Intervalles de Tamari généralisés et cartes planaires orientées

Éric Fusy (CNRS/LIX, École Polytechnique)
Travaux en commun avec Abel Humbert

Séminaire Flajolet, IHP, 3 octobre 2019

Rotation operations on binary trees

The Tamari lattice
$\mathcal{B}_{n}:=$ set of binary trees with n nodes
The Tamari lattice Tam_{n} is the partial order on \mathcal{B}_{n} where the covering relation corresponds to right rotation

Rotation \Leftrightarrow flip on triangulated dissections

cf the associahedron

Tamari intervals

An interval in a poset (E, \leq) is a pair $x, x^{\prime} \in E$ such that $x \leq x^{\prime}$

Let $\mathcal{I}_{n}:=$ set of intervals in Tam_{n}

Tamari intervals

An interval in a poset (E, \leq) is a pair $x, x^{\prime} \in E$ such that $x \leq x^{\prime}$

Let $\mathcal{I}_{n}:=$ set of intervals in Tam_{n}
Theorem [Chapoton'06]: $\left|\mathcal{I}_{n}\right|=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}$

Tamari intervals

An interval in a poset (E, \leq) is a pair $x, x^{\prime} \in E$ such that $x \leq x^{\prime}$

Let $\mathcal{I}_{n}:=$ set of intervals in Tam_{n}
Theorem [Chapoton'06]: $\left|\mathcal{I}_{n}\right|=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}$
Very active research domain over last 10 years:

- various extensions with nice counting formulas

```
m-Tamari
labelled m-Tamari v-Tamari
```

- connections to algebra
- bijective links: planar maps interval posets
[Bousquet-Mélou,F,Préville-Ratelle'11]
[Bousquet-Mélou,Chapuy, Préville-Ratelle'12]
[Préville-Ratelle, Viennot'14]
[Bergeron, Préville-Ratelle'11]

The covering relation for Dyck walks

- Encoding by left-to-right postfix order (\Leftrightarrow right-to-left prefix order)

The covering relation for Dyck walks

- Encoding by left-to-right postfix order (\Leftrightarrow right-to-left prefix order)

- Effect of a rotation on the associated Dyck walk:

The covering relation for Dyck walks

- Encoding by left-to-right postfix order (\Leftrightarrow right-to-left prefix order)

- Effect of a rotation on the associated Dyck walk:

Rk: If $\gamma \leq \gamma^{\prime}$ in Tam_{n} then γ is below γ^{\prime}

Bracket-vectors

Bracket-vector of a Dyck walk

$$
V(\gamma)=(5,2,4,4,5)
$$

Bracket-vectors

Bracket-vector of a Dyck walk

$$
V(\gamma)=(5,2,4,4,5)
$$

(5, 2, 4, 4, 5)

$(5,4,4,4,5)$

- Reduction of an interval $\left(\gamma, \gamma^{\prime}\right) \in \mathcal{I}_{n}$:

- Reduction of an interval $\left(\gamma, \gamma^{\prime}\right) \in \mathcal{I}_{n}$:

Let $F(t, u)$ the GF, with $t \leftrightarrow$ size and $u \leftrightarrow \#$ (bottom-contacts)
(Rk: $\left|\mathcal{I}_{n}\right|=\left[t^{n}\right] F(t, 1)$)
Then: $\quad F(t, u)=u+t \cdot u \frac{F(t, u)-F(t, 1)}{u-1} \cdot F(t, u)$

- Reduction of an interval $\left(\gamma, \gamma^{\prime}\right) \in \mathcal{I}_{n}$:

Let $F(t, u)$ the GF, with $t \leftrightarrow$ size and $u \leftrightarrow \#$ (bottom-contacts)
(Rk: $\left|\mathcal{I}_{n}\right|=\left[t^{n}\right] F(t, 1)$)
Then: $\quad F(t, u)=u+t \cdot u \frac{F(t, u)-F(t, 1)}{u-1} \cdot F(t, u)$

Quadratic method (or guessing-checking) gives

$$
\left[t^{n}\right] F(t, 1)=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}
$$ [Brown, Tutte, Bousquet-Mélou Jehanne'06]

