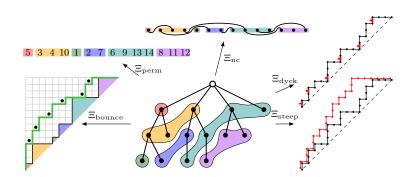
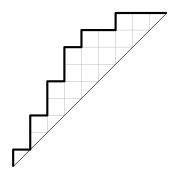
Wenjie Fang, Institute of Discrete Mathematics, TU Graz Avec Cesar Ceballos et Henri Mühle

07 février 2019, Séminaire Flajolet, IHP

Résultats principaux

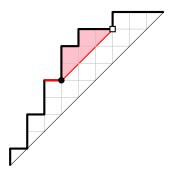


Treillis de Tamari, sur les chemins de Dyck



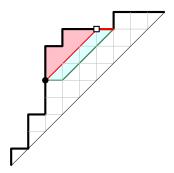
Chemin de Dyck : n pas Nord (N) et n pas Est (E), au-dessus de la diagonale. Compté par les nombres de Catalan

Treillis de Tamari, sur les chemins de Dyck



Relation de couverture : prenons une vallée ullet, soit \Box le prochain point avec la même distance à la diagonale ...

Treillis de Tamari, sur les chemins de Dyck

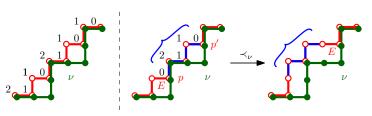


..., et poussons le segment à gauche. Le chemin obtenu est plus grand que l'original. Cela donne le **treillis de Tamari**.

Treillis de ν -Tamari

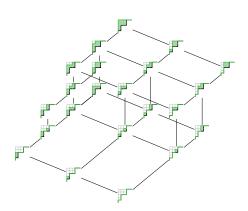
Généralisation avec ν un chemin dirigé arbitraire comme "diagonale"!

Distance horizontale = # pas Est avant de toucher l'autre côté de ν



Treillis de ν -**Tamari** (Préville-Ratelle and Viennot 2014) : \mathcal{T}_{ν} avec ν arbitraire (dit le canopé) de pas N, E.

Pourquoi c'est important?



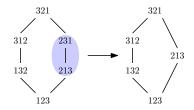
- Généralisant beaucoup de cas (m-Tamari, Tamari rationnel)
- Liens bijectifs (cartes planaires non-séparables)
- Aspect algébrique (algèbre de Hopf, espace des coinvariants diagonaux, etc.)

Treillis de Tamari, comme quotient de l'ordre faible

 \mathfrak{S}_n en tant qu'un groupe de Coxeter est généré par $s_i=(i,i+1)$

Pour $w \in \mathfrak{S}_n$, $\ell(w) = \text{longueur min. de factorisation de } w \text{ en les } s_i$.

Ordre faible: w couvert par w' ssi $w' = ws_i$ et $\ell(w') = \ell(w) + 1$



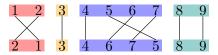
Classe de sylvester : permutations avec le même arbre de recherche Un seul 231-évidant dans chaque classe. L'ordre induit = Tamari. Idem pour les autres types

Sous-groupe parabolique et quotient parabolique de \mathfrak{S}_n

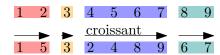
Soit $\alpha = (\alpha_1, \dots, \alpha_k)$ une composition de n.

Sous-groupe parabolique : $\mathfrak{S}_{\alpha_1} \times \cdots \times \mathfrak{S}_{\alpha_k} \subset \mathfrak{S}_n$.

Généré par s_i sauf les $i = \alpha_1 + \alpha_2 + \cdots + \alpha_i$.



Quotient parabolique : $\mathfrak{S}_n^{\alpha} = \mathfrak{S}_n/(\mathfrak{S}_{\alpha_1} \times \cdots \times \mathfrak{S}_{\alpha_k})$.



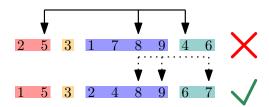
Ordre croissant dans chaque bloc

Permutation parabolique évitant 231

Motif $(\alpha, 231)$: trois indices i < j < k dans trois blocs distincts avec

- $\bullet \ w(k) < w(i) < w(j),$
- w(k) + 1 = w(i).

