Multi-parameter hook formula for labelled trees

Valentin Féray
joint work with lan P. Goulden (Waterloo) and Alain Lascoux (Marne-La-Vallée)
Institut für Mathematik, Universität Zürich

Séminaire Philippe Flajolet, IHP, Paris, October 3rd, 2013

Universität Zürich ${ }^{\text {VZH }}$

Outline of the talk

(1) What is a hook formula?
(2) Main result and specializations
(3) A combinatorial proof of our hook formula: splicing trees

Frame-Robinson-Thrall formula (1954) for counting tableaux

Fix a Young diagram λ with n boxes.

Frame-Robinson-Thrall formula (1954) for counting tableaux

Fix a Young diagram λ with n boxes.

Then the number of standard Young tableaux

Frame-Robinson-Thrall formula (1954) for counting tableaux

Fix a Young diagram λ with n boxes.

Then the number of standard Young tableaux

$$
\frac{n!}{\prod_{\square \in \lambda} h_{\square}} .
$$

h_{\square} : hook-length of the box \square, i.e. number of boxes at its right in the same row or above it in the same column.

In our example: the hook-lengths are

2	1	
4	3	1
5	4	2

Knuth formula for increasing trees (1973)

The same kind of formula holds for trees!

Fix a Tree T with n nodes.

Knuth formula for increasing trees (1973)

The same kind of formula holds for trees!

Fix a Tree T with n nodes.

Then the number of increasing labellings of this tree

is given by

Knuth formula for increasing trees (1973)

The same kind of formula holds for trees!

Fix a Tree T with n nodes.

Then the number of increasing labellings of this tree
 is given by

$$
\frac{n!}{\prod_{\circ \in V(T)} h_{\circ}} .
$$

h_{\circ} : hook-length of the vertex o, i.e. the number of vertices in the subtree of T rooted in o.

In our example: the hook-lengths are

$9!/(9 * 6 * 3 * 2)=1120$ increasing labellings of T.

Hook summation formulas

But these objects are in bijection with permutations.

- By Robinson-Schensted algorithm, pairs of standard Young tableaux of the same shape are in bijection with permutations, so

$$
\sum_{\lambda \vdash n}\left(\frac{n!}{\prod_{\square \in \lambda} h_{\square}}\right)^{2}=n!.
$$

Hook summation formulas

But these objects are in bijection with permutations.

- By Robinson-Schensted algorithm, pairs of standard Young tableaux of the same shape are in bijection with permutations, so

$$
\sum_{\lambda \vdash n}\left(\frac{n!}{\prod_{\square \in \lambda} h_{\square}}\right)^{2}=n!.
$$

- By binary search tree algorithm, increasing labellings of binary trees are in bijection with permutations, so

$$
\sum_{T \text { binary tree }} \frac{n!}{\prod_{\circ \in V_{T}} h_{\circ}}=n!
$$

These formulas are called hook summation formulas.

A large amount of work around these hook formulas

- formulas for other objects than trees or Young diagrams: in particular, d-complete posets that include both.

(c) R. Proctor

A large amount of work around these hook formulas

- formulas for other objects than trees or Young diagrams: in particular, d-complete posets that include both.
- in summation formulas, one can replace $1 / h_{\square}^{2}$ or $1 / h_{\circ}$ by more involved expressions such that the sum is still simple.

Example (Postnikov formula)
$\sum_{T \text { binary }} \prod_{v \in T}\left(x+\frac{1}{h_{T}(v)}\right)=\frac{1}{(n+1)!} \prod_{i=1}^{n-1}((n+1+i) x+n+1-i)$.
tree of size n

A large amount of work around these hook formulas

- formulas for other objects than trees or Young diagrams: in particular, d-complete posets that include both.
- in summation formulas, one can replace $1 / h_{\square}^{2}$ or $1 / h_{\circ}$ by more involved expressions such that the sum is still simple.
- interpretations in combinatorial Hopf algebra theory, in convex geometry, in commutative algebra.

Main result

A hook summation formula over labelled increasing tree with n nodes.

A labelled increasing tree T

Children of a given vertex are not ordered. By convention, we draw them in increasing order from left to right.
\triangle in our formula, we sum over labelled trees.

