Intervalles de Tamari généralisés et cartes planaires orientées

Éric Fusy (CNRS/LIX, École Polytechnique)

Travaux en commun avec Abel Humbert

Séminaire Flajolet, IHP, 3 octobre 2019

Rotation operations on binary trees

The Tamari lattice

 $\mathcal{B}_n := \text{set of binary trees with } n \text{ nodes}$

The Tamari lattice Tam_n is the partial order on \mathcal{B}_n where the covering relation corresponds to right rotation

Rotation \Leftrightarrow **flip on triangulated dissections**

cf the associahedron

Tamari intervals

An interval in a poset (E, \leq) is a pair $x, x' \in E$ such that $x \leq x'$

Tamari intervals

An interval in a poset (E, \leq) is a pair $x, x' \in E$ such that $x \leq x'$

Tamari intervals

An interval in a poset (E, \leq) is a pair $x, x' \in E$ such that $x \leq x'$

The covering relation for Dyck walks

• Encoding by left-to-right postfix order (\Leftrightarrow right-to-left prefix order)

The covering relation for Dyck walks

• Encoding by left-to-right postfix order (\Leftrightarrow right-to-left prefix order)

• Effect of a rotation on the associated Dyck walk:

The covering relation for Dyck walks

• Encoding by left-to-right postfix order (\Leftrightarrow right-to-left prefix order)

• Effect of a rotation on the associated Dyck walk:

Bracket-vectors

Bracket-vector of a Dyck walk

 $V(\gamma) = (5, 2, 4, 4, 5)$

Bracket-vectors

Property: $\gamma \leq \gamma'$ in Tam_n iff $V(\gamma) \leq V(\gamma')$ [Huang, Tamari'72]

Recursive decomposition of intervals [Chapoton'06]

• Reduction of an interval $(\gamma, \gamma') \in \mathcal{I}_n$:

Recursive decomposition of intervals [Chapoton'06]

• Reduction of an interval $(\gamma, \gamma') \in \mathcal{I}_n$:

Let F(t, u) the GF, with $t \leftrightarrow \text{size}$ and $u \leftrightarrow \#(\text{bottom-contacts})$ (**Rk:** $|\mathcal{I}_n| = [t^n]F(t, 1)$)

Recursive decomposition of intervals [Chapoton'06]

• Reduction of an interval $(\gamma, \gamma') \in \mathcal{I}_n$:

Let F(t, u) the GF, with $t \leftrightarrow \text{size}$ and $u \leftrightarrow \#(\text{bottom-contacts})$ (**Rk:** $|\mathcal{I}_n| = [t^n]F(t, 1)$)

Quadratic method (or guessing-checking) gives [Brown, Tutte, Bousquet-Mélou Jehanne'06]

$$[t^n]F(t,1) = \frac{2}{n(n+1)} \binom{4n+1}{n-1}$$

Planar maps, triangulations

Def. Planar map = connected graph embedded in the plane up to isotopy

Planar maps, triangulations

Def. Planar map = connected graph embedded in the plane up to isotopy

rooted map = map + marked corner with the outer face on its left

• Triangulation = simple planar map with all faces of degree 3

Let $\mathcal{T}_n :=$ set of rooted triangulations on n+3 vertices [Tutte'62]: $|\mathcal{T}_n| = \frac{2}{n(n+1)} {4n+1 \choose n-1}$ (bijective proof [Poulalhon,Schaeffer'06])

[Schnyder'89]

[Schnyder'89]

• A Schnyder wood with no cw circuit is called **minimal**

[Schnyder'89]

• A Schnyder wood with no cw circuit is called **minimal**

[Schnyder'89]

• A Schnyder wood with no cw circuit is called **minimal**

[Schnyder'89]

- A Schnyder wood with no cw circuit is called **minimal**
- **Theo:** Any triangulation has a unique minimal Schnyder wood (cf set of Schnyder woods on fixed triangulation is a distributive lattice) [Ossona de Mendez'94, Brehm'03, Felsner'03]

