Counting lattice walks by winding angle Séminaire de combinatoire Philippe Flajolet

Andrew Elvey Price

CNRS, Université de Tours
October 2020

Lattice walks by winding angle

The model: count walks starting at a by end point and winding angle around \bullet.
Cell-centred lattices:

Lattice walks by winding angle

The model: count walks starting at a by end point and winding angle around \bullet.

Vertex-centred lattices:

Lattice walks by winding angle

The model: count walks starting at \quad (by end point).

Left: Cell-centred triangular lattice Right: Vertex-centred square lattice

Why study walks by winding angle?

Physics motivation: Models a long-chain polymer growing in the vicinity of a rod
Bélisle, Berger, Brereton, Butler, Duplantier, Durrett, Faraway, Fisher, Frish, Grosberg, Hu, Le Gall, Privman, Redner, Roberts, Rudnick, Saluer, Shi, Spitzer, . . .

WhY STUDY WALKs BY WINDING ANGLE?

Physics motivation: Models a long-chain polymer growing in the vicinity of a rod
Bélisle, Berger, Brereton, Butler, Duplantier, Durrett, Faraway, Fisher, Frish, Grosberg, Hu, Le Gall, Privman, Redner, Roberts, Rudnick, Saluer, Shi, Spitzer, ...

More real world applications:

SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting and ending on an axis or diagonal) by winding angle

- Method: Matrices counting paths, eigenvalue decomposition etc.
- Solution: Jacobi theta function expressions
- Corollaries:
- Square lattice walks in cones (eg. Gessel walks)
- Loops around the origin (without a fixed starting point)
- Algebraicity results, asymptotic results, etc.

SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting and ending on an axis or diagonal) by winding angle

- Method: Matrices counting paths, eigenvalue decomposition etc.
- Solution: Jacobi theta function expressions
- Corollaries:
- Square lattice walks in cones (eg. Gessel walks)
- Loops around the origin (without a fixed starting point)
- Algebraicity results, asymptotic results, etc.

This work:

- Completely different method
- Slightly different set of results
- Extension to three other lattices

SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting and ending on an axis or diagonal) by winding angle

- Method: Matrices counting paths, eigenvalue decomposition etc.
- Solution: Jacobi theta function expressions
- Corollaries:
- Square lattice walks in cones (eg. Gessel walks)
- Loops around the origin (without a fixed starting point)
- Algebraicity results, asymptotic results, etc.

This work:

- Completely different method
- Slightly different set of results
- Extension to three other lattices (more coming)

SQUARE LATTICE WALKS BY WINDING ANGLE

[Timothy Budd, 2017]: enumeration of square lattice walks (starting and ending on an axis or diagonal) by winding angle

- Method: Matrices counting paths, eigenvalue decomposition etc.
- Solution: Jacobi theta function expressions
- Corollaries:
- Square lattice walks in cones (eg. Gessel walks)
- Loops around the origin (without a fixed starting point)
- Algebraicity results, asymptotic results, etc.

This work:

- Completely different method
- Slightly different set of results
- Extension to three other lattices (more coming)

This talk: Kreweras lattice (mostly)

JACOBI THETA FUNCTION

All results are in terms of the series:

$$
\begin{aligned}
T_{k}(u, q) & =\sum_{n=0}^{\infty}(-1)^{n}(2 n+1)^{k} q^{n(n+1) / 2}\left(u^{n+1}-(-1)^{k} u^{-n}\right) \\
& =(u \pm 1)-3^{k} q\left(u^{2} \pm u^{-1}\right)+5^{k} q^{3}\left(u^{3} \pm u^{-2}\right)+O\left(q^{6}\right)
\end{aligned}
$$

Related to Jacobi Theta function $\vartheta(z, \tau) \equiv \vartheta_{11}(z, \tau)$ by

$$
\vartheta^{(k)}(z, \tau) \equiv\left(\frac{\partial}{\partial z}\right)^{k} \vartheta(z, \tau)=e^{\frac{(\pi \tau-2 z) i}{2}} i^{k} T_{k}\left(e^{2 i z}, e^{2 i \pi \tau}\right)
$$

Preview: Kreweras almost-excursions

Cell-centred Kreweras lattice

Vertex-centred Kreweras lattice

On each lattice: count walks $\square \rightarrow$ (\square or \square). Walks with length n and winding angle $\frac{2 \pi k}{3}$ contribute $t^{n} s^{k}$.
Cell-centred: $E(t, s)=1+s t+\left(s^{2}+s^{-1}\right) t^{2}+\ldots$
Vertex-centred: $\tilde{E}(t, s)=1+\left(s^{-1}+4+s\right) t^{3}+\ldots$

Preview: Kreweras almost-excursions

Cell-centred Kreweras lattice Contributes $s^{2} t^{8}$ to $E(t, s)$

Vertex-centred Kreweras lattice Contributes $s^{-1} t^{6}$ to $\tilde{E}(t, s)$

On each lattice: count walks $\square \rightarrow$ (\square or \square). Walks with length n and winding angle $\frac{2 \pi k}{3}$ contribute $t^{n} s^{k}$.
Cell-centred: $E(t, s)=1+s t+\left(s^{2}+s^{-1}\right) t^{2}+\ldots$
Vertex-centred: $\tilde{E}(t, s)=1+\left(s^{-1}+4+s\right) t^{3}+\ldots$

Preview: Kreweras almost-excursions

Define $T_{k}(u, q)=\sum_{n=0}^{\infty}(-1)^{n}(2 n+1)^{k} q^{n(n+1) / 2}\left(u^{n+1}-(-1)^{k} u^{-n}\right)$

$$
=(u \pm 1)-3^{k} q\left(u^{2} \pm u^{-1}\right)+5^{k} q^{3}\left(u^{3} \pm u^{-2}\right)+O\left(q^{6}\right) .
$$

Let $q(t) \equiv q=t^{3}+15 t^{6}+279 t^{9}+\cdots$ satisfy

$$
t=q^{1 / 3} \frac{T_{1}\left(1, q^{3}\right)}{4 T_{0}\left(q, q^{3}\right)+6 T_{1}\left(q, q^{3}\right)}
$$

The gf for cell-centred Kreweras-lattice almost-excursions is:

$$
E(t, s)=\frac{s}{\left(1-s^{3}\right) t}\left(s-q^{-1 / 3} \frac{T_{1}\left(q^{2}, q^{3}\right)}{T_{1}\left(1, q^{3}\right)}-q^{-1 / 3} \frac{T_{0}\left(q, q^{3}\right) T_{1}\left(s q^{-2 / 3}, q\right)}{T_{1}\left(1, q^{3}\right) T_{0}\left(s q^{-2 / 3}, q\right)}\right) .
$$

The gf for vertex-centred Kreweras-lattice almost-excursions is:
$\tilde{E}(t, s)=\frac{s(1-s) q^{-\frac{2}{3}}}{t\left(1-s^{3}\right)} \frac{T_{0}\left(q, q^{3}\right)^{2}}{T_{1}\left(1, q^{3}\right)^{2}}\left(\frac{T_{1}\left(q, q^{3}\right)^{2}}{T_{0}\left(q, q^{3}\right)^{2}}-\frac{T_{2}\left(q, q^{3}\right)}{T_{0}\left(q, q^{3}\right)}-\frac{T_{2}(s, q)}{2 T_{0}(s, q)}+\frac{T_{3}(1, q)}{6 T_{1}(1, q)}+\frac{T_{3}\left(1, q^{3}\right)}{3 T_{1}\left(1, q^{3}\right)}\right)$

TALK OUTLINE

Focus: Kreweras lattice (for parts 1 to 4).