Main result

A hook summation formula over labelled increasing tree with n nodes.
Theorem (FGL, 2013)
Let $\left(x_{i}\right)_{1 \leq i \leq n}$ and $\left(y_{i, j}\right)_{1 \leq i \leq j \leq n}$ be formal parameters.

$$
\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in b_{i}(T)} y_{i, j}\right)\right]=x_{1} y_{n, n} \prod_{i=2}^{n-1}\left(y_{i, i} \sum_{j=1}^{i} x_{j}+x_{i} \sum_{j=i+1}^{n} y_{i, j}\right) .
$$

$f_{i}(T)$: parent of i in T; $\mathfrak{h}_{i}(T)$: vertex set of the subtree of T rooted in i.

Example :

$$
\text { weight }\left(\begin{array}{l}
1 \\
2 \\
2 \\
3
\end{array}\right)=x_{1}\left(y_{2,2}+y_{2,3}\right) x_{2} y_{3,3}
$$

Main result

A hook summation formula over labelled increasing tree with n nodes.
Theorem (FGL, 2013)
Let $\left(x_{i}\right)_{1 \leq i \leq n}$ and $\left(y_{i, j}\right)_{1 \leq i \leq j \leq n}$ be formal parameters.

$$
\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in \mathfrak{h}_{i}(T)} y_{i, j}\right)\right]=x_{1} y_{n, n} \prod_{i=2}^{n-1}\left(y_{i, i} \sum_{j=1}^{i} x_{j}+x_{i} \sum_{j=i+1}^{n} y_{i, j}\right)
$$

$f_{i}(T)$: parent of i in T; $\mathfrak{h}_{i}(T)$: vertex set of the subtree of T rooted in i.

Example:

$$
\text { weight }\left(\begin{array}{l}
(1) \\
(2) \\
(3)
\end{array}\right)=x_{1}\left(y_{2,2}+y_{2,3}\right) x_{2} y_{3,3}
$$

A specialization $\left(y_{i, j}=x_{j}+\delta_{i, j}-1\right)$ appeared in representation theory of symmetric groups.

An interesting specialization

Set $x_{i}=1, y_{i, i}=y$ and $y_{i, j}=z$ for $i \neq j$.

An interesting specialization

Set $x_{i}=1, y_{i, i}=y$ and $y_{i, j}=z$ for $i \neq j$.
With this specialization, the weight of a tree is

$$
\operatorname{weight}(T)=\prod_{v}\left(y+z \cdot\left|\mathfrak{h}_{v}(T)\right|\right)
$$

where the product runs over non-root vertices.

An interesting specialization

Set $x_{i}=1, y_{i, i}=y$ and $y_{i, j}=z$ for $i \neq j$.
With this specialization, the weight of a tree is

$$
\operatorname{weight}(T)=\prod_{v}\left(y+z \cdot\left|\mathfrak{h}_{v}(T)\right|\right)
$$

where the product runs over non-root vertices.
It does not depend on the labelling of T !

An interesting specialization

Set $x_{i}=1, y_{i, i}=y$ and $y_{i, j}=z$ for $i \neq j$.
With this specialization, the weight of a tree is

$$
\text { weight }(T)=\prod_{v}\left(y+z \cdot\left|\mathfrak{h}_{v}(T)\right|\right)
$$

where the product runs over non-root vertices.
It does not depend on the labelling of T ! Hence

$$
\text { LHS }=\sum_{\substack{T \text { labelled } \\ \text { tree }}} \text { weight }(T)=\sum_{\substack{U \text { unlabelled } \\ \text { tree }}} \#\{\text { labellings }\} \text { weight }(U)
$$

