) ∼ −x or y(x) ∼ − 1
x2 , so Y(z) has a

double pole at z = β1.

Similarly: X(z) has a double pole at z = β2 = 2β1.

So 3β1 = πτ .
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Q(x, y) = 1+xytQ(x, y)+
t
x

(Q(x, y)− Q(0, y))+
t
y
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Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) = c1
ϑ(z)ϑ

(
z− πτ

3
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ϑ
(
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)
ϑ
(
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3

) and Y(z) = c2
ϑ(z)ϑ

(
z + πτ

3

)
ϑ
(
z− πτ

3

) (
z + 2πτ

3

) ,
with αj + βj = γj + δj for j = 1, 2.

K(0, 0) = 0, so WLOG α1 = α2 = 0.

as x→ 0, we have y(x) ∼ −x or y(x) ∼ − 1
x2 , so Y(z) has a

double pole at z = β1.

Similarly: X(z) has a double pole at z = β2 = 2β1.

So 3β1 = πτ .
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t
x
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y
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Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by
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(
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with αj + βj = γj + δj for j = 1, 2.

K(0, 0) = 0, so WLOG α1 = α2 = 0.

as x→ 0, we have y(x) ∼ −x or y(x) ∼ − 1
x2 , so Y(z) has a

double pole at z = β1.

Similarly: X(z) has a double pole at z = β2 = 2β1.
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For Kreweras paths:

Q(x, y) = 1+xytQ(x, y)+
t
x

(Q(x, y)− Q(0, y))+
t
y

(Q(x, y)− Q(x, 0)) .

Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) =
e−

4πτ i
9 ϑ(z)ϑ

(
z− πτ

3

)
ϑ
(
z + πτ

3

)
ϑ
(
z− 2πτ

3

) and Y(z) =
e−

4πτ i
9 ϑ(z)ϑ

(
z + πτ

3

)
ϑ
(
z− πτ

3

) (
z + 2πτ

3

) ,
with αj + βj = γj + δj for j = 1, 2.

K(0, 0) = 0, so WLOG α1 = α2 = 0.
as x→ 0, we have y(x) ∼ −x or y(x) ∼ − 1

x2 , so Y(z) has a
double pole at z = β1.
Similarly: X(z) has a double pole at z = β2 = 2β1.
So 3β1 = πτ .
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BONUS SLIDE: PARAMETERIZATION OF K(x, y) = 0

Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
and Y(z) = X(z + πτ),

where
t =

1
X(z)Y(z) + X(z)−1 + Y(z)−1 .
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Then K(x, y) = xy− tx2y2 − tx− ty = 0 is parameterised by

X(z) =
e−

4πτ i
3 ϑ(z, 3τ)ϑ (z− πτ, 3τ)

ϑ (z + πτ, 3τ)ϑ (z− 2πτ, 3τ)
and Y(z) = X(z + πτ),

where

t = e−
πτ i

3
ϑ′(0, 3τ)

4iϑ(πτ, 3τ) + 6ϑ′(πτ, 3τ)
.
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