- Part 1: Decomposition of lattice \rightarrow functional equations
- Part 2: Solving the functional equations (with theta functions!)
- Part 3: Corollaries: walks restricted to cones
- New result: Excursions with step set avoiding a quadrant
- Part 4: Analysing the solution
- Algebraicity results using modular forms
- Asymptotic results
- Part 5: Square, triangular and king lattices
- Part 6: Final comments and open problems

Part 1: Functional equations for Kreweras walks by winding angle

Cell-centred Kreweras lattice

Vertex-centred Kreweras lattice

Kreweras walks by winding number

The model: Count walks starting at \square by end point and winding around \bullet.

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

$\times e^{-i \alpha} \quad\left(s^{-1}\right)$

Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t x y$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{2} y$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{3} x e^{i \alpha}$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{4} y^{2}$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{5} x y^{3}$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{6} x y^{2}$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{7} x y$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{8} x$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{9} y^{2} e^{-i \alpha}$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

Kreweras walks by winding number

The model: Count walks starting at \square by end point.

This example contributes $t^{10} x y^{3} e^{-i \alpha}$.
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$
Note: $Q(0,0)=E\left(t, e^{i \alpha}\right)$

FUNCTIONAL EQUATION

Recursion \rightarrow functional equation: separate by type of final step.
$Q(x, y)=1$

$$
+e^{i \alpha} t Q(0, x)
$$

(Final step goes through left wall)

$$
+e^{-i \alpha} t y Q(y, 0)
$$

(Final step goes through bottom wall)

Kreweras walks by winding number

The model: Count walks starting at the red point by end point.

$\times e^{-i \alpha} \quad\left(s^{-1}\right)$
Definition: $Q(t, \alpha, x, y) \equiv Q(x, y)=\sum_{\text {paths } p} t^{|p|} x^{x(p)} y^{y(p)} e^{i \alpha n(p)}$.
Characterised by:

$$
\begin{aligned}
Q(x, y)= & 1+\operatorname{txy} Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y} \\
& +e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Part 2: Solution (using theta functions)

Solution to Kreweras walks by winding number

Equation to solve:

$$
\begin{aligned}
Q(x, y)=1 & +\operatorname{txy} Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y} \\
& +e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Solution to Kreweras walks by winding number

Equation to solve:

$$
\begin{aligned}
Q(x, y)=1 & +\operatorname{txy} Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y} \\
& +e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Solution:
Step 1: Fix $t \in[0,1 / 3), \alpha \in \mathbb{R}$. All series converge for $|x|,|y|<1$.

Solution to Kreweras walks by winding number

Equation to solve:

$$
\begin{aligned}
Q(x, y)=1 & +\operatorname{txy} Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y} \\
& +e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Solution:
Step 1: Fix $t \in[0,1 / 3), \alpha \in \mathbb{R}$. All series converge for $|x|,|y|<1$.
Step 2: Write equation as $K(x, y) Q(x, y)=R(x, y)$, where

$$
\begin{aligned}
& K(x, y)=1-t x y-t / y-t / x \\
& R(x, y)=1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Solution to Kreweras walks by winding number

Equation to solve:

$$
\begin{aligned}
Q(x, y)=1 & +\operatorname{txy} Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y} \\
& +e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Solution:
Step 1: Fix $t \in[0,1 / 3), \alpha \in \mathbb{R}$. All series converge for $|x|,|y|<1$.
Step 2: Write equation as $K(x, y) Q(x, y)=R(x, y)$, where

$$
\begin{aligned}
& K(x, y)=1-t x y-t / y-t / x \\
& R(x, y)=1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Step 3: Consider the curve $K(x, y)=0$ (Then $R(x, y)=0)$.

Solution to Kreweras walks by winding number

Equation to solve:

$$
\begin{aligned}
Q(x, y)=1 & +t x y Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y} \\
& +e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Solution:
Step 1: Fix $t \in[0,1 / 3), \alpha \in \mathbb{R}$. All series converge for $|x|,|y|<1$.
Step 2: Write equation as $K(x, y) Q(x, y)=R(x, y)$, where

$$
\begin{aligned}
K(x, y) & =1-t x y-t / y-t / x \\
R(x, y) & =1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0)
\end{aligned}
$$

Step 3: Consider the curve $K(x, y)=0$ (Then $R(x, y)=0$).
Parameterisation involves the Jacobi theta function $\vartheta(z, \tau)$.
So far: Similar to elliptic approaches to quadrant models [Bernardi,
Bousquet-Mélou, Fayolle, Iasnogorodski, Kurkova, Malyshev,
Raschel, Trotignon]

JACOBI THETA FUNCTION $\vartheta(z, \tau)$

Definition: For $\tau, z \in \mathbb{C}, \operatorname{im}(\tau)>0$,

$$
\vartheta(z, \tau)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{\left(\frac{2 n+1}{2}\right)^{2} i \pi \tau+(2 n+1) i z}
$$

Useful facts (for fixed τ):

- $\vartheta(z+\pi, \tau)=-\vartheta(z, \tau)$
- $\vartheta(z+\pi \tau, \tau)=-e^{-2 i z-i \pi \tau} \vartheta(z, \tau)$

PARAMETERISATION OF $K(x, y)=0 \operatorname{USING} \vartheta(z, \tau)$

Definition: For $\tau, z \in \mathbb{C}, \operatorname{im}(\tau)>0$,

$$
\vartheta(z, \tau)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{\left(\frac{2 n+1}{2}\right)^{2} i \pi \tau+(2 n+1) i z}
$$

Useful facts (for fixed τ):

- $\vartheta(z+\pi, \tau)=-\vartheta(z, \tau)$
- $\vartheta(z+\pi \tau, \tau)=-e^{-2 i z-i \pi \tau} \vartheta(z, \tau)$

Parameterisation: The curve

$$
K(x, y):=1-t x y-t / y-t / x=0
$$

is parameterised by

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)} \quad \text { and } \quad Y(z)=X(z+\pi \tau)
$$

where τ is determined by $t=e^{-\frac{\pi \tau i}{3}} \frac{\vartheta^{\prime}(0,3 \tau)}{4 i \vartheta(\pi \tau, 3 \tau)+6 \vartheta^{\prime}(\pi \tau, 3 \tau)}$.

Solution to Kreweras walks by winding number

Equation to solve:

$$
K(x, y) Q(x, y)=R(x, y)
$$

where

$$
\begin{aligned}
& K(x, y)=1-t x y-t / y-t / x \\
& R(x, y)=1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Solution to Kreweras walks by winding number

Equation to solve:

$$
K(x, y) Q(x, y)=R(x, y)
$$

where

$$
\begin{aligned}
& K(x, y)=1-t x y-t / y-t / x \\
& R(x, y)=1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Define

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

Then $K(X(z), X(z+\pi \tau))=0$.

Solution to Kreweras walks by winding number

Equation to solve:

$$
K(x, y) Q(x, y)=R(x, y)
$$

where

$$
\begin{aligned}
& K(x, y)=1-t x y-t / y-t / x \\
& R(x, y)=1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Define

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

Then $K(X(z), X(z+\pi \tau))=0$. Hence $R(X(z), X(z+\pi \tau))=0$ (assuming $|X(z)| \leq 1$ and $|X(z+\pi \tau)| \leq 1$).

Solution to Kreweras walks by winding number

Equation to solve:

$$
K(x, y) Q(x, y)=R(x, y)
$$

where

$$
\begin{aligned}
& K(x, y)=1-t x y-t / y-t / x \\
& R(x, y)=1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Define

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

Then $K(X(z), X(z+\pi \tau))=0$. Hence $R(X(z), X(z+\pi \tau))=0$ (assuming $|X(z)| \leq 1$ and $|X(z+\pi \tau)| \leq 1$).
New equation to solve:

$$
R(X(z), X(z+\pi \tau))=0
$$

Solution to Kreweras walks by winding number

Equation to solve:

$$
K(x, y) Q(x, y)=R(x, y)
$$

where

$$
\begin{aligned}
& K(x, y)=1-t x y-t / y-t / x \\
& R(x, y)=1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0) .
\end{aligned}
$$

Define

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

Then $K(X(z), X(z+\pi \tau))=0$. Hence $R(X(z), X(z+\pi \tau))=0$ (assuming $|X(z)| \leq 1$ and $|X(z+\pi \tau)| \leq 1$).
New equation to solve:

$$
R(X(z), X(z+\pi \tau))=0
$$

Solution to Kreweras walks by winding number

Plot of $\left\{z:|X(z)| \in\left[0, \frac{1}{3}\right),\left(\frac{1}{3}, 1\right),(1,3),(3,9),(9, \infty]\right\}$.