An interesting specialization

Set $x_{i}=1, y_{i, i}=y$ and $y_{i, j}=z$ for $i \neq j$.
With this specialization, the weight of a tree is

$$
\text { weight }(T)=\prod_{v}\left(y+z \cdot\left|\mathfrak{h}_{v}(T)\right|\right)
$$

where the product runs over non-root vertices.
It does not depend on the labelling of T ! Hence

$$
\begin{aligned}
& \text { LHS }= \sum_{\substack{T \text { labelled } \\
\text { tree }}} \text { weight }(T)=\sum_{\substack{U \text { unlabelled } \\
\text { tree }}} \#\{\text { labellings }\} \text { weight }(U) \\
&=\sum_{U \text { unlabelled }} \frac{n!}{\prod_{v}\left|\mathfrak{h}_{v}(T)\right|} \prod_{v \text { non-root }}\left(y+z \cdot\left|\mathfrak{h}_{v}(T)\right|\right) \\
&=(n-1)!\sum_{U \text { unlabelled }} \prod_{v \text { non-root }}\left(\frac{y}{\left|\mathfrak{h}_{v}(T)\right|}+z\right) .
\end{aligned}
$$

An interesting specialization

Set $x_{i}=1, y_{i, i}=y$ and $y_{i, j}=z$ for $i \neq j$.
Finally, we get

$$
\sum_{U \text { unnabelled }} \prod_{v \text { non-root }}\left(\frac{y}{\left|\mathfrak{h}_{v}(T)\right|}+z\right)=\frac{1}{n!} \prod_{i=2}^{n}(i \cdot y+(n-1) \cdot z)
$$

An interesting specialization

Set $x_{i}=1, y_{i, i}=y$ and $y_{i, j}=z$ for $i \neq j$.
Finally, we get

$$
\sum_{\substack{u \text { unlabelled } \\ \text { tree }}} \prod_{v \text { non-root }}\left(\frac{y}{\left|\mathfrak{h}_{v}(T)\right|}+z\right)=\frac{1}{n!} \prod_{i=2}^{n}(i \cdot y+(n-1) \cdot z)
$$

Looks a lot like Postnikov's formula except that the sum runs over trees with any arity (not binary trees).

An interesting specialization

Set $x_{i}=1, y_{i, i}=y$ and $y_{i, j}=z$ for $i \neq j$.
Finally, we get

$$
\sum_{\substack{U \text { unlabelled } \\ \text { tree }}} \prod_{v \text { non-root }}\left(\frac{y}{\left|\mathfrak{h}_{v}(T)\right|}+z\right)=\frac{1}{n!} \prod_{i=2}^{n}(i \cdot y+(n-1) \cdot z)
$$

Looks a lot like Postnikov's formula except that the sum runs over trees with any arity (not binary trees).

Summing over labelled tree is natural to get a multi-parameter generalization!

Question

Is there a formula similar to our main result with a sum over labelled binary tree?

Another interesting specialization: recovering Cayley formula

Set $y_{i, j}=x_{j}$ for every $i \leq j$. Then

$$
\mathrm{RHS}=x_{1} \ldots x_{n}\left(\sum_{j=1}^{n} x_{j}\right)^{n-2}
$$

Another interesting specialization: recovering Cayley formula

Set $y_{i, j}=x_{j}$ for every $i \leq j$. Then

$$
\mathrm{RHS}=x_{1} \ldots x_{n}\left(\sum_{j=1}^{n} x_{j}\right)^{n-2}
$$

We would like to show that

$$
\mathrm{LHS}=\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in \mathfrak{h}_{i}(T)} x_{j}\right)\right]=\sum_{\substack{T \text { Cayley } \\ \text { tree }}} x_{1}^{\operatorname{deg}_{1}(T)} \ldots x_{n}^{\operatorname{deg}_{n}(T)}
$$

Reminder:
A Cayley tree
(no root, no plane embedding)

Another interesting specialization: recovering Cayley formula

Let X a subset of $[n]$. We define:

$$
\begin{aligned}
\operatorname{LHS}(X) & =\sum_{\substack{T \text { incresing tree } \\
\text { with label set } X}}\left[\prod_{i \in X \backslash\{\min (X)\}} x_{f_{i}(T)}\left(\sum_{j \in \mathfrak{h}_{i}(T)} x_{j}\right)\right] \\
\operatorname{Cay}(X) & =\sum_{\substack{T \text { Cayley tree } \\
\text { with label set } X}} x_{1}^{\operatorname{deg}_{1}(T)} \ldots x_{n}^{\operatorname{deg}_{n}(T)} .
\end{aligned}
$$