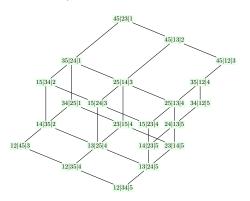
Permutation $(\alpha, 231)$ évitant : sans motif $(\alpha, 231)$



 $\mathfrak{S}_n^{\alpha}(231)$: l'ensemble des permutation $(\alpha,231)$ -évitant

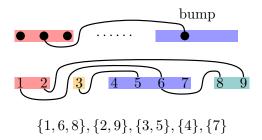
Treillis de Tamari parabolique

Treillis de Tamari parabolique $\mathcal{T}_n^{\alpha}=$ l'ordre faible restreint à $\mathfrak{S}_n^{\alpha}(231)$ (Mühle et Williams 2018+)



Aussi pour les autres types!

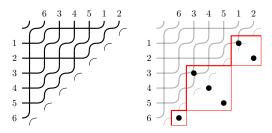
Partition parabolique sans croisement



 $\alpha\text{-partition parabolique sans croisement}$: un ensemble de bumps, ≤ 1 entrant/sortant, sans bumps croisés

Pipe dreams ...

Pipe dreams : un réseau triangulaire de croix et de coudes. Algèbre de Hopf sur pipe dreams (Bergeron, Ceballos et Pilaud, 2018+).

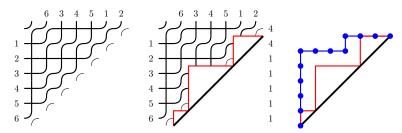


Les dim. des comps. homogènes d'une sous-algèbre (générée par les identités) = # pipe dreams avec une permutation "identité par bloc"

... et les paires de rebonds

Paire de rebond : un chemin de Dyck au-dessus d'un chemin de rebond

- Chemin de rebond : donné par la permutation
- Chemin au-dessus : autant de points que de coudes à l'extérieur à chaque niveau



Proposition (Bergeron, Ceballos et Pilaud, 2018+)

Les pipe dreams dont la permutation est une "identité par bloc" de taille n sont en bijection avec les paires de rebond d'ordre n.

Comptage et relations?

Les objets

- Permutations α -paraboliques évitant 231,
- α -partitions paraboliques sans croisement,
- Paires de rebond indicé par α .

Le comptage

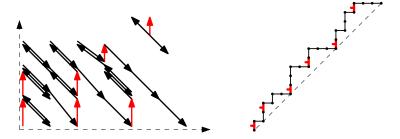
- Tous les trois en bijection (Mühle et Williams 2018+), mais pas facile
- ullet Comptage expérimental en sommant sur tout lpha de n :

```
1, 1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, \dots (OEIS A151498)
```

- = certains chemins dans le quadrant
- Un lien bijectif? Une structure plus directe?

Les chemins marqués et les paire raide

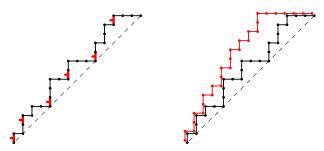
Les chemins de quadrant : $\{(1,0),(1,-1),(-1,1)\}$, terminant sur y=0. Compté dans (Bousque-Mélou et Mishna, 2010)



En bijection avec les chemins de Dyck marqués par niveau : niveau ≤ marquages rencontrés

Les chemins marqués par niveau et les paires steep

Paires steep: 2 chemins de Dyck emboîtés, celui au-dessus sans EE sauf à la fin



Bijection:

- Chemin au-dessou : chemin sans marquage
- Chemin au-dessus : lire les N, marqué $\to N$, non-marqué $\to EN$

La conjecture Steep-Bounce

Conjecture (Bergeron, Ceballos et Pilaud 2018+, Conjecture 2.2.8)

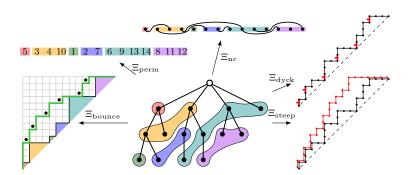
Les deux ensembles suivants sont de la même taille :

- les paires de rebond d'ordre n avec k régions;
- les paires steep d'ordre n avec k pas E à y=n.

Une preuve donnera le comptage des tous ces objets (pipe dreams et Catalan parabolique)

Cas k = 1, 2, n - 1, n déjà traité.

Un schéma des bijections

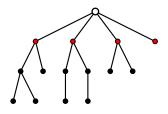


- T: arbre plan avec n nœuds non racine:
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition de n

Nœuds actifs : non-colorié, mais le parent est colorié ou la racine.

Algorithme de coloriage : Pour i de 1 à k,

- S'il y a moins que α_i nœuds actifs, alors échouer;
- Sinon, colorier les α_i à gauche en couleur i.