For $z \in \Omega, \quad|X(z)|<1 \Rightarrow Q(X(z), 0)$ and $Q(0, X(z))$ are well defined.

Solution to Kreweras walks by winding number

$$
\text { Plot of }\left\{z:|X(z)| \in\left[0, \frac{1}{3}\right),\left(\frac{1}{3}, 1\right),(1,3),(3,9),(9, \infty]\right\} \text {. }
$$

For $z \in \Omega, \quad|X(z)|<1 \Rightarrow Q(X(z), 0)$ and $Q(0, X(z))$ are well defined. Near $\operatorname{Re}(z)=0$, we have $z \in \Omega$ and $z+\pi \tau \in \Omega$.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0)$

$$
R(X(z), X(z+\pi \tau))=0
$$

where

$$
\begin{gathered}
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)} \\
R(x, y)=1-\frac{t}{x} Q(0, y)-\frac{t}{y} Q(x, 0)+e^{i \alpha} t Q(0, x)+e^{-i \alpha} t y Q(y, 0)
\end{gathered}
$$

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
\begin{aligned}
1= & \frac{t}{X(z)} Q(0, X(z+\pi \tau))+\frac{t}{X(z+\pi \tau)} Q(X(z), 0) \\
& -e^{i \alpha} t Q(0, X(z))-e^{-i \alpha} t X(z+\pi \tau) Q(X(z+\pi \tau), 0),
\end{aligned}
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
\begin{aligned}
1= & \frac{t}{X(z)} Q(0, X(z+\pi \tau))+\frac{t}{X(z+\pi \tau)} Q(X(z), 0) \\
& -e^{i \alpha} t Q(0, X(z))-e^{-i \alpha} t X(z+\pi \tau) Q(X(z+\pi \tau), 0),
\end{aligned}
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z)) .
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
\begin{aligned}
1= & \frac{t}{X(z)} Q(0, X(z+\pi \tau))+\frac{t}{X(z+\pi \tau)} Q(X(z), 0) \\
& -e^{i \alpha} t Q(0, X(z))-e^{-i \alpha} t X(z+\pi \tau) Q(X(z+\pi \tau), 0),
\end{aligned}
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z)) .
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0)$

$$
\begin{aligned}
1= & \frac{t}{X(z)} Q(0, X(z+\pi \tau))+L(z) \\
& -e^{-i \alpha} t X(z+\pi \tau) Q(X(z+\pi \tau), 0),
\end{aligned}
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z))
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
\begin{aligned}
1= & \frac{t}{X(z)} Q(0, X(z+\pi \tau))+L(z) \\
& -e^{-i \alpha} t X(z+\pi \tau) Q(X(z+\pi \tau), 0),
\end{aligned}
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z))
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0)$

$$
\begin{aligned}
1= & \frac{t}{X(z)} Q(0, X(z+\pi \tau))+L(z) \\
& -e^{-i \alpha} t X(z+\pi \tau) Q(X(z+\pi \tau), 0),
\end{aligned}
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z))
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
\begin{aligned}
1= & \frac{t}{X(z)} Q(0, X(z+\pi \tau))+L(z) \\
& -\frac{e^{-i \alpha} t}{X(z) X(z+2 \pi \tau)} Q(X(z+\pi \tau), 0),
\end{aligned}
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z))
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
\begin{aligned}
1= & \frac{t}{X(z)} Q(0, X(z+\pi \tau))+L(z) \\
& -\frac{e^{-i \alpha} t}{X(z) X(z+2 \pi \tau)} Q(X(z+\pi \tau), 0),
\end{aligned}
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z))
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
1=-\frac{e^{-i \alpha}}{X(z)} L(z+\pi \tau)+L(z)
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z))
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
1=-\frac{e^{-i \alpha}}{X(z)} L(z+\pi \tau)+L(z)
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

For z near 0 , define

$$
L(z)=\frac{t}{X(z+\pi \tau)} Q(X(z), 0)-e^{i \alpha} t Q(0, X(z))
$$

Both $L(z)$ and $L(z+\pi \tau)$ converge.

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
1=-\frac{e^{-i \alpha}}{X(z)} L(z+\pi \tau)+L(z)
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
1=-\frac{e^{-i \alpha}}{X(z)} L(z+\pi \tau)+L(z)
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

We can solve this exactly:

$$
\begin{aligned}
L(z) & =-\frac{e^{3 i \alpha}}{1-e^{3 i \alpha}}\left(1+\frac{e^{-i \alpha}}{X(z)}+e^{-2 i \alpha} X(z-\pi \tau)\right) \\
& -\frac{e^{i \alpha+\frac{5 i \pi \tau}{3}} \vartheta(\pi \tau, 3 \tau) \vartheta^{\prime}(0, \tau)}{\left(1-e^{3 i \alpha}\right) \vartheta\left(\frac{\alpha}{2}-\frac{2 \pi \tau}{3}, \tau\right) \vartheta^{\prime}(0,3 \tau)} \frac{\vartheta(z-2 \pi \tau, 3 \tau) \vartheta\left(z-\frac{\alpha}{2}+\frac{2 \pi \tau}{3}, \tau\right)}{\vartheta(z, \tau) \vartheta(z, 3 \tau)}
\end{aligned}
$$

Solution to Kreweras walks by winding number

Equation to solve: (near $\operatorname{Re}(z)=0$)

$$
1=-\frac{e^{-i \alpha}}{X(z)} L(z+\pi \tau)+L(z)
$$

where

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)}
$$

We can solve this exactly:

$$
\begin{aligned}
L(z) & =-\frac{e^{3 i \alpha}}{1-e^{3 i \alpha}}\left(1+\frac{e^{-i \alpha}}{X(z)}+e^{-2 i \alpha} X(z-\pi \tau)\right) \\
& -\frac{e^{i \alpha+\frac{5 i \pi \tau}{3}} \vartheta(\pi \tau, 3 \tau) \vartheta^{\prime}(0, \tau)}{\left(1-e^{3 i \alpha}\right) \vartheta\left(\frac{\alpha}{2}-\frac{2 \pi \tau}{3}, \tau\right) \vartheta^{\prime}(0,3 \tau)} \frac{\vartheta(z-2 \pi \tau, 3 \tau) \vartheta\left(z-\frac{\alpha}{2}+\frac{2 \pi \tau}{3}, \tau\right)}{\vartheta(z, \tau) \vartheta(z, 3 \tau)}
\end{aligned}
$$

We can extract $E\left(t, e^{i \alpha}\right)=Q(0,0) \ldots$

Kreweras walks by winding number: Solution

Recall: τ is determined by

$$
t=e^{-\frac{\pi \tau i}{3}} \frac{\vartheta^{\prime}(0,3 \tau)}{4 i \vartheta(\pi \tau, 3 \tau)+6 \vartheta^{\prime}(\pi \tau, 3 \tau)} .
$$

The gf $E\left(t, e^{i \alpha}\right)=Q(0,0) \equiv Q(t, \alpha, 0,0)$ is given by:
$E\left(t, e^{i \alpha}\right)=\frac{e^{i \alpha}}{t\left(1-e^{3 i \alpha}\right)}\left(e^{i \alpha}-e^{\frac{4 \pi \tau i}{3}} \frac{\vartheta^{\prime}(2 \pi \tau, 3 \tau)}{\vartheta^{\prime}(0,3 \tau)}-e^{\frac{\pi \tau i}{3}} \frac{\vartheta(\pi \tau, 3 \tau) \vartheta^{\prime}\left(\frac{\alpha}{2}-\frac{2 \pi \tau}{3}, \tau\right)}{\vartheta^{\prime}(0,3 \tau) \vartheta\left(\frac{\alpha}{2}-\frac{2 \pi \tau}{3}, \tau\right)}\right)$.