Another interesting specialization: recovering Cayley formula

Let X a subset of $[n]$. We define:

$$
\begin{aligned}
& \operatorname{LHS}(X)=\sum_{\substack{\tau \\
\text { incresing tree } \\
\text { with rabel set } X}}\left[\prod_{i \in X \backslash\{\min (X)\}} x_{f_{i}(T)}\left(\sum_{j \in h_{i}(T)} x_{j}\right)\right] \\
& \operatorname{Cay}(X)=\sum_{\substack{T \text { Carlee tree } \\
\text { with alebe set } X}} x_{1}^{\operatorname{deg}_{1}(T)} \ldots x_{n}^{\operatorname{deg}_{n}(T)} \text {. }
\end{aligned}
$$

Proof that $\operatorname{LHS}(X)=\operatorname{Cay}(X)$
Both satisfy the same induction (and coincide for $|X|=2$)

$$
F(X)=\sum_{d} x_{\min (X)}^{d} \sum_{X_{1} \sqcup \ldots \sqcup X_{d}=X \backslash\{\min (X)\}}\left(\prod_{i=1}^{r} F\left(X_{i}\right) \sum_{v \in X_{i}} x_{v}\right) .
$$

Towards a combinatorial formulation

$$
\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in h_{i}(T)} y_{i, j}\right)\right]=x_{1} y_{n, n} \prod_{i=2}^{n-1}\left(y_{i, i} \sum_{j=1}^{i} x_{j}+x_{i} \sum_{j=i+1}^{n} y_{i, j}\right) .
$$

Reminder: this is our main result.
We would like a combinatorial formulation.

Towards a combinatorial formulation

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$.

Towards a combinatorial formulation

$$
\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in \mathfrak{h}_{i}(T)} y_{i, j}\right)\right]=x_{1} y_{n, n} \prod_{i=2}^{n-1}\left(y_{i, i} \sum_{j=1}^{i} x_{j}+x_{i} \sum_{j=i+1}^{n} y_{i, j}\right)
$$

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$. In the left hand-side:

Towards a combinatorial formulation

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$. In the left hand-side:

- To contribute, a tree must fulfill:

$$
2 \leq_{T} 7,3 \leq_{T} 4,5 \leq_{T} 7
$$

Towards a combinatorial formulation

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$. In the left hand-side:

- To contribute, a tree must fulfill:

$$
2 \leq_{T} 7,3 \leq_{T} 4,5 \leq_{T} 7
$$

This implies also $2 \leq_{T} 5$. Because we are using trees!

Towards a combinatorial formulation

$$
\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in h_{i}(T)} y_{i, j}\right)\right]=x_{1} y_{n, n} \prod_{i=2}^{n-1}\left(y_{i, i} \sum_{j=1}^{i} x_{j}+x_{i} \sum_{j=i+1}^{n} y_{i, j}\right) .
$$

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$. In the left hand-side:

- To contribute, a tree must fulfill:

$$
2 \leq_{T} 7,3 \leq_{T} 4,5 \leq_{T} 7
$$

This implies also $2 \leq_{T} 5$. In general, the monomial M_{y} defines a set-partition π of $\{2, \ldots, n\}$ and elements from the same part must be in the same path from the root to a leaf.

$$
\text { In the example, } \pi=\{\{2,5,7\},\{3,4\},\{6\}\}
$$

Towards a combinatorial formulation

$$
\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in h_{i}(T)} y_{i, j}\right)\right]=x_{1} y_{n, n} \prod_{i=2}^{n-1}\left(y_{i, i} \sum_{j=1}^{i} x_{j}+x_{i} \sum_{j=i+1}^{n} y_{i, j}\right) .
$$

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$. In the left hand-side:

- To contribute, a tree must fulfill:

$$
2 \leq_{T} 7,3 \leq_{T} 4,5 \leq_{T} 7
$$

This implies also $2 \leq_{T} 5$. In general, the monomial M_{y} defines a set-partition π of $\{2, \ldots, n\}$ and elements from the same part must be in the same path from the root to a leaf.

$$
\text { In the example, } \pi=\{\{2,5,7\},\{3,4\},\{6\}\}
$$

- The contribution of a tree T is $\prod_{i} x_{i}^{\operatorname{deg}_{T}(i)}$.