Planar maps, triangulations

Def. Planar map $=$ connected graph embedded in the plane up to isotopy

rooted map $=$ map + marked corner with the outer face on its left

Planar maps, triangulations

Def. Planar map $=$ connected graph embedded in the plane up to isotopy

rooted $\operatorname{map}=$ map + marked corner with the outer face on its left

- Triangulation $=$ simple planar map with all faces of degree 3

Let $\mathcal{T}_{n}:=$ set of rooted triangulations on $n+3$ vertices
[Tutte'62]: $\left|\mathcal{T}_{n}\right|=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}$
(bijective proof [Poulalhon,Schaeffer'06])

Schnyder woods
Local conditions:

Schnyder woods

Theo: Any triangulation admits a Schnyder wood
[Schnyder'89]

Schnyder woods

Theo: Any triangulation admits a Schnyder wood
[Schnyder'89] Property: the edges in each color form a tree

- A Schnyder wood with no cw circuit is called minimal

Schnyder woods

Theo: Any triangulation admits a Schnyder wood
[Schnyder'89] Property: the edges in each color form a tree

- A Schnyder wood with no cw circuit is called minimal

Schnyder woods

Theo: Any triangulation admits a Schnyder wood
[Schnyder'89] Property: the edges in each color form a tree

- A Schnyder wood with no cw circuit is called minimal

Schnyder woods

Theo: Any triangulation admits a Schnyder wood
[Schnyder'89] Property: the edges in each color form a tree

- A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation has a unique minimal Schnyder wood (cf set of Schnyder woods on fixed triangulation is a distributive lattice)
non-crossing pairs of $\stackrel{\hat{t}}{ }$ Dyck paths of lengths $2 n$

Schnyder woods on $n+3$ vertices

non-crossing pairs of Dyck paths of lengths $2 n$

not minimal

bracket-vectors
4244
2244

bracket-vectors
3233

1434

For ν any walk in $\{E, N\}^{n}$, let $\mathcal{W}_{\nu}:=\{$ walks above $\nu\}$.

ν-Tamari lattice: poset Tam_{ν} on \mathcal{W}_{ν} for the covering relation

$p^{\prime}=$ next point after p with same horizontal distance to ν

Other realization from the canopy

$\operatorname{Can}(\gamma)=(E, E, N, N, E)$

Other realization from the canopy

$$
\operatorname{Can}(\gamma)=(E, E, N, N, E)
$$

Other realization from the canopy

- Two types of covering relation

Hence $\gamma \leq \gamma^{\prime}$ in $\operatorname{Tam}_{n} \Rightarrow \operatorname{Canopy}(\gamma) \leq \operatorname{Canopy}\left(\gamma^{\prime}\right)$
(with $N<E$)

covering relations commute under the bijection

$\gamma=E^{b_{0}} N E^{b_{1}} N \ldots$

Generalized Tamari intervals

$$
\begin{aligned}
\mathcal{I}_{\nu}:= & \left\{\gamma, \gamma^{\prime} \mid \gamma \leq \gamma^{\prime} \text { in } \operatorname{Tam}_{\nu}\right\} \\
& \mathcal{G}_{n}:=\cup_{\nu \in\{E, N\}^{n}} \mathcal{I}_{\nu}
\end{aligned}
$$

$$
\mathcal{G}_{i, j}:=\cup_{\nu \in \mathfrak{S}\left(E^{i} N^{j}\right)} \mathcal{I}_{\nu}
$$

$\mathbf{R k}:\left|\mathcal{G}_{i, j}\right|=\left|\mathcal{G}_{j, i}\right|$ from involution

Generalized Tamari intervals

$$
\begin{aligned}
\mathcal{I}_{\nu}:= & \left\{\gamma, \gamma^{\prime} \mid \gamma \leq \gamma^{\prime} \text { in } \operatorname{Tam}_{\nu}\right\} \\
& \mathcal{G}_{n}:=\cup_{\nu \in\{E, N\}^{n}} \mathcal{I}_{\nu}
\end{aligned}
$$

$$
\mathcal{G}_{i, j}:=\cup_{\nu \in \mathfrak{S}\left(E^{i} N^{j}\right)} \mathcal{I}_{\nu}
$$