Kreweras walks by winding number: Solution

Recall: τ is determined by

$$
t=e^{-\frac{\pi \tau i}{3}} \frac{\vartheta^{\prime}(0,3 \tau)}{4 i \vartheta(\pi \tau, 3 \tau)+6 \vartheta^{\prime}(\pi \tau, 3 \tau)} .
$$

The $\operatorname{gf} E\left(t, e^{i \alpha}\right)=Q(0,0) \equiv Q(t, \alpha, 0,0)$ is given by:
$E\left(t, e^{i \alpha}\right)=\frac{e^{i \alpha}}{t\left(1-e^{3 i \alpha}\right)}\left(e^{i \alpha}-e^{\frac{4 \pi \tau i}{3}} \frac{\vartheta^{\prime}(2 \pi \tau, 3 \tau)}{\vartheta^{\prime}(0,3 \tau)}-e^{\frac{\pi \tau i}{3}} \frac{\vartheta(\pi \tau, 3 \tau) \vartheta^{\prime}\left(\frac{\alpha}{2}-\frac{2 \pi \tau}{3}, \tau\right)}{\vartheta^{\prime}(0,3 \tau) \vartheta\left(\frac{\alpha}{2}-\frac{2 \pi \tau}{3}, \tau\right)}\right)$.

Equivalently:

Let $q(t) \equiv q=t^{3}+15 t^{6}+279 t^{9}+\cdots$ satisfy

$$
t=q^{1 / 3} \frac{T_{1}\left(1, q^{3}\right)}{4 T_{0}\left(q, q^{3}\right)+6 T_{1}\left(q, q^{3}\right)}
$$

The gf for cell-centred Kreweras-lattice almost-excursions is:

$$
E(t, s)=\frac{s}{\left(1-s^{3}\right) t}\left(s-q^{-1 / 3} \frac{T_{1}\left(q^{2}, q^{3}\right)}{T_{1}\left(1, q^{3}\right)}-q^{-1 / 3} \frac{T_{0}\left(q, q^{3}\right) T_{1}\left(s q^{-2 / 3}, q\right)}{T_{1}\left(1, q^{3}\right) T_{0}\left(s q^{-2 / 3}, q\right)}\right) .
$$

Part 3: Walks in cones

WALKS IN CONES WITH SMALL STEPS

- Quarter plane walks: Completely classified into rational, algebraic, D-finite, D-algebraic cases.
[Mishna, Rechnitzer 09], [Bousquet-Mélou, Mishna 10], [Bostan, Kauers 10],
[Fayolle, Raschel 10], [Kurkova, Raschel 12], [Melczer, Mishna 13], [Bostan,
Raschel, Salvy 14], [Bernardi, Bousquet-Mélou, Raschel 17], [Dreyfus,
Hardouin, Roques, Singer 18]
- Half plane walks: Easy
- Three quarter plane walks: Active area of research (Previously) solved in 6-12 of the 74 non-trivial cases [Bousquet-Mélou 16], [Raschel-Trotignon 19], [Budd 20], [Bousquet-Mélou, Wallner 20+]
- Walks on the slit plane $\mathbb{C} \backslash \mathbb{R}_{<0}$: solved in all cases [Bousquet-Mélou, 01], [Bousquet-Mélou, Schaeffer, 02], [Rubey 05]

WALKS IN THE 3/4-PLANE: SOLVED CASES

[Bousquet-Mélou 16],[Raschel, Trotignon 19], [Budd 20], [Bousquet-Mélou, Wallner 20+]

Walks in the 5/4-PLANE: SOLVED CASES

[Budd 20]

WALKS IN THE 6/4-PLANE: SOLVED CASES

[Budd 20]

WALKS IN THE 7/4-PLANE: SOLVED CASES

[Budd 20]

Counting Kreweras walks in a cone

In the upper half plane: Use reflection principle \#(Walks from A to B above \mathbb{R}) $=\#($ Walks from A to $B)-\#($ Walks from A to B through $\mathbb{R})$
$=\#($ Walks from A to $B)-\#($ Walks from A to $\bar{B})$

Counting Kreweras excursions in 5/6-PLane

New result: $\stackrel{\uparrow}{ }$-excursions avoiding a quadrant.

Counting Kreweras excursions in 5/6-Plane

New result: $\stackrel{\uparrow}{\text {-excursions avoiding a quadrant. }}$
Equivalently: Walks avoiding the blue and green lines

Counting Kreweras excursions in 5/6-PLane

New result: \uparrow-excursions avoiding a quadrant.
Equivalently: Walks avoiding the blue and green lines

Counting Kreweras excursions in 5/6-PLANE

New result: -excursions avoiding a quadrant.
Equivalently: Walks avoiding the blue and green lines
Reflection principle: For walks passing
 through at least one such line: reflect walk after first intersection.
Winding angle $\alpha \rightarrow-\frac{4 \pi}{3}-\alpha$ or $2 \pi-\alpha$.

Counting Kreweras excursions in 5/6-PLANE

New result: -excursions avoiding a quadrant.
Equivalently: Walks avoiding the blue and green lines
Reflection principle: For walks passing
 through at least one such line: reflect walk after first intersection.
Winding angle $\alpha \rightarrow-\frac{4 \pi}{3}-\alpha$ or $2 \pi-\alpha$.

Counting Kreweras excursions in 5/6-PLANE

New result: -excursions avoiding a quadrant.
Equivalently: Walks avoiding the blue and green lines
Reflection principle: For walks passing
 through at least one such line: reflect walk after first intersection.
Winding angle $\alpha \rightarrow-\frac{4 \pi}{3}-\alpha$ or $2 \pi-\alpha$.
Winding angle $\frac{10 \pi k}{3} \rightarrow-\frac{4 \pi}{3}+\frac{10 \pi j}{3}$.

$$
\#(\text { Walks } ■ \rightarrow \llbracket \text { avoiding lines) }
$$

$=\left(\sum_{k \in \mathbb{Z}}\left[s^{5 k}\right] \tilde{E}(t, s)\right)-\left(\sum_{k \in \mathbb{Z}}\left[s^{5 k-2}\right] \tilde{E}(t, s)\right)$
$=\frac{1}{5} \sum_{j=1}^{4}\left(1-e^{\frac{4 \pi i j}{5}}\right) \tilde{E}\left(t, e^{\frac{2 \pi i}{5}}\right)$

Counting Kreweras excursions in 5/6-PLane

New result: -excursions avoiding a quadrant.
Equivalently: Walks avoiding the blue and green lines
Reflection principle: For walks passing
 through at least one such line: reflect walk after first intersection.
Winding angle $\alpha \rightarrow-\frac{4 \pi}{3}-\alpha$ or $2 \pi-\alpha$.
Winding angle $\frac{10 \pi k}{3} \rightarrow-\frac{4 \pi}{3}+\frac{10 \pi j}{3}$.

$$
\# \text { (Walks } ■ \rightarrow \text { avoiding lines) }
$$

$$
\begin{aligned}
& =\left(\sum_{k \in \mathbb{Z}}\left[s^{5 k}\right] \tilde{E}(t, s)\right)-\left(\sum_{k \in \mathbb{Z}}\left[s^{5 k-2}\right] \tilde{E}(t, s)\right) \\
& =\frac{1}{5} \sum_{j=1}^{4}\left(1-e^{\frac{4 \pi i j}{5}} \tilde{E}\left(t, e^{\frac{2 \pi i}{5}}\right)\right.
\end{aligned}
$$

Counting Kreweras excursions in $k / 6$-PLAne

More generally: Let $C_{k, r}(t)$ count whole-plane Kreweras excursions...