The Bernardi-Bonichon bijection [Bernardi, Bonichon'07] Bijection between T_n and I_n via superfamilies

Schnyder woods on n+3 vertices

non-crossing pairs of Dyck paths of lengths 2n

The ν **-Tamari lattice**

[Préville-Ratelle, Viennot'16]

u-Tamari lattice: poset Tam_{ν} on \mathcal{W}_{ν} for the covering relation

 $\operatorname{Can}(\gamma) = (E, E, N, N, E)$

 $\operatorname{Can}(\gamma) = (E, E, N, N, E)$

• Two types of covering relation

Hence $\gamma \leq \gamma'$ in $\operatorname{Tam}_n \Rightarrow \operatorname{Canopy}(\gamma) \leq \operatorname{Canopy}(\gamma')$ (with N < E)

[Préville-Ratelle, Viennot'16], [Fang, Préville-Ratelle'17]

covering relations commute under the bijection

 $\mathcal{I}_{\nu} := \{\gamma, \gamma' \mid \gamma \leq \gamma' \text{ in } \operatorname{Tam}_{\nu}\}$ $\mathcal{G}_n := \bigcup_{\nu \in \{E,N\}^n} \mathcal{I}_{\nu} \qquad \qquad \mathcal{G}_{i,j} := \bigcup_{\nu \in \mathfrak{S}(E^i N^j)} \mathcal{I}_{\nu}$

 $\mathcal{I}_{\nu} := \{\gamma, \gamma' \mid \gamma \leq \gamma' \text{ in } \operatorname{Tam}_{\nu}\}$ $\mathcal{G}_n := \bigcup_{\nu \in \{E,N\}^n} \mathcal{I}_{\nu} \qquad \qquad \mathcal{G}_{i,j} := \bigcup_{\nu \in \mathfrak{S}(E^i N^j)} \mathcal{I}_{\nu}$ (non-separable map = no cut-vertex such as \int [Fang, Préville-Ratelle'17] Let $\mathcal{N}_n := \{ \text{rooted non} - \text{sep. maps with } n+2 \text{ edges} \}$ Let $\mathcal{N}_{i,j} := \{ \text{rooted non} - \text{sep. maps with } i+2 \text{ vertices and } j+2 \text{ faces} \}$ Then $|\mathcal{G}_n \leftrightarrow \mathcal{N}_n|$ and more precisely $|\mathcal{G}_{i,j} \leftrightarrow \mathcal{N}_{i,j}|$

 $\mathcal{I}_{\nu} := \{\gamma, \gamma' \mid \gamma \leq \gamma' \text{ in } \operatorname{Tam}_{\nu}\}$ $\mathcal{G}_n := \bigcup_{\nu \in \{E,N\}^n} \mathcal{I}_{\nu}$ $\mathcal{G}_{i,j} := \cup_{\nu \in \mathfrak{S}(E^i N^j)} \mathcal{I}_{\nu}$ (non-separable map = no cut-vertex such as \int [Fang, Préville-Ratelle'17] Let $\mathcal{N}_n := \{ \text{rooted non} - \text{sep. maps with } n+2 \text{ edges} \}$ Let $\mathcal{N}_{i,j} := \{ \text{rooted non} - \text{sep. maps with } i+2 \text{ vertices and } j+2 \text{ faces} \}$ Then $|\mathcal{G}_n \leftrightarrow \mathcal{N}_n|$ and more precisely $|\mathcal{G}_{i,j} \leftrightarrow \mathcal{N}_{i,j}|$ $\Rightarrow |\mathcal{G}_n| = |\mathcal{N}_n| = \frac{2(3n+3)!}{(n+2)!(2n+3)!} \text{ and } |\mathcal{G}_{i,j}| = |\mathcal{N}_{i,j}| = \frac{(2i+j+1)!(2j+i+1)!}{(i+1)!(j+1)!(2i+1)!(2j+1)!}$ [Tutte'63] [Brown-Tutte'64]

