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What is a hook formula?

Frame-Robinson-Thrall formula (1954) for counting tableaux

Fix a Young diagram λ with n boxes.

Then the number of standard Young tableaux
1 2

3

4

5

6

7

8<

<

is given by

n!∏
�∈λ h�

.

h�: hook-length of the box �, i.e. number of boxes at its right in the same
row or above it in the same column.

In our example: the hook-lengths are
5 4

4

2

3

1

2

1 so there are

8!/(5 ∗ 4 ∗ 4 ∗ 3 ∗ 2 ∗ 2) = 42 standard Young tableaux of shape λ.
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What is a hook formula?

Knuth formula for increasing trees (1973)

The same kind of formula holds for trees!

Fix a Tree T with n nodes.

Then the number of increasing labellings of this tree

1

2

3

4

5

6

7

8

9
<

is given by n!∏
◦∈V (T ) h◦

.

h◦: hook-length of the vertex ◦, i.e. the number of vertices in the subtree
of T rooted in ◦.

In our example: the hook-lengths are

9

6

1

2

3

1

1

1

1
so there are

9!/(9 ∗ 6 ∗ 3 ∗ 2) = 1120 increasing labellings of T .
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What is a hook formula?

Hook summation formulas

But these objects are in bijection with permutations.
By Robinson-Schensted algorithm, pairs of standard Young tableaux of
the same shape are in bijection with permutations, so

∑
λ`n

(
n!∏

�∈λ h�

)2

= n!.

By binary search tree algorithm, increasing labellings of binary trees
are in bijection with permutations, so∑

T binary tree

n!∏
◦∈VT

h◦
= n!

These formulas are called hook summation formulas.
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What is a hook formula?

A large amount of work around these hook formulas

formulas for other objects than trees or Young diagrams: in particular,
d -complete posets that include both.

c© R. Proctor

in summation formulas, one can replace 1/h2
� or 1/h◦ by more

involved expressions such that the sum is still simple.

interpretations in combinatorial Hopf algebra theory, in convex
geometry, in commutative algebra.

. . .
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Example (Postnikov formula)∑
T binary

tree of size n

∏
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(
x +

1
hT (v)

)
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1
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Main result and specializations

Main result

A hook summation formula over labelled increasing tree with n nodes.

A labelled increasing tree T

1

2

3

4

5

6

7

8

9

Children of a given vertex are not ordered. By convention, we draw them in
increasing order from left to right.

in our formula, we sum over labelled trees.
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Main result and specializations

Main result

A hook summation formula over labelled increasing tree with n nodes.

Theorem (FGL, 2013)

Let (xi )1≤i≤n and (yi ,j)1≤i≤j≤n be formal parameters.

∑
T

 n∏
i=2

xfi (T )

 ∑
j∈hi (T )

yi ,j

 = x1yn,n

n−1∏
i=2

yi ,i

i∑
j=1

xj + xi

n∑
j=i+1

yi ,j

 .

fi (T ): parent of i in T ;
hi (T ): vertex set of the sub-
tree of T rooted in i .

Example :

weight

( 1
2
3

)
= x1(y2,2 + y2,3)x2y3,3
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xj + xi

n∑
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yi ,j

 .

fi (T ): parent of i in T ;
hi (T ): vertex set of the sub-
tree of T rooted in i .

Example :

weight

( 1
2
3

)
= x1(y2,2 + y2,3)x2y3,3

A specialization (yi ,j = xj + δi ,j − 1) appeared in representation theory of
symmetric groups.
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Main result and specializations

An interesting specialization

Set xi = 1, yi ,i = y and yi ,j = z for i 6= j .

With this specialization, the weight of a tree is

weight(T ) =
∏
v

(y + z · |hv (T )|),

where the product runs over non-root vertices.
It does not depend on the labelling of T ! Hence

LHS =
∑

T labelled
tree

weight(T ) =
∑

U unlabelled
tree

#{labellings}weight(U)

=
∑

U unlabelled
tree

n!∏
v |hv (T )|

∏
v non-root

(y + z · |hv (T )|)

= (n − 1)!
∑

U unlabelled
tree

∏
v non-root

(
y

|hv (T )|
+ z
)
.
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Main result and specializations

An interesting specialization

Set xi = 1, yi ,i = y and yi ,j = z for i 6= j .
Finally, we get

∑
U unlabelled

tree

∏
v non-root

(
y

|hv (T )|
+ z
)

=
1
n!

n∏
i=2

(
i · y + (n − 1) · z

)

Looks a lot like Postnikov’s formula except that the sum runs over trees
with any arity (not binary trees).