- Starting adjacent to the origin,
- Avoiding the origin,
- Having winding angle 0 ,
- Having intermediate winding angles restricted to $\left[-\frac{r \pi}{3}, \frac{(k-r) \pi}{3}\right]$
I.e., Kreweras excursions in the $k / 6$-plane

Counting Kreweras excursions in $k / 6$-PLAne

More generally: Let $C_{k, r}(t)$ count whole-plane Kreweras excursions...

- Starting adjacent to the origin,
- Avoiding the origin,
- Having winding angle 0 ,
- Having intermediate winding angles restricted to $\left[-\frac{r \pi}{3}, \frac{(k-r) \pi}{3}\right]$
I.e., Kreweras excursions in the $k / 6$-plane

Previous slide:

$$
C_{5,2}(t)=\frac{1}{5} \sum_{j=1}^{4}\left(1-e^{\frac{4 \pi i j}{5}}\right) \tilde{E}\left(t, e^{\frac{2 \pi i}{5}}\right) .
$$

More generally:

$$
C_{k, r}(t)=\frac{1}{k} \sum_{j=1}^{k-1}\left(1-e^{\frac{2 \pi i j r}{k}}\right) \tilde{E}\left(t, e^{\frac{2 \pi i j}{k}}\right)
$$

Part 4: Analysis of solutions

ANALYSIS OF SOLUTION

From the exact solution we extract:

- Asymptotic distribution ([Bélisle, 1989]): For random excursions of length $n, \frac{\text { winding angle }}{c \log (n)}$ has asymptotic density

$$
4 \frac{(x-1) e^{x}+(x+1) e^{-x}}{\left(e^{x}-e^{-x}\right)^{2}}
$$

- Asymptotics ([Denisov, Wachtel, 2015]): Let c_{n} count Kreweras-lattice excursions in a cone of angle $\alpha \in \frac{\pi}{3} \mathbb{N}$.

$$
c_{n} \sim-\frac{2 \cdot 3^{5-\frac{6}{k}} \sin ^{2}\left(\frac{\pi}{k}\right)}{\pi k^{2}\left(1+2 \cos \left(\frac{2 \pi}{k}\right)\right) \Gamma\left(-\frac{3}{k}\right)} n^{-1-\frac{3}{k}} 3^{n} .
$$

- Conditions for algebraicity: Let $C_{\alpha}(t)$ count Kreweras-lattice excursions in a cone of angle $\alpha \in \frac{\pi}{3} \mathbb{N}$. This satisfies a non-trivial polynomial equation $P\left(C_{\alpha}(t), t\right)=0$ if and only if $\alpha \notin \pi \mathbb{Z}$. (uses modular forms as in [Zagier, 08] and [E.P., Zinn-Justin, 20])

Analysis of solution: Asymptotics

Fix α.
Writing $\hat{\tau}=-\frac{1}{3 \tau}$ and $\hat{q}=e^{2 \pi i \hat{\tau}}$, the dominant singularity $t=1 / 3$ of $\tilde{E}\left(t, e^{i \alpha}\right)$ corresponds to $\hat{q}=0$.

Analysis of solution: Asymptotics

Fix α.
Writing $\hat{\tau}=-\frac{1}{3 \tau}$ and $\hat{q}=e^{2 \pi i \hat{\tau}}$, the dominant singularity $t=1 / 3$ of $\tilde{E}\left(t, e^{i \alpha}\right)$ corresponds to $\hat{q}=0$.
Series in \hat{q} :

$$
\begin{gathered}
t=\frac{1}{3}-3 \hat{q}+18 \hat{q}^{2}+O\left(\hat{q}^{3}\right) \\
t \tilde{E}\left(t, e^{i \alpha}\right)=a_{0}+a_{1} \hat{q}-\frac{27 \alpha e^{i \alpha}}{2 \pi\left(1+e^{i \alpha}+e^{2 i \alpha}\right)} \hat{q}^{\frac{3 \alpha}{2 \pi}}+o\left(\hat{q}^{\frac{3 \alpha}{2 \pi}}\right), \\
\rightarrow \tilde{E}\left(t, e^{i \alpha}\right) \text { as a series in }(1-3 t),
\end{gathered}
$$

Analysis of solution: Asymptotics

Fix α.
Writing $\hat{\tau}=-\frac{1}{3 \tau}$ and $\hat{q}=e^{2 \pi i \hat{\tau}}$, the dominant singularity $t=1 / 3$ of $\tilde{E}\left(t, e^{i \alpha}\right)$ corresponds to $\hat{q}=0$.
Series in \hat{q} :

$$
\begin{aligned}
t & =\frac{1}{3}-3 \hat{q}+18 \hat{q}^{2}+O\left(\hat{q}^{3}\right) \\
t \tilde{E}\left(t, e^{i \alpha}\right) & =a_{0}+a_{1} \hat{q}-\frac{27 \alpha e^{i \alpha}}{2 \pi\left(1+e^{i \alpha}+e^{2 i \alpha}\right)} \hat{q}^{\frac{3 \alpha}{2 \pi}}+o\left(\hat{q}^{\frac{3 \alpha}{2 \pi}}\right)
\end{aligned}
$$

$\rightarrow \tilde{E}\left(t, e^{i \alpha}\right)$ as a series in $(1-3 t), \rightarrow$

$$
\begin{aligned}
{\left[t^{n}\right] \tilde{E}\left(t, e^{i \alpha}\right) } & \sim-\frac{3^{5-\frac{3 \alpha}{\pi}} e^{\alpha i} \alpha}{2 \pi\left(1+e^{\alpha i}+e^{2 \alpha i}\right) \Gamma\left(-\frac{3 \alpha}{2 \pi}\right)} n^{-\frac{3 \alpha}{2 \pi}-1} 3^{n} \\
{\left[t^{n}\right] C_{k, r}(t) } & \sim-\frac{2 \cdot 3^{5-\frac{6}{k}} \sin ^{2}\left(\frac{r \pi}{k}\right)}{\pi k^{2}\left(1+2 \cos \left(\frac{2 \pi}{k}\right)\right) \Gamma\left(-\frac{3}{k}\right)} n^{-1-\frac{3}{k}} 3^{n} .
\end{aligned}
$$

Analysis of solution: Asymptotics

Fix α.
Writing $\hat{\tau}=-\frac{1}{3 \tau}$ and $\hat{q}=e^{2 \pi i \hat{\tau}}$, the dominant singularity $t=1 / 3$ of $\tilde{E}\left(t, e^{i \alpha}\right)$ corresponds to $\hat{q}=0$.
Series in \hat{q} :

$$
\begin{aligned}
t & =\frac{1}{3}-3 \hat{q}+18 \hat{q}^{2}+O\left(\hat{q}^{3}\right) \\
t \tilde{E}\left(t, e^{i \alpha}\right) & =a_{0}+a_{1} \hat{q}-\frac{27 \alpha e^{i \alpha}}{2 \pi\left(1+e^{i \alpha}+e^{2 i \alpha}\right)} \hat{q}^{\frac{3 \alpha}{2 \pi}}+o\left(\hat{q}^{\frac{3 \alpha}{2 \pi}}\right),
\end{aligned}
$$

$\rightarrow \tilde{E}\left(t, e^{i \alpha}\right)$ as a series in $(1-3 t), \rightarrow$

$$
\begin{aligned}
{\left[t^{n}\right] \tilde{E}\left(t, e^{i \alpha}\right) } & \sim-\frac{3^{5-\frac{3 \alpha}{\pi}} e^{\alpha i} \alpha}{2 \pi\left(1+e^{\alpha i}+e^{2 \alpha i}\right) \Gamma\left(-\frac{3 \alpha}{2 \pi}\right)} n^{-\frac{3 \alpha}{2 \pi}-1} 3^{n} \\
{\left[t^{n}\right] C_{k, r}(t) } & \sim-\frac{2 \cdot 3^{5-\frac{6}{k}} \sin ^{2}\left(\frac{r \pi}{k}\right)}{\pi k^{2}\left(1+2 \cos \left(\frac{2 \pi}{k}\right)\right) \Gamma\left(-\frac{3}{k}\right)} n^{-1-\frac{3}{k}} 3^{n} .
\end{aligned}
$$

Previously: Terms 3^{n} and $n^{-1-\frac{3}{k}}$ known [Denisov, Wachtel, 2015].