Towards a combinatorial formulation

$$
\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in h_{i}(T)} y_{i, j}\right)\right]=x_{1} y_{n, n} \prod_{i=2}^{n-1}\left(y_{i, i} \sum_{j=1}^{i} x_{j}+x_{i} \sum_{j=i+1}^{n} y_{i, j}\right) .
$$

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$. Finally,

$$
\left[M_{y}\right] \mathrm{LHS}=\sum_{T} \prod_{i} x_{i}^{\operatorname{deg}_{T}(i)},
$$

where the sum runs over π-compatible trees.

Towards a combinatorial formulation

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$.
Consider now the right-hand side

$$
\left[M_{y}\right] \mathrm{RHS}=x_{1} x_{2} x_{3}\left(\sum_{j=1}^{4} x_{j}\right) x_{5}\left(\sum_{j=1}^{6} x_{j}\right) .
$$

Towards a combinatorial formulation

$$
\sum_{T}\left[\prod_{i=2}^{n} x_{f_{i}(T)}\left(\sum_{j \in \mathfrak{h}_{i}(T)} y_{i, j}\right)\right]=x_{1} y_{n, n} \prod_{i=2}^{n-1}\left(y_{i, i} \sum_{j=1}^{i} x_{j}+x_{i} \sum_{j=i+1}^{n} y_{i, j}\right)
$$

Consider, for instance, the coefficient of $M_{y}:=y_{2,7} y_{3,4} y_{4,4} y_{5,7} y_{6,6} y_{7,7}$.
Consider now the right-hand side

$$
\left[M_{y}\right] \mathrm{RHS}=x_{1} x_{2} x_{3}\left(\sum_{j=1}^{4} x_{j}\right) x_{5}\left(\sum_{j=1}^{6} x_{j}\right) .
$$

In general,

$$
\left[M_{y}\right] \mathrm{RHS}=x_{1} \cdot\left[\prod_{\substack{i \text { not } \max \\ \text { in its part }}} x_{i}\right] \cdot\left[\prod_{\substack{i, m a x \\ \text { in } i \text { isp part } \\ i \neq n}}\left(\sum_{j=1}^{i} x_{j}\right)\right] .
$$

Combinatorial reformulation of the main theorem

Fix a set-partition of $\{2, \ldots, n\}$ (in the example $\pi=\{\{2,5,7\},\{3,4\},\{6\}\})$. One has to find a bijection between

increasing trees T such that, for any two elements in the same part, one is the ancestor of the other.

Combinatorial reformulation of the main theorem

Fix a set-partition of $\{2, \ldots, n\}$ (in the example $\pi=\{\{2,5,7\},\{3,4\},\{6\}\})$. One has to find a bijection between

increasing trees T such that, for any two elements in the same part, one is the ancestor of the other.
(6)

$$
\begin{equation*}
a_{\square}=1 \quad a_{\circ}=3 \tag{0}
\end{equation*}
$$

a number for each part (except the one containing n) less or equal than the maximum of the part (called anchor point)

$$
a \square \leq 4, \quad a_{\circ} \leq 6
$$

Combinatorial reformulation of the main theorem

Fix a set-partition of $\{2, \ldots, n\}$ (in the example $\pi=\{\{2,5,7\},\{3,4\},\{6\}\})$. One has to find a bijection between

increasing trees T such that, for any two elements in the same part, one is the ancestor of the other.
(6)

$$
a_{\square}=1 \quad a_{\circ}=3
$$

a number for each part (except the one containing n) less or equal than the maximum of the part (called anchor point)

$$
a \square \leq 4, \quad a_{\circ} \leq 6
$$

which respects the degree:

$$
\operatorname{deg}_{\text {left }}(i)=\operatorname{deg}_{\text {right }}(i)+\left|a^{-1}(i)\right|+\delta_{i, 1} .
$$

Elementary splicing

Let T_{1} and T_{2} with marked vertices v_{1} and v_{2}. Assume $v_{1}<v_{2}$.

In the example $v_{1}=3, v_{2}=7$.