$\mathbf{R k}:\left|\mathcal{G}_{i, j}\right|=\left|\mathcal{G}_{j, i}\right|$ from involution

[Fang, Préville-Ratelle'17]
Let $\mathcal{N}_{n}:=$ \{rooted non - sep. maps with $n+2$ edges $\}$
Let $\mathcal{N}_{i, j}:=\{$ rooted non - sep. maps with $i+2$ vertices and $j+2$ faces $\}$ Then $\mathcal{G}_{n} \longleftrightarrow \mathcal{N}_{n}$ and more precisely $\mathcal{G}_{i, j} \longleftrightarrow \mathcal{N}_{i, j}$

Generalized Tamari intervals

$\mathcal{I}_{\nu}:=\left\{\gamma, \gamma^{\prime} \mid \gamma \leq \gamma^{\prime}\right.$ in $\left.\operatorname{Tam}_{\nu}\right\}$

$$
\mathcal{G}_{n}:=\cup_{\nu \in\{E, N\}^{n}} \mathcal{I}_{\nu} \quad \mathcal{G}_{i, j}:=\cup_{\nu \in \mathfrak{S}\left(E^{i} N^{j}\right)} \mathcal{I}_{\nu}
$$

$\mathbf{R k}:\left|\mathcal{G}_{i, j}\right|=\left|\mathcal{G}_{j, i}\right|$ from involution

[Fang, Préville-Ratelle'17]
Let $\mathcal{N}_{n}:=$ \{rooted non - sep. maps with $n+2$ edges $\}$
Let $\mathcal{N}_{i, j}:=\{$ rooted non - sep. maps with $i+2$ vertices and $j+2$ faces $\}$ Then $\mathcal{G}_{n} \longleftrightarrow \mathcal{N}_{n}$ and more precisely $\mathcal{G}_{i, j} \longleftrightarrow \mathcal{N}_{i, j}$
$\Rightarrow\left|\mathcal{G}_{n}\right|=\left|\mathcal{N}_{n}\right|=\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}$ and $\left|\mathcal{G}_{i, j}\right|=\left|\mathcal{N}_{i, j}\right|=\frac{(2 i+j+1)!(2 j+i+1)!}{(i+1)!(j+1)!(2 i+1)!(2 j+1)!}$
[Tutte'63]
[Brown-Tutte'64]

Generalized Tamari intervals

$\mathcal{I}_{\nu}:=\left\{\gamma, \gamma^{\prime} \mid \gamma \leq \gamma^{\prime}\right.$ in $\left.\operatorname{Tam}_{\nu}\right\}$

$$
\mathcal{G}_{n}:=\cup_{\nu \in\{E, N\}^{n}} \mathcal{I}_{\nu} \quad \mathcal{G}_{i, j}:=\cup_{\nu \in \mathfrak{S}\left(E^{i} N^{j}\right)} \mathcal{I}_{\nu}
$$

Rk: $\left|\mathcal{G}_{i, j}\right|=\left|\mathcal{G}_{j, i}\right|$ from involution

[Fang, Préville-Ratelle'17]
(non-separable map $=$ no cut-vertex such as
Let $\mathcal{N}_{n}:=$ \{rooted non - sep. maps with $n+2$ edges $\}$
Let $\mathcal{N}_{i, j}:=\{$ rooted non - sep. maps with $i+2$ vertices and $j+2$ faces $\}$ Then $\mathcal{G}_{n} \longleftrightarrow \mathcal{N}_{n}$ and more precisely $\mathcal{G}_{i, j} \longleftrightarrow \mathcal{N}_{i, j}$
$\Rightarrow\left|\mathcal{G}_{n}\right|=\left|\mathcal{N}_{n}\right|=\frac{2(3 n+3)!}{(n+2)!(2 n+3)!}$ and $\left|\mathcal{G}_{i, j}\right|=\left|\mathcal{N}_{i, j}\right|=\frac{(2 i+j+1)!(2 j+i+1)!}{(i+1)!(j+1)!(2 i+1)!(2 j+1)!}$
[Tutte'63]
[Brown-Tutte'64]
$\mathbf{R k}: \mathcal{N}_{i, j} \longleftrightarrow \mathcal{Q}_{i, j}:=$ \{rooted simple quadrang. $i+2$ vertices $j+2$ faces $\}$