 $\mathcal{I}_{\nu} := \{\gamma, \gamma' \mid \gamma \leq \gamma' \text{ in } \operatorname{Tam}_{\nu}\}$ $\mathcal{G}_n := \bigcup_{\nu \in \{E,N\}^n} \mathcal{I}_{\nu}$ $\mathcal{G}_{i,j} := \cup_{\nu \in \mathfrak{S}(E^i N^j)} \mathcal{I}_{\nu}$ (non-separable map = no cut-vertex such as \sum [Fang, Préville-Ratelle'17] Let $\mathcal{N}_n := \{ \text{rooted non} - \text{sep. maps with } n+2 \text{ edges} \}$ Let $\mathcal{N}_{i,j} := \{ \text{rooted non} - \text{sep. maps with } i+2 \text{ vertices and } j+2 \text{ faces} \}$ Then $|\mathcal{G}_n \leftrightarrow \mathcal{N}_n|$ and more precisely $|\mathcal{G}_{i,j} \leftrightarrow \mathcal{N}_{i,j}|$ $\Rightarrow |\mathcal{G}_n| = |\mathcal{N}_n| = \frac{2(3n+3)!}{(n+2)!(2n+3)!} \text{ and } |\mathcal{G}_{i,j}| = |\mathcal{N}_{i,j}| = \frac{(2i+j+1)!(2j+i+1)!}{(i+1)!(j+1)!(2i+1)!(2j+1)!}$ [Tutte'63] [Brown-Tutte'64] **Rk:** $\mathcal{N}_{i,j} \longleftrightarrow \mathcal{Q}_{i,j} := \{\text{rooted simple quadrang. } i+2 \text{ vertices } j+2 \text{ faces} \}$

2 Superfamilies for generalized Tamari intervals

• If $\gamma \leq \gamma'$ in Tam_{ν} then γ is below γ' (and above ν)

 $\Rightarrow \left| \mathcal{G}_{i,j} \subseteq \mathcal{R}_{i,j} \right| \text{ with } \mathcal{R}_{i,j} := \{ \text{non-crossing triples from } (0,0) \text{ to } (i,j) \}$

a triple in $\mathcal{R}_{7,5}$

2 Superfamilies for generalized Tamari intervals

• An interval $(\gamma, \gamma') \in \mathcal{I}_n$ is called synchronized if $\operatorname{Can}(\gamma) = \operatorname{Can}(\gamma')$ Let $\mathcal{S}_n :=$ subfamily of synchronized intervals from \mathcal{I}_n .

Then
$$\mathcal{G}_n \simeq \mathcal{S}_n \subseteq \mathcal{I}_n$$

(Rk: on the other hand $\mathcal{I}_n \subset \mathcal{G}_{2n}$)

2 Superfamilies for generalized Tamari intervals

• An interval $(\gamma, \gamma') \in \mathcal{I}_n$ is called synchronized if $\operatorname{Can}(\gamma) = \operatorname{Can}(\gamma')$ Let $\mathcal{S}_n :=$ subfamily of synchronized intervals from \mathcal{I}_n .

Then
$$\mathcal{G}_n \simeq \mathcal{S}_n \subseteq \mathcal{I}_n$$

(Rk: on the other hand $\mathcal{I}_n \subset \mathcal{G}_{2n}$)

Let $S_{i,j} :=$ subfamily of synchronized intervals from \mathcal{I}_{i+j-1} . where common canopy word is in $\mathfrak{S}(E^i N^j)$

Then
$$\mathcal{G}_{i,j} \simeq \mathcal{S}_{i,j} \subseteq \mathcal{I}_{i+j-1}$$