Analysis of solution: Algebraicity

Recall: $\vartheta(z, \tau)$ is differentially algebraic \rightarrow so are $\tilde{E}(t, s)$ and $Q(t, \alpha, x, y)$.
For $\alpha \in \frac{\pi}{3}(\mathbb{Q} \backslash \mathbb{Z})$ we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

Analysis of solution: Algebraicity

Recall: $\vartheta(z, \tau)$ is differentially algebraic \rightarrow so are $\tilde{E}(t, s)$ and $Q(t, \alpha, x, y)$.
For $\alpha \in \frac{\pi}{3}(\mathbb{Q} \backslash \mathbb{Z})$ we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and $X(z)$ are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.

Analysis of solution: Algebraicity

Recall: $\vartheta(z, \tau)$ is differentially algebraic \rightarrow so are $\tilde{E}(t, s)$ and $Q(t, \alpha, x, y)$.
For $\alpha \in \frac{\pi}{3}(\mathbb{Q} \backslash \mathbb{Z})$ we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and $X(z)$ are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.
- $E\left(t(\tau), e^{i \alpha}\right)$ and $t(\tau)$ are modular functions of τ $\Rightarrow E\left(t, e^{i \alpha}\right)$ is algebraic in t. Same for $\tilde{E}\left(t(\tau), e^{i \alpha}\right)$.

Analysis of solution: Algebraicity

Recall: $\vartheta(z, \tau)$ is differentially algebraic \rightarrow so are $\tilde{E}(t, s)$ and $Q(t, \alpha, x, y)$.
For $\alpha \in \frac{\pi}{3}(\mathbb{Q} \backslash \mathbb{Z})$ we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and $X(z)$ are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.
- $E\left(t(\tau), e^{i \alpha}\right)$ and $t(\tau)$ are modular functions of τ $\Rightarrow E\left(t, e^{i \alpha}\right)$ is algebraic in t. Same for $\tilde{E}\left(t(\tau), e^{i \alpha}\right)$.
- Combining these ideas: $Q(t, \alpha, x, y)$ is algebraic in t, x and y.

Analysis of solution: Algebraicity

Recall: $\vartheta(z, \tau)$ is differentially algebraic \rightarrow so are $\tilde{E}(t, s)$ and $Q(t, \alpha, x, y)$.
For $\alpha \in \frac{\pi}{3}(\mathbb{Q} \backslash \mathbb{Z})$ we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and $X(z)$ are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.
- $E\left(t(\tau), e^{i \alpha}\right)$ and $t(\tau)$ are modular functions of τ $\Rightarrow E\left(t, e^{i \alpha}\right)$ is algebraic in t. Same for $\tilde{E}\left(t(\tau), e^{i \alpha}\right)$.
- Combining these ideas: $Q(t, \alpha, x, y)$ is algebraic in t, x and y.

Recall: The gf for excursions in the $k / 6$-plane is

$$
C_{k, r}(t)=\frac{1}{k} \sum_{j=1}^{k-1}\left(1-e^{\frac{2 \pi i j r}{k}}\right) \tilde{E}\left(t, e^{\frac{2 \pi i j}{k}}\right)
$$

Analysis of solution: Algebraicity

Recall: $\vartheta(z, \tau)$ is differentially algebraic \rightarrow so are $\tilde{E}(t, s)$ and $Q(t, \alpha, x, y)$.
For $\alpha \in \frac{\pi}{3}(\mathbb{Q} \backslash \mathbb{Z})$ we get algebraicity (Ideas from [Zagier, 08] and [E.P., Zinn-Justin, 20+]):

- $Q(t, \alpha, X(z), 0)$ and $X(z)$ are elliptic functions with the same periods $\Rightarrow Q(t, \alpha, x, 0)$ is algebraic in x.
- $E\left(t(\tau), e^{i \alpha}\right)$ and $t(\tau)$ are modular functions of τ $\Rightarrow E\left(t, e^{i \alpha}\right)$ is algebraic in t. Same for $\tilde{E}\left(t(\tau), e^{i \alpha}\right)$.
- Combining these ideas: $Q(t, \alpha, x, y)$ is algebraic in t, x and y.

Recall: The gf for excursions in the $k / 6$-plane is

$$
C_{k, r}(t)=\frac{1}{k} \sum_{j=1}^{k-1}\left(1-e^{\frac{2 \pi i j r}{k}}\right) \tilde{E}\left(t, e^{\frac{2 \pi i j}{k}}\right)
$$

Algebraic iff $3 \nmid k$. (always D-finite).

Part 5: Other lattices

Square Lattice

King Lattice

CELL-CENTRED LATTICES

Important property: Decomposable into congruent sectors

Square Lattice

King Lattice

CELL-CENTRED LATTICES

Important property: Decomposable into congruent sectors

VERTEX-CENTRED LATTICES

Decompose into rotationally congruent sectors

VERTEX-CENTRED LATTICES

Decompose into rotationally congruent sectors

Recall: Kreweras almost-excursions

Define $T_{k}(u, q)=\sum_{n=0}^{\infty}(-1)^{n}(2 n+1)^{k} q^{n(n+1) / 2}\left(u^{n+1}-(-1)^{k} u^{-n}\right)$

$$
=(u \pm 1)-3^{k} q\left(u^{2} \pm u^{-1}\right)+5^{k} q^{3}\left(u^{3} \pm u^{-2}\right)+O\left(q^{6}\right) .
$$

Let $q(t) \equiv q=t^{3}+15 t^{6}+279 t^{9}+\cdots$ satisfy

$$
t=q^{1 / 3} \frac{T_{1}\left(1, q^{3}\right)}{4 T_{0}\left(q, q^{3}\right)+6 T_{1}\left(q, q^{3}\right)}
$$

The gf for cell-centred Kreweras-lattice almost-excursions is:

$$
E(t, s)=\frac{s}{\left(1-s^{3}\right) t}\left(s-q^{-1 / 3} \frac{T_{1}\left(q^{2}, q^{3}\right)}{T_{1}\left(1, q^{3}\right)}-q^{-1 / 3} \frac{T_{0}\left(q, q^{3}\right) T_{1}\left(s q^{-2 / 3}, q\right)}{T_{1}\left(1, q^{3}\right) T_{0}\left(s q^{-2 / 3}, q\right)}\right) .
$$

The gf for vertex-centred Kreweras-lattice almost-excursions is:
$\tilde{E}(t, s)=\frac{s(1-s) q^{-\frac{2}{3}}}{t\left(1-s^{3}\right)} \frac{T_{0}\left(q, q^{3}\right)^{2}}{T_{1}\left(1, q^{3}\right)^{2}}\left(\frac{T_{1}\left(q, q^{3}\right)^{2}}{T_{0}\left(q, q^{3}\right)^{2}}-\frac{T_{2}\left(q, q^{3}\right)}{T_{0}\left(q, q^{3}\right)}-\frac{T_{2}(s, q)}{2 T_{0}(s, q)}+\frac{T_{3}(1, q)}{6 T_{1}(1, q)}+\frac{T_{3}\left(1, q^{3}\right)}{3 T_{1}\left(1, q^{3}\right)}\right)$