- If $\gamma \leq \gamma^{\prime}$ in Tam_{ν} then γ is below γ^{\prime} (and above ν)

$\Rightarrow \mathcal{G}_{i, j} \subseteq \mathcal{R}_{i, j}$ with $\mathcal{R}_{i, j}:=\{$ non-crossing triples from $(0,0)$ to $(i, j)\}$

a triple in $\mathcal{R}_{7,5}$
- If $\gamma \leq \gamma^{\prime}$ in Tam_{ν} then γ is below γ^{\prime} (and above ν)

$\Rightarrow \mathcal{G}_{i, j} \subseteq \mathcal{R}_{i, j}$ with $\mathcal{R}_{i, j}:=\{$ non-crossing triples from $(0,0)$ to $(i, j)\}$

a triple in $\mathcal{R}_{7,5}$
- An interval $\left(\gamma, \gamma^{\prime}\right) \in \mathcal{I}_{n}$ is called synchronized if $\operatorname{Can}(\gamma)=\operatorname{Can}\left(\gamma^{\prime}\right)$ Let $\mathcal{S}_{n}:=$ subfamily of synchronized intervals from \mathcal{I}_{n}.

$$
\text { Then } \left.\mathcal{G}_{n} \simeq \mathcal{S}_{n} \subseteq \mathcal{I}_{n} \quad \text { (Rk: on the other hand } \mathcal{I}_{n} \subset \mathcal{G}_{2 n}\right)
$$

2 Superfamilies for generalized Tamari intervals

- If $\gamma \leq \gamma^{\prime}$ in Tam_{ν} then γ is below γ^{\prime} (and above ν)

$\Rightarrow \mathcal{G}_{i, j} \subseteq \mathcal{R}_{i, j}$ with $\mathcal{R}_{i, j}:=\{$ non-crossing triples from $(0,0)$ to $(i, j)\}$

a triple in $\mathcal{R}_{7,5}$
- An interval $\left(\gamma, \gamma^{\prime}\right) \in \mathcal{I}_{n}$ is called synchronized if $\operatorname{Can}(\gamma)=\operatorname{Can}\left(\gamma^{\prime}\right)$ Let $\mathcal{S}_{n}:=$ subfamily of synchronized intervals from \mathcal{I}_{n}.

$$
\text { Then } \left.\mathcal{G}_{n} \simeq \mathcal{S}_{n} \subseteq \mathcal{I}_{n} \quad \text { (Rk: on the other hand } \mathcal{I}_{n} \subset \mathcal{G}_{2 n}\right)
$$

Let $\mathcal{S}_{i, j}:=$ subfamily of synchronized intervals from \mathcal{I}_{i+j-1}. where common canopy word is in $\mathfrak{S}\left(E^{i} N^{j}\right)$

Then $\mathcal{G}_{i, j} \simeq \mathcal{S}_{i, j} \subseteq \mathcal{I}_{i+j-1}$

A Baxter family is a family $\mathcal{B}_{i, j}$ indexed by two parameters i, j such that

$$
\left|\mathcal{B}_{i, j}\right|=2 \frac{(i+j)!(i+j+1)!(i+j+2)!}{i!(i+1)!(i+2)!j!(j+1)!(j+2)!}
$$

non-intersecting triples of walks

Lindström-Gessel-
Viennot lemma

separating decompositions
[F, Poulalhon, Schaeffer'09] [Felsner,F,Noy,Orden'11]

plane bipolar orientations
[Albenque,Poulalhon'15] [Kenyon et al.'19]

rectangular floorplans
[Dulucq,Guibert'96] [Ackerman et al.'06]

Bijection via separating decompositions
Local conditions:

$\notin\{s, t\}$

$\operatorname{Sep}_{i, j}:=$ set of separating decompositions with $i+2$ vertices, $j+2$ faces

Bijection via separating decompositions
Local conditions:

$\notin\{s, t\}$

$\operatorname{Sep}_{i, j}:=$ set of separating decompositions with $i+2$ vertices, $j+2$ faces
Theorem: [de Fraysseix et al.95]
Any simple quadrangulation admits a separating decomposition It has a unique one that is minimal (no cw cycle)
Property: edges in each color form a tree

Bijection via separating decompositions

close to bijection in [F, Poulalhon, Schaeffer'09]

Bijection via separating decompositions
close to bijection in [F, Poulalhon, Schaeffer'09]

[F , Humbert'19]
The mapping is a bijection between $\operatorname{Sep}_{i, j}$ and $\mathcal{R}_{i, j}$
A separating decomposition is minimal iff its image is in $\mathcal{G}_{i, j}$
\Rightarrow specialization into a bijection from $\mathcal{Q}_{i, j}$ to $\mathcal{G}_{i, j}$

Link to the Bernardi-Bonichon bijection

mapping preserves minimality
\Rightarrow Bernardi-Bonichon bijection \simeq case where white vertices have blue indegree 1 (bottom-walk $\left.=(N E)^{n}\right)$

Link to the Bernardi-Bonichon bijection

mapping preserves minimality
\Rightarrow Bernardi-Bonichon bijection \simeq case where white vertices have blue indegree 1

$$
\text { (bottom-walk } \left.=(N E)^{n}\right)
$$

More generally,
m-Tamari intervals \longleftrightarrow minimal separating decompositions

$$
\nu=\left(N E^{m}\right)^{n}
$$

where white vertices have blue indegree m
Not yet a bijective interpretation of the formula

$$
I_{n}^{(m)}=\frac{m+1}{m(n m+1)}\binom{(m+1)^{2} n+m}{n-1}
$$

Symmetric reformulation of the bijection
Corollary: bijection commutes with half-turn rotation \Rightarrow stability of $\mathcal{G}_{i, j} \subset \mathcal{R}_{i, j}$ under half-turn rotation

Proof of the bijection $\operatorname{Sep}_{i, j} \longleftrightarrow \mathcal{R}_{i, j}$

Proof of the bijection $\operatorname{Sep}_{i, j} \longleftrightarrow \mathcal{R}_{i, j}$

non-minimal (i.e., \exists clockwise cycle)
\Downarrow
\exists clockwise 4-cycle

2-book embedding

arc-diagram

Non-minimality on arc-diagrams

non-minimal (i.e., \exists clockwise cycle)
\Downarrow
\exists clockwise 4-cycle

2-book embedding

arc-diagram

Remains to see that for $R \in \mathcal{R}_{i, j}$
R is in $\mathcal{G}_{i, j}$ iff arc-diagram of R has no
[Ceballos,Padrol,Sarniento'18]

$$
V_{\nu}(\gamma)=(2,0,2,2,4)
$$

Property: $\gamma \leq \gamma^{\prime}$ in Tam_{ν} iff $V_{\nu}(\gamma) \leq V_{\nu}\left(\gamma^{\prime}\right)$

Condition for $R \in \mathcal{R}_{i, j}$ to be in $\mathcal{G}_{i, j}$

$$
\left(\nu, \gamma, \gamma^{\prime}\right) \in \mathcal{R}_{7,5}
$$

Condition for $R \in \mathcal{R}_{i, j}$ to be in $\mathcal{G}_{i, j}$

$$
\left(\nu, \gamma, \gamma^{\prime}\right) \in \mathcal{R}_{7,5}
$$

Condition for $R \in \mathcal{R}_{i, j}$ to be in $\mathcal{G}_{i, j}$

$$
\left(\nu, \gamma, \gamma^{\prime}\right) \in \mathcal{R}_{7,5}
$$

$V_{\nu}(\gamma) \leq V_{\nu}\left(\gamma^{\prime}\right) \Leftrightarrow$ no \bigcirc

Condition for $R \in \mathcal{R}_{i, j}$ to be in $\mathcal{G}_{i, j}$

$$
\left(\nu, \gamma, \gamma^{\prime}\right) \in \mathcal{R}_{7,5}
$$

$V_{\nu}(\gamma) \leq V_{\nu}\left(\gamma^{\prime}\right) \Leftrightarrow$ no $\bigodot \Leftrightarrow$ no \bigodot

