

IHP, OCT 2010

Analyses of Tree Height

Philippe Flajolet, Algorithms, INRIA, France

How tall (shigh") are random trees?

- Combinatorial Tree Models:
- General Catalan Trees
- Binary Trees
- Simple Varieties \& nonplane trees

Analytic

Combinatorics

- diameter \&c

1. General Trees

- "General" trees \& Catalan numbers
- De Bruijn, Knuth, \& Rice (1972)
- Explicit and limit laws ~-central/local
- Theta transformations; Continued fractions

Basics

General Catalan trees $=$ plane + all degrees allowed

$$
\mathcal{G}=\mathcal{Z} \times \operatorname{SEQ}(\mathcal{G})
$$

- generating function $G(z):=\sum G_{n} z^{n}$ is

$$
G(z)=\frac{z}{1-G(z)} \quad \Longrightarrow \quad G(z)=\frac{1}{2}(1-\sqrt{1-4 z})
$$

- coefficients are Catalan numbers

$$
G_{n+1}=\frac{1}{n+1}\binom{2 n}{n}
$$

- asymptotically

$$
G_{n+1} \sim \frac{4^{n}}{\sqrt{\pi n}}
$$

Tree height: exact forms

De Bruin, Knuth, and Rice 1972: $\mathcal{G}^{[h]}:=$ trees of height $\leq h$

$$
\mathcal{G}^{[h+1]}=\mathcal{Z} \times \operatorname{SEQ}\left(\mathcal{G}^{[h]}\right) ; \quad \mathcal{G}^{[0]}=\mathcal{Z}
$$

$$
\left\{\begin{array}{l}
G^{[0]}(z)=z \\
G^{[h+1]}(z)=\frac{z}{1-G^{[h]}(z)}
\end{array} \Longrightarrow \text { rational } \mathrm{f} . \Longrightarrow G^{[h]}=\frac{z}{1-\frac{z}{1-\frac{z}{\ddots}}}(h \text { stages })\right.
$$

\Longrightarrow Fibonacci polynomials: $G^{[h]}(z)=z \frac{F_{h+1}}{F_{h+2}}, \quad F_{h+1}=F_{h}-z F_{h-1}$

$$
G^{[h]}(z)=z \frac{F_{h+1}}{F_{h+2}}, \quad F_{h+1}=F_{h}-z F_{h-1}
$$

- Fibonacci polynomials satisfy a linear recurrence;
— characteristic equation is $\rho^{2}=\rho-z \Longrightarrow \rho, \bar{\rho}=\frac{1}{2}(1 \mp \sqrt{1-4 z})$
- thus $F_{h}=\frac{\rho^{h}-\bar{\rho}^{h}}{\rho-\bar{\rho}}$.

Everything is expressible as function of $\rho \equiv G(z)$ alone and Lagrange Inversion [ballot numbers] applies:

Theorem (Trees of bounded height, GF and coeff.)

$$
G^{[h-1]}=z \frac{\rho^{h}-\bar{\rho}^{h}}{\rho^{h+1}-\bar{\rho}^{h+1}} ; \quad G_{n+1}-G_{n+1}^{[h-1]}=\sum_{j \geq 1} \Delta^{2}\binom{2 n}{n-j h} .
$$

$=$ a sampled sum of line $2 n$ of Pascal's triangle (via $\left.\Delta^{2}\right)$

Pascal

Theorem (Trees of bounded height, GF and coeff.)

$$
G^{[h-1]}=z \frac{\rho^{h}-\bar{\rho}^{h}}{\rho^{h+1}-\bar{\rho}^{h+1}} ; \quad G_{n+1}-G_{n+1}^{[h-1]}=\sum_{j \geq 1} \Delta^{2}\binom{2 n}{n-j h} .
$$

$=$ a sampled sum of line $\underline{2 n}$ of Pascal's triangle (via Δ^{2})

$$
\Delta^{2} f(x)=f(x+1)-2 f(x)+f(x-1)
$$

"All second-order linear recurrences are the same and are equivalent to multiplication formulae for sin, cos."

$$
F_{h}\left(\frac{1}{4 \cos ^{2} \theta}\right)=\frac{1}{(2 \cos \theta)^{h-1}} \frac{\sin h \theta}{\sin \theta}, \quad z:=\frac{1}{4 \cos ^{2} \theta}
$$

Thus Fibonacci \simeq Chebyshev
Thus the roots of $F_{h}(z)=0$ are $z=\frac{1}{4 \cos ^{2} \theta}$, where $\sin h \theta=0$.
Thus we know the partial fraction expansion of $G^{[h]}(z)$!