Elementary splicing

Let T_{1} and T_{2} with marked vertices v_{1} and v_{2}. Assume $v_{1}<v_{2}$.

Consider the chain from the root to v_{1} (resp. v_{2}).

Elementary splicing

Let T_{1} and T_{2} with marked vertices v_{1} and v_{2}. Assume $v_{1}<v_{2}$.

Consider the chain from the root to v_{1} (resp. v_{2}). These two chains can be merged in an increasing chain in a unique way.

Elementary splicing

Let T_{1} and T_{2} with marked vertices v_{1} and v_{2}. Assume $v_{1}<v_{2}$.

Consider the chain from the root to v_{1} (resp. v_{2}).
These two chains can be merged in an increasing chain in a unique way. We add other vertices with the same parent than in the original trees:

Elementary splicing

Let T_{1} and T_{2} with marked vertices v_{1} and v_{2}. Assume $v_{1}<v_{2}$.

Consider the chain from the root to v_{1} (resp. v_{2}).
These two chains can be merged in an increasing chain in a unique way. We add other vertices with the same parent than in the original trees:

Obs. only the degree of v_{1} has increase by 1 , other degrees are unchanged.

The bijection on an example

Start with the set of chains above with anchor points.

The bijection on an example

Start with the set of chains above with anchor points. Step 0: we add a root labeled 1 with a free edge to the list.

The free edge symbolizes that we must increase the degree of the corresponding vertex of 1 during the construction.

The bijection on an example

Start with the set of chains above with anchor points. Step 0: we add a root labeled 1 with a free edge to the list.

The free edge symbolizes that we must increase the degree of the corresponding vertex of 1 during the construction.

The bijection on an example

We will splice successively the chains together (always with v_{1} a vertex with a free edge, v_{2} the max of its tree). First step: we add a free edge to 3 and splice $2,5,6$ with 3,9 (external splice).

The bijection on an example

We will splice successively the chains together (always with v_{1} a vertex with a free edge, v_{2} the max of its tree). First step: we add a free edge to 3 and splice 2, 5, 6 with 3,9 (external splice).

The bijection on an example

Second step: 7 is in the component we must splice. Thus, we splice 7,8 on the free edge and add a free edge to 7 (internal splice).

The bijection on an example

8
Second step: 7 is in the component we must splice. Thus, we splice 7,8 on the free edge and add a free edge to 7 (internal splice).

The bijection on an example

8

10

Third step: 8 is in the root component \Rightarrow again an internal splice. We splice the tree $2,3,5,6,9$ onto the free edge and add a free edge to 8 .

The bijection on an example

10

Third step: 8 is in the root component \Rightarrow again an internal splice. We splice the tree $2,3,5,6,9$ onto the free edge and add a free edge to 8 .

The bijection on an example

10

Fourth step: an external splice. We add a free edge to 10 and splice 11 onto it.

The bijection on an example

Fourth step: an external splice. We add a free edge to 10 and splice 11 onto it.

The bijection on an example

Last step: we splice the tree containing the maximum onto the free edge.

The bijection on an example

Last step: we splice the tree containing the maximum onto the free edge.

The bijection on an example

Here is the resulting partitioned tree.
The degree condition is fulfilled by construction.

Summary and conclusion

Construction by successive splicings:

- if the anchor point is in the component we want to splice or in the root component, we splice onto the free edge and add an edge to the anchor point (internal splicing).
- if the anchor point is in another component, we add a free edge to the anchor point and splice the tree on this free edge (external splicing).

Summary and conclusion

Construction by successive splicings:

- if the anchor point is in the component we want to splice or in the root component, we splice onto the free edge and add an edge to the anchor point (internal splicing).
- if the anchor point is in another component, we add a free edge to the anchor point and splice the tree on this free edge (external splicing).

Theorem (FGL, 2013)
The described procedure defines a bijection.

Summary and conclusion

Construction by successive splicings.

- if the anchor point is in the component we want to splice or in the root component, we splice onto the free edge and add an edge to the anchor point (internal splicing).
- if the anchor point is in another component, we add a free edge to the anchor point and splice the tree on this free edge (external splicing).

Theorem (FGL, 2013)
The described procedure defines a bijection.

Corollary (FGL, 2013)