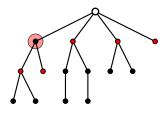
$$\alpha = (\mathbf{1}, 3, 1, 2, 4, 3) \vdash 14$$

- T: arbre plan avec n nœuds non racine;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition de n

Nœuds actifs : non-colorié, mais le parent est colorié ou la racine.

Algorithme de coloriage : Pour i de 1 à k,

- S'il y a moins que α_i nœuds actifs, alors échouer;
- Sinon, colorier les α_i à gauche en couleur i.



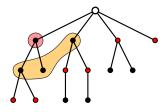
$$\alpha = (1, 3, 1, 2, 4, 3) \vdash 14$$

- \bullet T: arbre plan avec n nœuds non racine;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition de n

Nœuds actifs : non-colorié, mais le parent est colorié ou la racine.

Algorithme de coloriage : Pour i de 1 à k,

- S'il y a moins que α_i nœuds actifs, alors échouer;
- Sinon, colorier les α_i à gauche en couleur i.



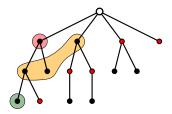
$$\alpha = (1, 3, \mathbf{1}, 2, 4, 3) \vdash 14$$

- \bullet T: arbre plan avec n nœuds non racine;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition de n

Nœuds actifs : non-colorié, mais le parent est colorié ou la racine.

Algorithme de coloriage : Pour i de 1 à k,

- ullet S'il y a moins que $lpha_i$ nœuds actifs, alors échouer;
- Sinon, colorier les α_i à gauche en couleur i.



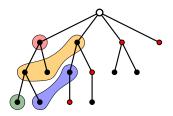
$$\alpha = (1, 3, 1, \textcolor{red}{2}, 4, 3) \vdash 14$$

- T: arbre plan avec n nœuds non racine;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition de n

Nœuds actifs : non-colorié, mais le parent est colorié ou la racine.

Algorithme de coloriage : Pour i de 1 à k,

- ullet S'il y a moins que $lpha_i$ nœuds actifs, alors échouer;
- Sinon, colorier les α_i à gauche en couleur i.



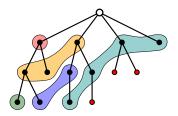
 $\alpha = (1, 3, 1, 2, \textcolor{red}{4}, 3) \vdash 14$

- \bullet T: arbre plan avec n nœuds non racine;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition de n

Nœuds actifs : non-colorié, mais le parent est colorié ou la racine.

Algorithme de coloriage : Pour i de 1 à k,

- S'il y a moins que α_i nœuds actifs, alors échouer;
- Sinon, colorier les α_i à gauche en couleur i.



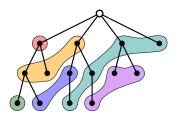
 $\alpha = (1, 3, 1, 2, 4, {\color{red} 3}) \vdash 14$

- \bullet T: arbre plan avec n nœuds non racine;
- $\alpha = (\alpha_1, \dots, \alpha_k)$: composition de n

Nœuds actifs : non-colorié, mais le parent est colorié ou la racine.

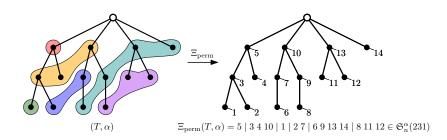
Algorithme de coloriage : Pour i de 1 à k,

- S'il y a moins que α_i nœuds actifs, alors échouer;
- Sinon, colorier les α_i à gauche en couleur i.

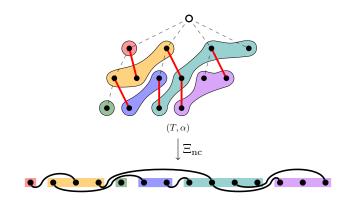


 $\alpha = (1,3,1,2,4,3) \vdash 14$

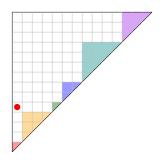
Vers les permutations

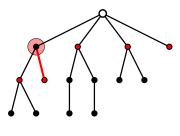


Vers les partitions paraboliques sans croisement

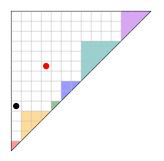


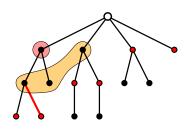
- Arbre \rightarrow partition : applatir
- ullet Partition o arbre : regarder le ciel



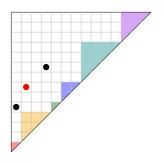


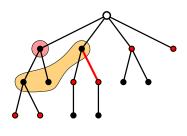
$$\alpha = (1, 3, 1, 2, 4, 3) \vdash 14$$