SQUARE LATTICE ALMOST-EXCURSIONS

Define $T_{k}(u, q)=\sum_{n=0}^{\infty}(-1)^{n}(2 n+1)^{k} q^{n(n+1) / 2}\left(u^{n+1}-(-1)^{k} u^{-n}\right)$

$$
=(u \pm 1)-3^{k} q\left(u^{2} \pm u^{-1}\right)+5^{k} q^{3}\left(u^{3} \pm u^{-2}\right)+O\left(q^{6}\right)
$$

Let $q(t) \equiv q=t+4 t^{3}+34 t^{5}+360 t^{7}+\cdots$ satisfy

$$
t=\frac{q T_{0}\left(q^{2}, q^{8}\right) T_{1}\left(1, q^{8}\right)}{2 T_{0}\left(q^{4}, q^{8}\right)\left(T_{0}\left(q^{2}, q^{8}\right)+2 T_{1}\left(q^{2}, q^{8}\right)\right)} .
$$

The gf for cell-centred Square-lattice almost-excursions is:

$$
\frac{s^{2}}{\left(1-s^{4}\right) t}\left(s-s^{-1}+\frac{T_{0}\left(q^{4}, q^{8}\right)}{q T_{1}\left(1, q^{8}\right)}-\frac{T_{0}\left(q^{4}, q^{8}\right) T_{1}\left(s^{-1} q, q^{2}\right)}{q T_{1}\left(1, q^{8}\right) T_{0}\left(s^{-1} q, q^{2}\right)}\right) .
$$

The gf for vertex-centred Square-lattice almost-excursions is:

$$
\frac{s T_{0}\left(q^{4}, q^{8}\right)}{q t\left(1+s^{2}\right) T_{1}\left(1, q^{8}\right)}\left(1+\frac{2 T_{1}\left(q^{2}, q^{8}\right)}{T_{0}\left(q^{2}, q^{8}\right)}+\frac{(1-s) T_{1}\left(s^{-1}, q^{2}\right)}{(1+s) T_{0}\left(s^{-1}, q^{2}\right)}\right)
$$

Part 6: Final comments

Jacobi theta function/ Weierstrass function PARAMETERISATION COMBINATORIAL FUNCTIONAL EQUATION SOLUTION METHOD

Jacobi theta function/ Weierstrass function PARAMETERISATION COMBINATORIAL FUNCTIONAL EQUATION SOLUTION METHOD

This method...

- Sometimes works on equations with two catalytic variables
- Successful on
- Various 2 dimensional lattice walk models [Bernardi, Bousquet-Mélou, E.P., Fayolle, Kurkova, Raschel, Trotignon]
- Some planar map models [Bousquet Mélou, E.P., Kostov, Zinn-Justin].
Questions for the audience:
- Does anyone have a nice equation to try?
- Can anyone suggest a better name for the method?

Jacobi theta function/ Weierstrass function PARAMETERISATION COMBINATORIAL FUNCTIONAL EQUATION SOLUTION METHOD

This method...

- Sometimes works on equations with two catalytic variables
- Successful on
- Various 2 dimensional lattice walk models [Bernardi, Bousquet-Mélou, E.P., Fayolle, Kurkova, Raschel, Trotignon]
- Some planar map models [Bousquet Mélou, E.P., Kostov, Zinn-Justin].

Questions for the audience:

- Does anyone have a nice equation to try?
- Can anyone suggest a better name for the method?

Thank you!

Thank you!

Bonus slide: Parameterization of $K(x, y)=0$

Write $K(x, y)=A(x) y^{2}+B(x) y+C(x)$, then

$$
Y(x)=\frac{-B(x) \pm \sqrt{B(x)^{2}-4 A(x) C(x)}}{2 A(x)}
$$

parameterizes $K(x, Y(x))=0$. Typically, $Y_{+}(x)$ is meromorphic on:

Bonus slide: Parameterization of $K(x, y)=0$

Write $K(x, y)=A(x) y^{2}+B(x) y+C(x)$, then

$$
Y(x)=\frac{-B(x) \pm \sqrt{B(x)^{2}-4 A(x) C(x)}}{2 A(x)}
$$

parameterizes $K(x, Y(x))=0$. Typically, $Y_{+}(x)$ is meromorphic on:

Bonus slide: Parameterization of $K(x, y)=0$

Write $K(x, y)=A(x) y^{2}+B(x) y+C(x)$, then

$$
Y(x)=\frac{-B(x) \pm \sqrt{B(x)^{2}-4 A(x) C(x)}}{2 A(x)}
$$

parameterizes $K(x, Y(x))=0$. Typically, $Y_{+}(x)$ is meromorphic on:

Bonus slide: Parameterization of $K(x, y)=0$

Bonus slide: Parameterization of $K(x, y)=0$

Bonus slide: Parameterization of $K(x, y)=0$

Bonus slide: Parameterization of $K(x, y)=0$

Bonus slide: Parameterization of $K(x, y)=0$

By symmetry, for $r \in \mathbb{R}$:

- $X(r)=X(\pi-r)=X(-r)$
- $X\left(\frac{\pi \tau}{2}+r\right)=X\left(\frac{\pi \tau}{2}-r\right)$

Bonus slide: Parameterization of $K(x, y)=0$

For $z \in \mathbb{C}$:

- $X(z)=X(\pi-z)=X(-z)$
- $X(z)=X(\pi \tau-z)$

Bonus slide: Parameterization of $K(x, y)=0$

For $z \in \mathbb{C}$:

- $X(z)=X(\pi-z)=X(-z)=X(\pi \tau+z)$
- $X(z)=X(\pi \tau-z)$

Bonus slide: Parameterization of $K(x, y)=0$

For $z \in \mathbb{C}$:

- $X(z)=X(\pi-z)=X(-z)=X(\pi \tau+z)$

$$
X(z)=c \frac{\vartheta(z-\alpha) \vartheta(z+\alpha)}{\vartheta(z-\beta) \vartheta(z+\beta)}
$$

Bonus slide: Parameterization of $K(x, y)=0$

Recall:

$$
y(x)=\frac{-B(x) \pm \sqrt{B(x)^{2}-4 A(x) C(x)}}{2 A(x)} .
$$

Consider $Y(z)=y(X(z))$. By symmetry, for $r \in \mathbb{R}$:

- $X(r)=X(-r)$, so $Y(r)+Y(-r)=-\frac{B(X(r))}{A(X(r))}$.
- Similarly, $Y\left(\frac{\pi \tau}{2}+r\right)+Y\left(\frac{\pi \tau}{2}-r\right)=-\frac{B\left(X\left(\frac{\pi \tau}{2}+r\right)\right)}{A\left(X\left(\frac{\pi \tau}{2}+r\right)\right)}$.

Bonus slide: Parameterization of $K(x, y)=0$

Recall:

$$
y(x)=\frac{-B(x) \pm \sqrt{B(x)^{2}-4 A(x) C(x)}}{2 A(x)} .
$$

Consider $Y(z)=y(X(z))$. For $z \in \mathbb{C}$:

- $Y(z)+Y(-z)=-\frac{B(X(z))}{A(X(z))}$.
- $Y(z)+Y(\pi \tau-z)=-\frac{B(X(z))}{A(X(z))}$.

Bonus slide: Parameterization of $K(x, y)=0$

For $z \in \mathbb{C}$:

- $Y(z)+Y(-z)=-\frac{B(X(z))}{A(X(z))}$.
- $Y(z)+Y(\pi \tau-z)=-\frac{B(X(z))}{A(X(z))}$.

So $Y(z)=Y(z+\pi \tau)=Y(z+\pi)$

$$
\Rightarrow Y(z)=c \frac{\vartheta(z-\gamma) \vartheta(z-\delta)}{\vartheta(z-\epsilon) \vartheta(z-\gamma-\delta+\epsilon)}
$$

Bonus slide: Parameterization of $K(x, y)=0$

Equation characterising $Q(x, y) \equiv Q(t, x, y)$ for quadrant walks:

$$
K(x, y) Q(x, y)+R(x, y)=0 .
$$

$K(x, y)=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta\left(z-\alpha_{1}\right) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta\left(z-\alpha_{2}\right) \vartheta\left(z-\beta_{2}\right)}{\vartheta\left(z-\gamma_{2}\right) \vartheta\left(z-\delta_{2}\right)},
$$

where the constants satisfy $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.
So, $R(X(z), Y(z))=0$.

