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that every two points at unit distance have different colors?
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If the coloring of R? corresponds to a coloring of the faces of some (infinite)
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In ZFC, a theorem of de Bruijn and Erdés (1951) tells you that the chromatic
number of a graph is the supremum of the chromatic numbers of its finite
subgraphs.



UNIT-DISTANCE GRAPHS

A unit-distance graph is a graph whose vertices can be mapped to R? such that
any two vertices are adjacent if and only if their images are at distance 1.



UNIT-DISTANCE GRAPHS

A unit-distance graph is a graph whose vertices can be mapped to R? such that
any two vertices are adjacent if and only if their images are at distance 1.

Assuming the axiom of choice, the Hadwiger-Nelson Problem boils down to:
What is the maximum chromatic number of a unit-distance graph?



UNIT-DISTANCE GRAPHS

A unit-distance graph is a graph whose vertices can be mapped to R? such that
any two vertices are adjacent if and only if their images are at distance 1.

Assuming the axiom of choice, the Hadwiger-Nelson Problem boils down to:
What is the maximum chromatic number of a unit-distance graph?

What about small unit-distance graphs?



UNIT-DISTANCE GRAPHS

A unit-distance graph is a graph whose vertices can be mapped to R? such that
any two vertices are adjacent if and only if their images are at distance 1.

Assuming the axiom of choice, the Hadwiger-Nelson Problem boils down to:
What is the maximum chromatic number of a unit-distance graph?

What about small unit-distance graphs?

Deciding whether a graph is a unit-distance graph is complete for the Existential
Theory of the Reals, and in particular NP-hard.
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FIG. 3. A good 7-coloring of (R 1).

THEOREM 3. Every unit-distance graph on 6197 or fewer vertices is
6-colorable.
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Given a metric space X and a real d > 0, let x(X, d) be the smallest number of
colors in a coloring of the points of X, such that any two points of X at distance
d apart have distinct colors.

For any d >0, 4 < x(R?,d) = x(R?,1) < 7.

What about natural metric spaces that are not invariant under dilation?

Theorem (Kloeckner 2015, Parlier and Petit 2017))
4 < x(H?,d) = O(d), where H? denotes the hyperbolic plane.

Is x(H?, d) bounded by a universal constant (independent of d)?
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INFINITE g-ARY TREES

Let T, be the infinite g-ary tree.

f_(Theorem (Parlier and Petit 2017))
o If d is odd, then x(Ty,,d) = 2.
o If dis even, then g + 1 < x(T,,d) < (g —1)(d +1).

f_(Theorem (Bousquet, E., Harutyunyan, de Joannis de Verclos 2017) l
If d is even, then

(3 — o(1)) L8l < (T, d) < (2+ o(1)) HoELY)
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ARBITRARY GRAPHS

Problem (van den Heuvel and Naserasr 2013))

Is there a constant C such that for any planar graph G and odd integer d,

x(G,d) < C?

d—1 odd
large x(G,d — 1)
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e Find x(R?) (hard).
e Is y(H?, d) bounded by a constant that does not depend on d?

o It is known that x(Q?) = 2 (Woodall 1973). What about x(Q x R)?
(Axenovich et al. 2012).
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