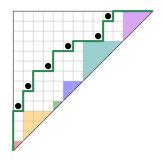


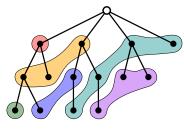


$$\alpha = (1, 3, 1, 2, 4, 3) \vdash 14$$



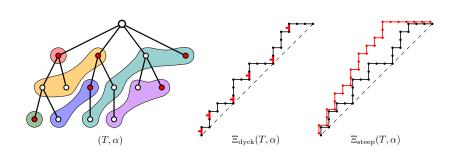






$$\alpha = (1, 3, 1, 2, 4, 3) \vdash 14$$

Vers les paires steep



Le théorème Steep-Bounce

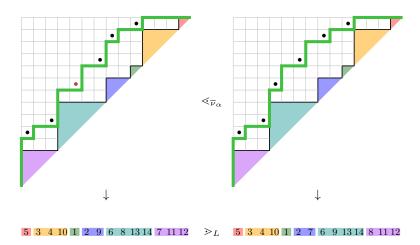
Théorème (Ceballos, F., Mühle 2018+)

Il y a une bijection naturelle Γ entre les deux ensembles suivants :

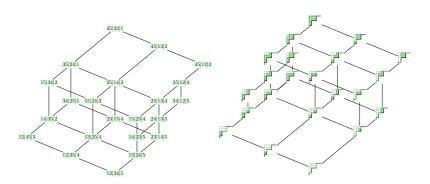
- ullet les paires de rebond d'ordre n avec k régions ;
- les paires steep d'ordre n avec k pas E à y=n.

Donc on sait tout compter!

Une bijection entre les deux Tamaris



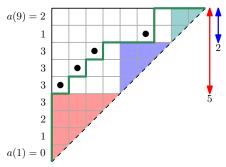
L'un est isomorphe au dual de l'autre



Théorème (Ceballos, F., Mühle 2018+)

Le treillis parabolique indicé par α est isomorphe au treillis de ν -Tamari avec $\nu=N^{\alpha_1}E^{\alpha_1}\cdots N^{\alpha_k}E^{\alpha_k}$.

Détour sur la combinatoire de q, t-Catalan



$$area(D) = \sum_{i} a(i) = 18$$

$$bounce(D) = \sum_{i} (i - 1)\alpha_{i} = 7$$

$$dinv(D) = \#\{(i, j) \mid i < j, (a(i) = a(j) \lor a(i) = a(j) + 1\} = 17$$

Une symétrie non triviale

Théorème (Garsia et Haiman 1996, Haiman 2001)

En sommant sur tout chemin de Dyck D d'ordre n, on a

$$\sum_{D} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} = \sum_{D} q^{\operatorname{bounce}(D)} t^{\operatorname{area}(D)}.$$

La preuve passe par la série de Hilbert de l'espace des coinvariants diagonaux à deux jeux de variables.

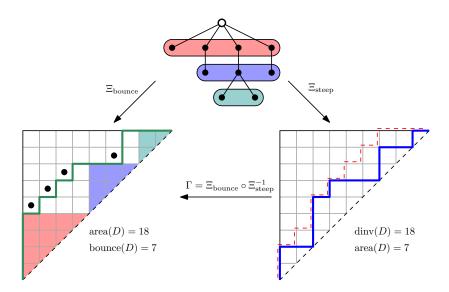
Pas encore de preuve combinatoire!

Théorème (Haglund 2008, Preuve du Théorème 3.15)

Il y a une bijection ζ sur les chemins de Dyck qui transfère les paires de statistiques

$$(\text{dinv}, \text{area}) \rightarrow (\text{area}, \text{bounce}).$$

Notre transformation zeta



Notre transformation zeta, version Steep-Bounce

Théorème (Ceballos, F., Mühle 2018+)

Il y a une bijection naturelle Γ entre les deux ensembles suivants :

- les paires de rebond d'ordre n avec r-1 rebonds;
- les paires steep d'ordre n avec r pas E à y=n.

 $\zeta = {\sf cas}$ spécial de Γ , où les paires de rebonds et les paires *steep* construits de façon gourmande

Une généralisation à explorer!

Les pistes à suivre

- Comment se transfèrent les statistiques, et lesquelles?
- Action des symétries?
- Implication dans l'espace des coinvariants diagonaux?
- etc.?

Les pistes à suivre

- Comment se transfèrent les statistiques, et lesquelles?
- Action des symétries?
- Implication dans l'espace des coinvariants diagonaux?
- etc.?

Merci de votre attention!