Non-intersecting triples and Baxter families

A **Baxter family** is a family $\mathcal{B}_{i,j}$ indexed by two parameters i, j such that

$$|\mathcal{B}_{i,j}| = 2 \frac{(i+j)!(i+j+1)!(i+j+2)!}{i!(i+1)!(i+2)!j!(j+1)!(j+2)!}$$

non-intersecting triples of walks

Lindström-Gessel-Viennot lemma

separating decompositions

[F, Poulalhon, Schaeffer'09] [Felsner,F,Noy,Orden'11] plane bipolar orientations

[Albenque,Poulalhon'15] [Kenyon et al.'19] rectangular floorplans

[Dulucq,Guibert'96] [Ackerman et al.'06]

 $\operatorname{Sep}_{i,j} :=$ set of separating decompositions with i+2 vertices, j+2 faces

 $\operatorname{Sep}_{i,j} :=$ set of separating decompositions with i+2 vertices, j+2 faces

 Theorem: [de Fraysseix et al.95]
Any simple quadrangulation admits a separating decomposition It has a unique one that is minimal (no cw cycle)
Property: edges in each color form a tree

Bijection via separating decompositions

Bijection via separating decompositions

[F, Humbert'19]

The mapping is a bijection between $\text{Sep}_{i,j}$ and $\mathcal{R}_{i,j}$ A separating decomposition is minimal iff its image is in $\mathcal{G}_{i,j}$ \Rightarrow specialization into a bijection from $\mathcal{Q}_{i,j}$ to $\mathcal{G}_{i,j}$

Link to the Bernardi-Bonichon bijection

mapping preserves minimality

 $\Rightarrow \text{Bernardi-Bonichon bijection} \simeq \text{case where white vertices have blue indegree 1} \\ \text{(bottom-walk} = (NE)^n\text{)}$

Link to the Bernardi-Bonichon bijection

mapping preserves minimality

 $\Rightarrow \text{Bernardi-Bonichon bijection} \simeq \text{case where white vertices have blue indegree 1} \\ \text{(bottom-walk} = (NE)^n\text{)}$

Not yet a bijective interpretation of the formula

$$I_n^{(m)} = \frac{m+1}{m(nm+1)} \binom{(m+1)^2 n + m}{n-1}$$

Symmetric reformulation of the bijection

Symmetric reformulation of the bijection

Corollary: bijection commutes with half-turn rotation \Rightarrow stability of $\mathcal{G}_{i,j} \subset \mathcal{R}_{i,j}$ under half-turn rotation

Proof of the bijection $\operatorname{Sep}_{i,j} \longleftrightarrow \mathcal{R}_{i,j}$

Proof of the bijection $\operatorname{Sep}_{i,j} \longleftrightarrow \mathcal{R}_{i,j}$

Non-minimality on arc-diagrams

non-minimal (i.e., ∃ clockwise cycle) ↓ ∃ clockwise 4-cycle

Non-minimality on arc-diagrams

non-minimal (i.e., ∃ clockwise cycle) ↓ ∃ clockwise 4-cycle

Remains to see that for $R \in \mathcal{R}_{i,j}$ R is in $\mathcal{G}_{i,j}$ iff arc-diagram of R has no

Bracket-vectors in the ν **-Tamari lattice**

[Ceballos, Padrol, Sarniento'18]

 $V_{\nu}(\gamma) = (2, 0, 2, 2, 4)$

Property: $\gamma \leq \gamma'$ in Tam_{ν} iff $V_{\nu}(\gamma) \leq V_{\nu}(\gamma')$

 $(\boldsymbol{\nu}, \boldsymbol{\gamma}, \boldsymbol{\gamma'}) \in \mathcal{R}_{7,5}$

$$(\boldsymbol{\nu}, \gamma, \boldsymbol{\gamma'}) \in \mathcal{R}_{7,5}$$

$$(\boldsymbol{\nu}, \gamma, \boldsymbol{\gamma'}) \in \mathcal{R}_{7,5}$$

 \Leftrightarrow

 $(\boldsymbol{\nu}, \boldsymbol{\gamma}, \boldsymbol{\gamma'}) \in \mathcal{R}_{7,5}$