Theorem (Trees of bounded height, trig forms)

$$
G_{n+1}^{[h-2]}=\frac{4^{n}}{h} \sum_{1 \leq j<h / 2} \sin ^{2} \frac{j \pi}{h} \cos ^{2 n} \frac{j \pi}{h}
$$

History

- Lagrange (1775; cf DBKR) had the trig forms (!!!)
- Lord Kelvin (1824-1907; cf Feller) had the sampled binomial sums
- Delannoy (1833-1915; cf Lucas) had the sampled binomial sums*
* Henri-Auguste Delannoy et la publication des oeuvres posthumes d'Edouard Lucas. By Autebert, Décaillot, Schwer. In Gaz. SMF 1995. Cf Cyril Banderier.

RECHERCHES 3 CL Les suites récurrentes	$\begin{aligned} y_{x, t}= & 1-(2 \sqrt{p q})^{x}\left(\sqrt{\frac{q}{p}}\right)^{t} \\ \times & {\left[(1)\left(\cos \frac{\pi}{n}\right)^{x} \sin \frac{t \pi}{n}+(2)\left(\cos \frac{2 \pi}{n}\right)^{x} \sin \frac{2 t \pi}{n}\right.} \\ & +(3)\left(\cos \frac{3 \pi}{n}\right)^{x} \sin \frac{3 t \pi}{n}+\ldots+(n-1)\left(\cos \frac{(n-1) \pi}{n}\right)^{x} \sin \frac{(n-1, t \pi}{n} \end{aligned}$
Article V. - Application des méthodes précédentes à la solution de différents Problèmes de l'Analyse des hasardss. Problème 1. 49. Un joueur parie d'amener un événement donné, b fois au moins, en un nombre a de coups, la probabilité de l'amener à chaque coup étant p; on demande le sort de ce joueur.	
[Thanks: NUMDAM/Gallica]	

Limit distributions

Easy by either binomial forms or trig forms; not in [DBKR]. If $h=x \sqrt{n}: \frac{\binom{2 n}{n-k h}}{\binom{2 n}{n}} \sim e^{-k^{2} x^{2}} ; \quad \cos ^{2 n} \frac{j \pi}{h} \sim e^{-j^{2} \pi^{2} / x^{2}}$.

Theorem (Local limit law)

$$
\mathbb{P}_{\mathcal{G}_{n}}(H=\lfloor x \sqrt{n}\rfloor) \sim \frac{1}{\sqrt{n}} \Theta^{\prime}(x) ; \quad \Theta(x) \simeq\left\{\begin{array}{l}
\sum e^{-k^{2} x^{2}} \ldots \\
\sum e^{-k^{2} \pi^{2} / x^{2}} \ldots
\end{array}\right.
$$

Theorem (Central limit law)

$$
\mathbb{P}_{\mathcal{G}_{n}}(H \leq\lfloor x \sqrt{n}\rfloor) \rightarrow \Theta(x)
$$

$$
\Theta(x):=\sum_{j \geq 1} e^{-j^{2} x^{2}}\left(4 j^{2} x^{2}-2\right)
$$

Moments

[DBKR] have them:
Theorem (Moments of height)

$$
\left\{\begin{array}{l}
\mathbb{E}_{\mathcal{G}_{n}}(H)=\sqrt{\pi n}-\frac{3}{2}+O\left(\frac{1}{\sqrt{n}}\right) \\
\mathbb{E}_{\mathcal{G}_{n}}(H)^{r}=r(r-1) \Gamma(r / 2) \zeta(r) n^{r / 2}
\end{array}\right.
$$