Other approach via the canopy

Recall that if $\gamma \leq \gamma^{\prime}$ in Tam_{n} then $\operatorname{Can}(\gamma) \leq \operatorname{Can}\left(\gamma^{\prime}\right)$ (with $N<E$)

- Let $F(x, y, z):=$ series of Tamari intervals, with $x^{\#[[] E]} y^{\#[\mathbb{N}]} z^{\#\left[\mathcal{N}^{2}\right]}$

$$
\begin{aligned}
& F(x, y, z)=1+(x+y+z)+\left(x^{2}+y^{2}+z^{2}+3 x z+3 y z+4 x y\right) \\
& x^{3}+y^{3}+z^{3}+6 x^{2} z+6 x z^{2}+10 x^{2} y+10 x y^{2}+6 y^{2} z+6 y z^{2}+21 x y z
\end{aligned}
$$

$\mathbf{R k}:$ symmetry $x \leftrightarrow y$ cf

$\mathbf{R k}: \quad t F(t, t, t)=\sum_{n \geq 1}\left|\mathcal{I}_{n}\right| t^{n}$

$$
F(x, y, 0)=\sum_{i, j}\left|\mathcal{G}_{i, j}\right| x^{i} y^{j}
$$

3 parameters via Bernardi-Bonichon bijection

canopy-parameters via the bijection:

Composition to bijection with tree-structures
[F, Poulalhon, Schaeffer'07]

3-mobile

Composition to bijection with tree-structures
[F, Poulalhon, Schaeffer'07]

3-mobile

canopy-parameters via the bijection:
$\left.\binom{E}{N} \leftrightarrow\right\}_{0}^{0} 0,0$

Results

- Trivariate generating function expression:

$$
\begin{aligned}
& F=x R+y G+z R G-\frac{R G}{(1+R)(1+G)} \\
& \text { where }\left\{\begin{array}{l}
R=(y+z R)(1+R)(1+G)^{2} \\
G=(x+z G)(1+G)(1+R)^{2}
\end{array}\right.
\end{aligned}
$$

- Simplification of the trees in the synchronized case:

known to be in bijection to quadrangulations [Schaeffer'98, Bernardi, F'10]

New Tamari intervals and canopy symmetry

- An interval $\left(\gamma, \gamma^{\prime}\right) \in \mathcal{I}_{n}$ is called new if (with dissection point of view) γ and γ^{\prime} have no common chord

an interval $\gamma \leq \gamma^{\prime}$ that is not new

New Tamari intervals and canopy symmetry

- An interval $\left(\gamma, \gamma^{\prime}\right) \in \mathcal{I}_{n}$ is called new if (with dissection point of view) γ and γ^{\prime} have no common chord

an interval $\gamma \leq \gamma^{\prime}$ that is not new
- Let $G(x, y, z):=$ series $F(x, y, z)$ restricted to new Tamari intervals $\frac{1}{z} G(x, y, z)=1+(x+y+z)+\left(x^{2}+y^{2}+z^{2}+3 x y+3 x z+3 y z\right)$ $+\left(x^{3}+y^{3}+z^{3}+6 x^{2} y+6 x y^{2}+6 x^{2} z+6 x z^{2}+6 y^{2} z+6 y z^{2}+17 x y z\right)+\cdots$ symmetry in the 3 variables!

New Tamari intervals and canopy symmetry

- An interval $\left(\gamma, \gamma^{\prime}\right) \in \mathcal{I}_{n}$ is called new if (with dissection point of view) γ and γ^{\prime} have no common chord

an interval $\gamma \leq \gamma^{\prime}$ that is not new
- Let $G(x, y, z):=$ series $F(x, y, z)$ restricted to new Tamari intervals $\frac{1}{z} G(x, y, z)=1+(x+y+z)+\left(x^{2}+y^{2}+z^{2}+3 x y+3 x z+3 y z\right)$ $+\left(x^{3}+y^{3}+z^{3}+6 x^{2} y+6 x y^{2}+6 x^{2} z+6 x z^{2}+6 y^{2} z+6 y z^{2}+17 x y z\right)+\cdots$ symmetry in the 3 variables!

Bijective explanation via bipartite maps! [Fang'19+]