Summing over labelled tree is natural to get a multi-parameter
generalization!

Question
Is there a formula similar to our main result with a sum over labelled binary
tree?
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Main result and specializations

Another interesting specialization: recovering Cayley formula

Set yi ,j = xj for every i ≤ j . Then

RHS = x1 . . . xn

 n∑
j=1

xj

n−2

.

We would like to show that

LHS =
∑
T

 n∏
i=2

xfi (T )

 ∑
j∈hi (T )

xj

 =
∑

T Cayley
tree

xdeg1(T )
1 . . . xdegn(T )

n .

Reminder:
A Cayley tree
(no root, no plane embedding)

1
2

3
4

5

6

7
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Main result and specializations

Another interesting specialization: recovering Cayley formula

Let X a subset of [n]. We define:

LHS(X ) =
∑

T incresing tree
with label set X

 ∏
i∈X\{min(X )}

xfi (T )

 ∑
j∈hi (T )

xj


Cay(X ) =

∑
T Cayley tree
with label set X

xdeg1(T )
1 . . . xdegn(T )

n .

Proof that LHS(X ) = Cay(X )

Both satisfy the same induction (and coincide for |X | = 2)

F (X ) =
∑
d

xd
min(X )

∑
X1t···tXd=X\{min(X )}

 r∏
i=1

F (Xi )
∑
v∈Xi

xv

 .
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A combinatorial proof of our hook formula: splicing trees

Towards a combinatorial formulation

∑
T

 n∏
i=2

xfi (T )

 ∑
j∈hi (T )

yi ,j

 = x1yn,n

n−1∏
i=2

yi ,i

i∑
j=1

xj + xi

n∑
j=i+1

yi ,j

 .

Reminder: this is our main result.
We would like a combinatorial formulation.

Consider, for instance, the
coefficient of My := y2,7 y3,4 y4,4 y5,7 y6,6 y7,7.
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A combinatorial proof of our hook formula: splicing trees

Towards a combinatorial formulation

∑
T

 n∏
i=2

xfi (T )

 ∑
j∈hi (T )

yi ,j

 = x1yn,n

n−1∏
i=2

yi ,i

i∑
j=1

xj + xi

n∑
j=i+1

yi ,j

 .

Consider, for instance, the coefficient of My := y2,7 y3,4 y4,4 y5,7 y6,6 y7,7.
In the left hand-side:

To contribute, a tree must fulfill:

2 ≤T 7, 3 ≤T 4, 5 ≤T 7

This implies also 2 ≤T 5. In general, the monomial My defines a
set-partition π of {2, . . . , n} and elements from the same part must be
in the same path from the root to a leaf.

In the example, π = {{2, 5, 7}, {3, 4}, {6}}

The contribution of a tree T is
∏

i x
degT (i)
i .
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In the left hand-side:

To contribute, a tree must fulfill:

2 ≤T 7, 3 ≤T 4, 5 ≤T 7

This implies also 2 ≤T 5. Because we are using trees!

In general, the
monomial My defines a set-partition π of {2, . . . , n} and elements
from the same part must be in the same path from the root to a leaf.

In the example, π = {{2, 5, 7}, {3, 4}, {6}}

The contribution of a tree T is
∏

i x
degT (i)
i .
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Towards a combinatorial formulation

∑
T

 n∏
i=2

xfi (T )

 ∑
j∈hi (T )

yi ,j

 = x1yn,n

n−1∏
i=2

yi ,i

i∑
j=1

xj + xi

n∑
j=i+1

yi ,j

 .

Consider, for instance, the coefficient of My := y2,7 y3,4 y4,4 y5,7 y6,6 y7,7.
Finally,

[My ] LHS =
∑
T

∏
i

xdegT (i)
i ,

where the sum runs over π-compatible trees.
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Consider, for instance, the coefficient of My := y2,7 y3,4 y4,4 y5,7 y6,6 y7,7.
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i not max
in its part

xi
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i max
in its part

i 6=n

 i∑
j=1
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A combinatorial proof of our hook formula: splicing trees

Combinatorial reformulation of the main theorem

Fix a set-partition of {2, . . . , n} (in the example
π = {{2, 5, 7}, {3, 4}, {6}}). One has to find a bijection between

1

2

3

4 5

7

6

increasing trees T such that,
for any two elements in the
same part, one is the ances-
tor of the other.