- Need $\sum_{h} h^{r} \Theta^{\prime}(h t)$, with $t=\frac{1}{\sqrt{n}} \rightarrow 0$.
- $[\mathrm{DBKR}] \simeq$ with Mellin transforms \bigcirc (can be done with $\sum \mapsto \int$).

$$
f(t) \quad \rightsquigarrow \quad f^{\star}(s)=\int_{0}^{\infty} f(t) t^{s-1} d t
$$

$$
\mathbb{E}_{n}(H) \rightsquigarrow \sum d(m) e^{-m^{2} x^{2}}
$$

By comparing binomial and trig forms of height, get:

$$
\frac{1}{\sqrt{\pi x}} \sum_{k=-\infty}^{+\infty} e^{-k^{2} x^{2}}=\sum_{k=-\infty}^{+\infty} e^{-k^{2} \pi^{2} / x^{2}}
$$

$=\mathrm{a}$ well-known elliptic theta function identity.
Reverse-engineering from the height of Catalan trees:

- Forget height, Fibonacci, \&c. Start from $f(z)=(1+z)^{2 n}$.
- Multisection of series $f(z): \sum_{h} f_{n h}=\frac{1}{h} \sum_{\omega^{h}=1} f(\omega)$.
- Analyse asymptotically when $h=x \sqrt{n}$ the two equivalent forms.

Pólya (1927) "Elementarer Beweis einer Thetaformel". Sitzungsberichten der Preuß. Akad. des Wissenschaften, pp. 157-161.
cf also [Biane-Pitman-Yor, 200I]

Corollary 2: the continued fraction theorem

By inspection of the GFs of height, get the GF of trees, with u_{j}
marking nodes at level j as $\frac{z u_{0}}{1-\frac{z u_{1}}{1-\frac{z u_{2}}{\ddots}}}$
Theorem (Dyck paths and levels of steps)

With u_{j} marking descents from level j, the GF is

F. "Combinatorial Aspects of Continued fractions", Discr. Math., 1980 \& 2006. [Good-Touchard-Lenard-Jackson-Flajolet-Read]

2. Binary trees

- Iteration of GFs at a fixed point
- Singularity analysis
- Local and central limits

Basics

Binary Catalan trees $=$ plane + degrees $\{0,2\}$ allowed
Size $=\#$ leaves

$$
\mathcal{B}=\mathcal{Z}+\mathcal{B} \times \mathcal{B}
$$

- generating function $B(z):=\sum B_{n} z^{n}$ is

$$
B(z)=\frac{1}{2}(1-\sqrt{1-4 z})
$$

- $\mathcal{B}^{[h]}$ trees of height $\leq h$ with GF $B^{[h]}(z)$:

$$
B^{[0]}=z ; \quad B^{[h+1]}=z+B^{[h]}(z)^{2} .
$$

We have polynomials determined by a quadratic recurrence.
Degree double at each iteration: $\operatorname{deg}\left(B^{[h]}\right)=2^{h}$.

	General	Binary			
GF	algebraic	algebraic			
bounded height	rational				
	(explicit, lin. degree)		\quad "implicit" (exponential degree)	coeff.	binomial \& trigs
---:	:---				

$$
B^{[0]}=z ; \quad B^{[h+1]}=z+B^{[h]}(z)^{2}
$$

- For $z \in\left(0, \frac{1}{4}\right)$, we have $B(z)-B^{[h]}(z)$ dominated by
$\sum_{n>h+1} B_{n} z^{n}$. Implies geometric convergence.

- For $z>\frac{1}{4}$, the $B^{[h]}(z) \nearrow$ and cannot have limit. Thus, unbounded. Thus blow up doubly exponentially.
- For $z=\frac{1}{4}$, what goes on??? This is the information at the singularity of $B(z)$, hence needed!