Bonus slide: Parameterization of $K(x, y)=0$

In general: $K(x, y)=0$ is parameterised by
$X(z)=c_{1} \frac{\vartheta\left(z-\alpha_{1}\right) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)}$ and $\quad Y(z)=c_{2} \frac{\vartheta\left(z-\alpha_{2}\right) \vartheta\left(z-\beta_{2}\right)}{\vartheta\left(z-\gamma_{2}\right) \vartheta\left(z-\delta_{2}\right)}$,
with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))$.
Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by
$X(z)=c_{1} \frac{\vartheta\left(z-\alpha_{1}\right) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)}$ and $\quad Y(z)=c_{2} \frac{\vartheta\left(z-\alpha_{2}\right) \vartheta\left(z-\beta_{2}\right)}{\vartheta\left(z-\gamma_{2}\right) \vartheta\left(z-\delta_{2}\right)}$,
with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))$.
Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by
$X(z)=c_{1} \frac{\vartheta\left(z-\alpha_{1}\right) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)}$ and $\quad Y(z)=c_{2} \frac{\vartheta\left(z-\alpha_{2}\right) \vartheta\left(z-\beta_{2}\right)}{\vartheta\left(z-\gamma_{2}\right) \vartheta\left(z-\delta_{2}\right)}$,
with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.

BONUS SLIDE: PARAMETERIZATION OF $K(x, y)=0$

For Kreweras paths:

$$
Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))
$$

Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z-\beta_{2}\right)}{\vartheta\left(z-\gamma_{2}\right) \vartheta\left(z-\delta_{2}\right)},
$$

with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$$
Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))
$$

Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z-\beta_{2}\right)}{\vartheta\left(z-\gamma_{2}\right) \vartheta\left(z-\delta_{2}\right)},
$$

with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))$.
Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z-\beta_{2}\right)}{\vartheta\left(z-\beta_{1}\right)^{2}},
$$

with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))$.
Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z-2 \beta_{1}\right)}{\vartheta\left(z-\beta_{1}\right)^{2}},
$$

with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))$.
Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z-\gamma_{1}\right) \vartheta\left(z-\delta_{1}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z-2 \beta_{1}\right)}{\vartheta\left(z-\beta_{1}\right)^{2}},
$$

with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.
- Similarly: $X(z)$ has a double pole at $z=\beta_{2}=2 \beta_{1}$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))$.
Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z+\beta_{1}\right) \vartheta\left(z-2 \beta_{1}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z-2 \beta_{1}\right)}{\vartheta\left(z-\beta_{1}\right)^{2}}
$$

with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.
- Similarly: $X(z)$ has a double pole at $z=\beta_{2}=2 \beta_{1}$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$$
Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))
$$

Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\beta_{1}\right)}{\vartheta\left(z+\beta_{1}\right) \vartheta\left(z-2 \beta_{1}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z-2 \beta_{1}\right)}{\vartheta\left(z-\beta_{1}\right)^{2}}
$$

with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.
- Similarly: $X(z)$ has a double pole at $z=\beta_{2}=2 \beta_{1}$.
- So $3 \beta_{1}=\pi \tau$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$$
Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0)) .
$$

Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\frac{\pi \tau}{3}\right)}{\vartheta\left(z+\frac{\pi \tau}{3}\right) \vartheta\left(z-\frac{2 \pi \tau}{3}\right)} \quad \text { and } \quad Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z-\frac{2 \pi \tau}{3}\right)}{\vartheta\left(z-\frac{\pi \tau}{3}\right)^{2}}
$$

with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.
- Similarly: $X(z)$ has a double pole at $z=\beta_{2}=2 \beta_{1}$.
- So $3 \beta_{1}=\pi \tau$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$$
Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0)) .
$$

Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by
$X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\frac{\pi \tau}{3}\right)}{\vartheta\left(z+\frac{\pi \tau}{3}\right) \vartheta\left(z-\frac{2 \pi \tau}{3}\right)}$ and $Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z+\frac{\pi \tau}{3}\right)}{\vartheta\left(z-\frac{\pi \tau}{3}\right)\left(z+\frac{2 \pi \tau}{3}\right)}$,
with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.
- Similarly: $X(z)$ has a double pole at $z=\beta_{2}=2 \beta_{1}$.
- So $3 \beta_{1}=\pi \tau$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:

$$
Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))
$$

Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by
$X(z)=c_{1} \frac{\vartheta(z) \vartheta\left(z-\frac{\pi \tau}{3}\right)}{\vartheta\left(z+\frac{\pi \tau}{3}\right) \vartheta\left(z-\frac{2 \pi \tau}{3}\right)}$ and $Y(z)=c_{2} \frac{\vartheta(z) \vartheta\left(z+\frac{\pi \tau}{3}\right)}{\vartheta\left(z-\frac{\pi \tau}{3}\right)\left(z+\frac{2 \pi \tau}{3}\right)}$,
with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.
- Similarly: $X(z)$ has a double pole at $z=\beta_{2}=2 \beta_{1}$.
- So $3 \beta_{1}=\pi \tau$.

Bonus slide: Parameterization of $K(x, y)=0$

For Kreweras paths:
$Q(x, y)=1+x y t Q(x, y)+\frac{t}{x}(Q(x, y)-Q(0, y))+\frac{t}{y}(Q(x, y)-Q(x, 0))$.
Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by
$X(z)=\frac{e^{-\frac{4 \pi \tau i}{9}} \vartheta(z) \vartheta\left(z-\frac{\pi \tau}{3}\right)}{\vartheta\left(z+\frac{\pi \tau}{3}\right) \vartheta\left(z-\frac{2 \pi \tau}{3}\right)}$ and $Y(z)=\frac{e^{-\frac{4 \pi \tau i}{9}} \vartheta(z) \vartheta\left(z+\frac{\pi \tau}{3}\right)}{\vartheta\left(z-\frac{\pi \tau}{3}\right)\left(z+\frac{2 \pi \tau}{3}\right)}$,
with $\alpha_{j}+\beta_{j}=\gamma_{j}+\delta_{j}$ for $j=1,2$.

- $K(0,0)=0$, so WLOG $\alpha_{1}=\alpha_{2}=0$.
- as $x \rightarrow 0$, we have $y(x) \sim-x$ or $y(x) \sim-\frac{1}{x^{2}}$, so $Y(z)$ has a double pole at $z=\beta_{1}$.
- Similarly: $X(z)$ has a double pole at $z=\beta_{2}=2 \beta_{1}$.
- So $3 \beta_{1}=\pi \tau$.

BONUS SLIDE: PARAMETERIZATION OF $K(x, y)=0$

Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)} \quad \text { and } \quad Y(z)=X(z+\pi \tau)
$$

where

$$
t=\frac{1}{X(z) Y(z)+X(z)^{-1}+Y(z)^{-1}}
$$

BONUS SLIDE: PARAMETERIZATION OF $K(x, y)=0$

Then $K(x, y)=x y-t x^{2} y^{2}-t x-t y=0$ is parameterised by

$$
X(z)=\frac{e^{-\frac{4 \pi \tau i}{3}} \vartheta(z, 3 \tau) \vartheta(z-\pi \tau, 3 \tau)}{\vartheta(z+\pi \tau, 3 \tau) \vartheta(z-2 \pi \tau, 3 \tau)} \quad \text { and } \quad Y(z)=X(z+\pi \tau)
$$

where

$$
t=e^{-\frac{\pi \tau i}{3}} \frac{\vartheta^{\prime}(0,3 \tau)}{4 i \vartheta(\pi \tau, 3 \tau)+6 \vartheta^{\prime}(\pi \tau, 3 \tau)}
$$