3

4 6

2

5

7

a� = 1 a◦ = 3 ∅

a number for each part (except the one
containing n) less or equal than the maxi-
mum of the part (called anchor point)

a� ≤ 4, a◦ ≤ 6.
which respects the degree:

degleft(i) = degright(i) + |a−1(i)|+ δi ,1.
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A combinatorial proof of our hook formula: splicing trees

Elementary splicing

Let T1 and T2 with marked vertices v1 and v2. Assume v1 < v2.
1

3

8

4

2

5

7 6

In the example v1 = 3, v2 = 7.

Obs. only the degree of v1 has increase by 1, other degrees are unchanged.
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Consider the chain from the root to v1 (resp. v2).
These two chains can be merged in an increasing chain in a unique way.

1

2

3

5
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Consider the chain from the root to v1 (resp. v2).
These two chains can be merged in an increasing chain in a unique way.
We add other vertices with the same parent than in the original trees:

1

2

3

5

7 6

8

4

9

Obs. only the degree of v1 has increase by 1, other degrees are unchanged.
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A combinatorial proof of our hook formula: splicing trees

The bijection on an example

1

2

5

6

3

7

8

7

3

9

8

11

10

4

10

12

Start with the set of chains above with anchor points.

Step 0: we add a root labeled 1 with a free edge to the list.

The free edge symbolizes that we must increase the degree of the
corresponding vertex of 1 during the construction.
Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.
Last step: we splice the tree containing the maximum onto the free edge.
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Start with the set of chains above with anchor points.
Step 0: we add a root labeled 1 with a free edge to the list.

The free edge symbolizes that we must increase the degree of the
corresponding vertex of 1 during the construction.

Fourth step: an external splice. We add a free edge to 10 and splice 11
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A combinatorial proof of our hook formula: splicing trees

The bijection on an example

1 2

5
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3

7

8

7

3

9

8

11

10

4

10

12

We will splice successively the chains together (always with v1 a vertex
with a free edge, v2 the max of its tree).
First step: we add a free edge to 3 and splice 2, 5, 6 with 3, 9 (external
splice).

Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.
Last step: we splice the tree containing the maximum onto the free edge.
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with a free edge, v2 the max of its tree).
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A combinatorial proof of our hook formula: splicing trees

The bijection on an example

1 7
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11
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Second step: 7 is in the component we must splice. Thus, we splice 7, 8 on
the free edge and add a free edge to 7 (internal splice).

Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.
Last step: we splice the tree containing the maximum onto the free edge.
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Second step: 7 is in the component we must splice. Thus, we splice 7, 8
on the free edge and add a free edge to 7 (internal splice).

Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.
Last step: we splice the tree containing the maximum onto the free edge.
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A combinatorial proof of our hook formula: splicing trees

The bijection on an example

1
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3

5

6

9

8

11

10

4

10

12

Third step: 8 is in the root component ⇒ again an internal splice. We
splice the tree 2, 3, 5, 6, 9 onto the free edge and add a free edge to 8.

Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.
Last step: we splice the tree containing the maximum onto the free edge.
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Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.

Last step: we splice the tree containing the maximum onto the free edge.
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Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.

Last step: we splice the tree containing the maximum onto the free edge.
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Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.

Last step: we splice the tree containing the maximum onto the free edge.
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A combinatorial proof of our hook formula: splicing trees

The bijection on an example

Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.

1

2

3

4

7

8

10

11 12

9

5

6

Last step: we splice the tree containing the maximum onto the free edge.
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A combinatorial proof of our hook formula: splicing trees

The bijection on an example

Fourth step: an external splice. We add a free edge to 10 and splice 11
onto it.

1

2

3

4

7

8

10

11 12

9

5

6

Last step: we splice the tree containing the maximum onto the free edge.

Here is the resulting partitioned tree.
The degree condition is fulfilled by construction.
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A combinatorial proof of our hook formula: splicing trees

Summary and conclusion

Construction by successive splicings:

if the anchor point is in the component we want to splice or in the
root component, we splice onto the free edge and add an edge to the
anchor point (internal splicing).

if the anchor point is in another component, we add a free edge to the
anchor point and splice the tree on this free edge (external splicing).

Theorem (FGL, 2013)

The described procedure defines a bijection.

Corollary (FGL, 2013)∑
T

 n∏
i=1

xfi (T )

 ∑
j∈hi (T )

yi ,j

 = x1yn,n

n−1∏
i=2

yi ,i

i∑
j=1

xj + xi

n∑
j=i+1

yi ,j

 .
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