$0 \leq z<\frac{1}{4}$	$x=\frac{1}{4}$	$x>\frac{1}{4}$
geometric convergence	$? ?$	double exp. divergence

In complex plane

- gray level indicates speed of convergence (to fixed point or to infinity)

$$
B^{[h+1]}=z+B^{[h]}(z)^{2}
$$

- A function $y \mapsto f(y)$.
- A fixed point $\xi=f(\xi)$.
- The multiplier $\kappa:=f^{\prime}(\xi)$.

locally!

attractive fixed point indifferent fixed point repulsive fixed point

$\kappa \mid$	<1	$\kappa=1$	$\kappa \mid>1$
$\left(u_{n+1}-\xi\right)$	$\sim \kappa\left(u_{n}-\xi\right)$	$\left(u_{n+1}-\xi\right) \sim\left(u_{n}-\xi\right)$	-

Attractive fixed point \& geometric convergence

$$
u_{0}=z ; \quad u_{h+1}=z+u_{h}^{2}
$$

Function is $f(y)=z+y^{2}$; fixed point is $\frac{1}{2}(1-\sqrt{1-4 z})$;
multiplier is $f^{\prime}(\xi)=2 \xi=1-\sqrt{1-4 z}$.

Lemma

Local convergence is granted inside cardiod $|1-\sqrt{1-4 z}|<1$. Convergence starting from $u_{0}=z$ is granted around all points of $|z|=\frac{1}{4}, z \neq \frac{1}{4}$ and is geometric.

The tube \& sandclock paradigm

From [Broutin-F., 2008-2010; height of Otter trees]

$$
\left[z^{n}\right] f(z)=\frac{1}{2 i \pi} \int_{\gamma} f(z) \frac{d z}{z^{n+1}}
$$

At the singularity

Set $e_{h}:=B(z)-B^{[h]}(z)=$ the GF of trees with height $>h$.
At the singularity $z=1 / 4$: $e_{h+1}=e_{h}\left(1-e_{h}\right)$.
Convexity implies convergence to $\mathbf{0}$, but how fast???

$$
\begin{equation*}
e_{h+1} \sim e_{h} \tag{!!}
\end{equation*}
$$

At the singularity

At the singularity $z=1 / 4: \quad e_{h+1}=e_{h}\left(1-e_{h}\right)$.
\bigcirc The trick is to take inverses: [De Bruijn helps]

$$
\left\{\begin{aligned}
\frac{1}{e_{h+1}} & =\frac{1}{e_{h}} \cdot \frac{1}{1-e_{h}} \\
& =\frac{1}{e_{h}} \cdot\left(1+e_{h}+e_{h}^{2}+\cdots\right) \\
& =\frac{1}{e_{h}}+1+e_{h}+e_{h}^{2}+\cdots
\end{aligned}\right.
$$

Thus we can bootstrap!!: Lower bounds \leftrightarrow Upper bounds.

$$
\frac{1}{e_{h}} \sim h+\log h+\mathbf{C}\left(e_{0}\right)+\cdots .
$$

$$
e_{h} \sim \frac{1}{h}-\frac{\log h}{h^{2}}-\frac{C}{h^{2}}+\cdots
$$

- An event \mathcal{E} with counting generating function $E(z)$
- Probability of E under critical branching process is $2 E(1 / 4)$. (Critical B.P. \equiv critical Boltzmann model.)

$$
\mathbb{P}^{\text {B.P. }}(\text { tree } \tau)=\frac{1}{2^{2|\tau|+1}}
$$

Corollary (Critical —binary-branching process)

$$
\mathbb{P}(\text { Height } \geq h) \sim \frac{2}{h} ; \quad \mathbb{P}(\text { Height }=h) \sim \frac{2}{h^{2}}
$$

Near the singularity $1 / 4$, in sandclock

The "écarts" $e_{h}=y-u_{h}=\{$ trees of height $>h\}$ satisfy:

$$
\left.\begin{array}{l}
y^{2}=z+y^{2} \\
u_{h+1}=z+u_{h}^{2}
\end{array}\right\} \quad \Longrightarrow \quad e_{h+1}=2 y\left(1-\frac{e_{h}}{2 y}\right) \mathbf{e}_{h}
$$

Their normalized version $e_{h}=(2 y)^{h} f_{h}$ satisfies

$$
f_{h+1}=f_{h}\left(1-(2 y)^{h+1} f_{h}\right)
$$

Same player plays again: take inverses...