 $V_{\nu}(\gamma) \leq V_{\nu}(\gamma') \Leftrightarrow \mathsf{no}$

Other approach via the canopy

Recall that if $\gamma \leq \gamma'$ in Tam_n then $\operatorname{Can}(\gamma) \leq \operatorname{Can}(\gamma')$ (with N < E)

• Let F(x, y, z) := series of Tamari intervals, with $x^{\#[E]}y^{\#[N]}z^{\#[N]}z^{\#[N]}$

 $F(x, y, z) = 1 + (x + y + z) + (x^{2} + y^{2} + z^{2} + 3xz + 3yz + 4xy)$ $x^{3} + y^{3} + z^{3} + 6x^{2}z + 6xz^{2} + 10x^{2}y + 10xy^{2} + 6y^{2}z + 6yz^{2} + 21xyz$

Rk: $t F(t, t, t) = \sum_{n \ge 1} |\mathcal{I}_n| t^n$ $F(x, y, 0) = \sum_{i,j} |\mathcal{G}_{i,j}| x^i y^j$

3 parameters via Bernardi-Bonichon bijection

canopy-parameters via the bijection:

Composition to bijection with tree-structures [F, Poulalhon, Schaeffer'07]

Composition to bijection with tree-structures [F, Poulalhon, Schaeffer'07]

canopy-parameters via the bijection:

$$\binom{E}{N} \xrightarrow{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet}$$

Results

• Trivariate generating function expression:

$$F = xR + yG + zRG - \frac{RG}{(1+R)(1+G)}$$

where
$$\begin{cases} R &= (y+zR)(1+R)(1+G)^2 \\ G &= (x+zG)(1+G)(1+R)^2 \end{cases}$$

• Simplification of the trees in the synchronized case:

known to be in bijection to quadrangulations [Schaeffer'98, Bernardi, F'10]

New Tamari intervals and canopy symmetry

• An interval $(\gamma, \gamma') \in \mathcal{I}_n$ is called **new** if (with dissection point of view) γ and γ' have **no common chord** [Chapoton'06]

an interval $\gamma \leq \gamma'$ that is not new

New Tamari intervals and canopy symmetry

• An interval $(\gamma, \gamma') \in \mathcal{I}_n$ is called **new** if (with dissection point of view) γ and γ' have **no common chord** [Chapoton'06]

an interval $\gamma \leq \gamma'$ that is not new

• Let G(x, y, z) := series F(x, y, z) restricted to new Tamari intervals $\frac{1}{z}G(x, y, z) = 1 + (x + y + z) + (x^2 + y^2 + z^2 + 3xy + 3xz + 3yz)$ $+(x^3 + y^3 + z^3 + 6x^2y + 6xy^2 + 6x^2z + 6xz^2 + 6y^2z + 6yz^2 + 17xyz) + \cdots$ symmetry in the 3 variables! New Tamari intervals and canopy symmetry

• An interval $(\gamma, \gamma') \in \mathcal{I}_n$ is called **new** if (with dissection point of view) γ and γ' have **no common chord** [Chapoton'06]

an interval $\gamma \leq \gamma'$ that is not new

• Let G(x, y, z) := series F(x, y, z) restricted to new Tamari intervals $\frac{1}{z}G(x, y, z) = 1 + (x + y + z) + (x^2 + y^2 + z^2 + 3xy + 3xz + 3yz)$ $+(x^3 + y^3 + z^3 + 6x^2y + 6xy^2 + 6x^2z + 6xz^2 + 6y^2z + 6yz^2 + 17xyz) + \cdots$ symmetry in the 3 variables!

Bijective explanation via bipartite maps! [Fang'19+]