$$
\frac{1}{f_{h+1}}=\frac{1}{f_{h}}+(2 y)^{h+1}+\cdots
$$

Lemma (Main approximation lemma: height $>h$)

$$
B-B^{[h]} \approx \varepsilon \frac{(1-\varepsilon)^{h}}{1-(1-\varepsilon)^{h}}, \quad \varepsilon:=\sqrt{1-4 z}
$$

Main approximation

Lemma (Main approximation lemma: height >h)

$$
B-B^{[h]} \approx \varepsilon \frac{(1-\varepsilon)^{h}}{1-(1-\varepsilon)^{h}}, \quad \varepsilon:=\sqrt{1-4 z}
$$

Binary tree $\sim \sim$ general Catalan trees

> Perturbation of parameter near an indifferent fixed-point "Interpolation formula"

- For fixed $z \neq 1 / 4$ gives geometric convergence.
- For $z=1 / 4$ gives harmonic convergence.
- With some work ...shown to hold in a sandclock.

+ uniform error terms

Local \& central limit law

Cauchy: $\left[z^{n}\right] f(z)=\frac{1}{2 i \pi} \int_{\gamma} f(z) \frac{d z}{z^{n+1}}$.
Cf SINGULARITY ANALYSIS $=$ Hankel-like contour near singularity.

$$
\Theta(x):=\sum_{j \geq 1} e^{-j^{2} x^{2}}\left(4 j^{2} x^{2}-2\right) .
$$

Theorem (Local limit law)

$$
\mathbb{P}_{\mathcal{B}_{n}}(H=\lfloor 2 x \sqrt{n}\rfloor) \sim \frac{1}{\sqrt{n}} \Theta^{\prime}(x) .
$$

Theorem (Central limit law:)

$$
\mathbb{P}_{\mathcal{B}_{n}}(H \leq\lfloor 2 x \sqrt{n}\rfloor) \rightarrow \Theta(x)
$$

3. Other stories

- Símple varieties of trees (like binary!)
- Non-plane binary trees
- Speed of convergence, Large deviations
- Balanced structures

Simple varieties of trees

- Only certain node degrees allowed - Universality of SQRT singularity
- Perturbation of singular iteration succeeds

- Works also for non-plane binary trees [Broutin-F. 2008-20IO]

Cf [Renyi-Szekeres 1967], for Cayley

[F, Gao, Odlyzko, Richmond]

Theorem 1.2. Consider a simple family of trees corresponding to the equation

$$
y=z \phi(y), \phi(y)=\sum c_{r} y^{r}
$$

and restrict to

$$
n \equiv 1 \quad(\bmod d) \text { with } d=\operatorname{gcd}\left\{r: c_{r} \neq 0\right\}
$$

Let $y_{n}=\sum_{h}\left(y_{n}^{[h]}-y_{n}^{[h-1]}\right), \tau$ be the smallest positive solution of

$$
\phi(\tau)-\tau \phi^{\prime}(\tau)=0
$$

and set

$$
c=\left(2 \phi(\tau) \phi^{\prime \prime}(\tau)\right)^{1 / 2} / \phi^{\prime}(\tau) \text { and } \beta=2 \sqrt{n} /(c h)
$$

Then for any $\delta>0$, we have the relation

$$
\frac{y_{n}^{[h]}-y_{n}^{[h-1]}}{y_{n}} \sim\left\{\begin{array}{l}
2 c \pi^{1 / 2} n^{-1 / 2} \beta^{4} \sum_{m \geq 1}(m \pi)^{2}\left(2(m \pi \beta)^{2}-3\right) e^{-(m \pi \beta)^{2}} \\
2 c /(\beta \sqrt{n}) \sum_{m \geq 1} m^{2}\left(2(m / \beta)^{2}-3\right) e^{-(m / \beta)^{2}}
\end{array}\right.
$$

uniformly as $n \rightarrow \infty$, for $\delta^{-1}(\log n)^{-1 / 2} \leq \beta \leq \delta(\log n)^{1 / 2}$.

Speed of convergence...

- Previous methods give speed $\sim \frac{\log n}{\sqrt{n}}$
- Mean height is, e.g., for binary trees

$$
\mathbb{E}_{\mathcal{B}_{n}}[H] \sim 2 \sqrt{\pi n}+c \log n+c^{\prime}+\frac{c^{\prime \prime} \log n}{\sqrt{n}}+\cdots
$$

[Broutin-F, in prep.]

Large deviations

- Probability of small or large height is exponentially small:

Theorem 1.3. There is a $\delta>0$ such that the number of binary trees with n internal nodes and height h, for $1 \leq h \leq n$, satisfies

$$
B_{n}-B_{n}^{[h]}=O\left(B_{n} n^{3 / 2} e^{-h^{2} /(4 n)}\right)
$$

and

$$
B_{n}^{[h]}=O\left(B_{n} n^{3 / 2} e^{-\delta n / h^{2}}\right) .
$$

Theorem 1.4.

$$
B_{n}^{[h]}-B_{n}^{[h-1]} \sim \frac{4 \epsilon^{2} A(\epsilon)}{(1-\epsilon)^{2} \sqrt{\pi(1+\epsilon) n}}\left((1-\epsilon)^{(1-\epsilon)}(1+\epsilon)^{(1+\epsilon)}\right)^{-h / 2 \epsilon} 4^{n}
$$

uniformly for all h such that $h / n=2 \epsilon /(1+\epsilon)$ with $\epsilon \in\left[\delta^{\prime}, 1-\delta^{\prime}\right]$, where δ^{\prime} is a positive constant, which can be arbitrarily small, and $A(\epsilon)$ is a positive and continuous function for $\epsilon \in\left[\delta^{\prime}, 1-\delta^{\prime}\right]$.

$p_{h+1}=z+p_{h}^{2} ; \quad p_{0}=z$
$\sqrt{ }$ Take a random binary tree of height h. Distribution of size?
$p_{h+1}=p_{h}^{2}+p_{h}^{3} ; \quad p_{0}=z$
$=$ Take a random balanced $2-3$ tree of height h. Size?
How are the coefficients of $p_{h}(z)$?
Answer: Just like $p_{h+1}=p_{h}^{2}$, i.e., $p_{h}=(1+z)^{2^{h}}$

Technique: $p_{h}(1)$ grow doubly exponentially fast and satisfy exact formula $p_{h}(1)=\left\lfloor\alpha^{2^{h}}\right\rfloor$. Then, perturbation + saddle point

Theorem (F-Odlyzko, 20今4) 1984 (!!)

Gaussian

Coefficients of polynomials that satisfy $p_{h+1}=P\left(z, p_{h}\right)$, for P nonlinear and positive polynomial obey a local Gaussian law.

- Done by [Szekeres 1982] for unrooted Cayley trees
- Done by [Broutin-F. 2010] for binary(Otter) trees
-A theta-like distribution. Also quantify proportion of central/bicentral trees $=$ agrees with Aldous' model of CRT. Cf Haas, Miermont, Marckert 2009-2010.

Theorem

The ratio of expected diameter (D) to expected height satisfies

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}_{n}(D)}{\mathbb{E}_{n}(H)}=\frac{4}{3}
$$

Width?

$$
\mathbb{E}_{n}(W)=\sqrt{\frac{\pi n}{2}}+O\left(n^{1 / 4} \sqrt{\log n}\right), \quad \mathbb{P}_{n}(\sqrt{2} W \leq x) \rightarrow 1-\Theta(x)
$$

- Width is accessible by properties of Brownian motion (as is height) :A definitive treatment is [Chassaing-Marckert-Yor]
- Analysis? Transfer matrix methods:

> Entre deux vérités du domaine réel, le chemin le plus facile et le plus court passe bien souvent par le domaine complexe.
> PAUL PAINLEVÉ [467, p. 2]
> It has been written that the shortest and best way between two truths of the real domain often passes through the imaginary one ${ }^{1}$. - JACQUES HADAMARD [316, p. 123]

Analytic methods are extremely powerful and when they apply, they often yield estimates of unparalleled precision.

- Andrew Odlyzko [461]

