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Éric Fusy (CNRS/LIX, École Polytechnique)

Travaux en commun avec Abel Humbert



...

A B
C A

B C

right
rotation

left
rotation

Rotation operations on binary trees

A
B

C

A

B C

...

x

y x

y

x

y x

y



The Tamari lattice

The Tamari lattice Tamn is the partial order on Bn where
the covering relation corresponds to right rotation

n=3 n=4

Bn := set of binary trees with n nodes



Rotation ⇔ flip on triangulated dissections

cf the associahedron
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Tamari intervals
An interval in a poset (E,≤) is a pair x, x′ ∈ E such that x ≤ x′

68 intervals
n=4n=3

13 intervals

Let In :=set of intervals in Tamn
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Tamari intervals
An interval in a poset (E,≤) is a pair x, x′ ∈ E such that x ≤ x′

68 intervals
n=4n=3

13 intervals

Theorem [Chapoton’06]: |In| = 2
n(n+1)

(
4n+1
n−1

)
Very active research domain over last 10 years:

• bijective links: planar maps

• various extensions with nice counting formulas

• connections to algebra

[Bernardi,Bonichon’07] [Fang, Préville-Ratelle’16]

[Chatel,Pons’13]interval posets

m-Tamari
labelled m-Tamari
v-Tamari

[Bousquet-Mélou,F,Préville-Ratelle’11]
[Bousquet-Mélou,Chapuy,Préville-Ratelle’12]
[Préville-Ratelle, Viennot’14]

[Bergeron, Préville-Ratelle’11]

Let In :=set of intervals in Tamn



The covering relation for Dyck walks

T1
T2

D1

D2

• Encoding by left-to-right postfix order (⇔ right-to-left prefix order)
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The covering relation for Dyck walks

T1
T2

D1

D2

A

B

C ≺
A

B C

• Encoding by left-to-right postfix order (⇔ right-to-left prefix order)

• Effect of a rotation on the associated Dyck walk:

Rk: If γ ≤ γ′ in Tamn then γ is below γ′



Bracket-vectors
Bracket-vector of a Dyck walk
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Bracket-vectors
Bracket-vector of a Dyck walk

5

2

4

4

5

5

2

4

4

5

V (γ) = (5, 2, 4, 4, 5)

(5, 2, 4, 4, 5)

4

4

5

5

4

(5, 4, 4, 4, 5)

≺

γ

Property: γ ≤ γ′ in Tamn iff V (γ) ≤ V (γ′) [Huang,Tamari’72]



Recursive decomposition of intervals
• Reduction of an interval (γ, γ′) ∈ In:

⇔ ⇔
,

size n size n−1

[Chapoton’06]
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Recursive decomposition of intervals
• Reduction of an interval (γ, γ′) ∈ In:

⇔ ⇔
,

Let F (t, u) the GF, with t↔ size and u↔ #(bottom-contacts)

Then:

size n size n−1

F (t, u) = u + t · u
F (t, u)− F (t, 1)

u− 1
· F (t, u)

[Chapoton’06]

[Brown, Tutte, Bousquet-Mélou Jehanne’06]
[tn]F (t, 1) = 2

n(n+1)

(
4n+1
n−1

)
Quadratic method (or guessing-checking) gives

(Rk: |In| = [tn]F (t, 1))



Planar maps, triangulations

= 6=

Def. Planar map = connected graph embedded in the plane up to isotopy

rooted map = map + marked corner

Def. Planar map = connected graph embedded in the plane up to isotopy

with the outer face on its left



Planar maps, triangulations

[Tutte’62]: |Tn| = 2
n(n+1)

(
4n+1
n−1

)
• Triangulation = simple planar map

= 6=

Def. Planar map = connected graph embedded in the plane up to isotopy

rooted map = map + marked corner

Def. Planar map = connected graph embedded in the plane up to isotopy

with the outer face on its left

with all faces of degree 3

Let Tn := set of rooted triangulations on n+ 3 vertices
(bijective proof [Poulalhon,Schaeffer’06])
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Schnyder woods Local conditions:

Theo: Any triangulation admits a Schnyder wood [Schnyder’89]

• A Schnyder wood with no cw circuit is called minimal

v0

v1v2

minimal

Theo: Any triangulation has a unique minimal Schnyder wood
(cf set of Schnyder woods on fixed triangulation is a distributive lattice)

[Ossona de Mendez’94, Brehm’03, Felsner’03]

Property: the edges in each color form a tree



The Bernardi-Bonichon bijection [Bernardi, Bonichon’07]

Schnyder woods on n+ 3 vertices

non-crossing pairs of Dyck paths of lengths 2n
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Bijection between Tn and In via superfamilies



The Bernardi-Bonichon bijection [Bernardi, Bonichon’07]

Schnyder woods on n+ 3 vertices

non-crossing pairs of Dyck paths of lengths 2n

minimal

in In

0

1 0

3

⇒ ⇒
0

1

0

3
bracket-vectors

3 2 3 3

1 4 3 4

not minimal

0

1

0

3

⇒ ⇒

0

1

0

3

4 2 4 4

2 2 4 4

minimal

bracket-vectors

Bijection between Tn and In via superfamilies



The ν-Tamari lattice

For ν any walk in {E,N}n, let Wν := {walks above ν}.

ν-Tamari lattice: poset Tamν on Wν for the covering relation

≺

γ γ′

ν = EENENEENNE

γ

[Préville-Ratelle,Viennot’16]

p

p′

p′= next point after p with
same horizontal distance to ν

ν p

p′



Other realization from the canopy
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N if followed by East step

Can(γ) = (E,E,N,N,E)
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Other realization from the canopy

E

E

E

N

N

γ

north step
E if followed by North step

N if followed by East step

Can(γ) = (E,E,N,N,E)

on binary tree

E E N N E

≺

E

N

E

N

E
E

E
N

• Two types of covering relation

Hence γ ≤ γ′ in Tamn ⇒ Canopy(γ) ≤ Canopy(γ′) (with N < E)

E
E

E
N

E
E

E
N



Other realization from the canopy
[Préville-Ratelle, Viennot’16], [Fang, Préville-Ratelle’17]

covering relations commute under the bijection

Nα0Eβ0Nα1Eβ1 · · ·
γ = Eb0NEb1N . . .

ν = Ea0NEa1N . . .

αi = ai + 1
βi = bi + 1



Generalized Tamari intervals
Iν := {γ, γ′ | γ ≤ γ′ in Tamν}

Gn := ∪ν∈{E,N}nIν Gi,j := ∪ν∈S(EiNj)Iν

Rk: |Gi,j | = |Gj,i| from involution ≤ ⇔
NEENEE

≤
E N N E N N

mirrors
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Generalized Tamari intervals
Iν := {γ, γ′ | γ ≤ γ′ in Tamν}

Gn := ∪ν∈{E,N}nIν Gi,j := ∪ν∈S(EiNj)Iν

[Fang, Préville-Ratelle’17]

Rk: |Gi,j | = |Gj,i| from involution

( non-separable map = no cut-vertex such as )

≤ ⇔
NEENEE

≤
E N N E N N

mirrors

Let Nn := {rooted non− sep. maps with n+2 edges}
Let Ni,j := {rooted non− sep. maps with i+2 vertices and j+2 faces}
Then Gn ←→ Nn and more precisely Gi,j ←→ Ni,j

⇒ |Gn|= |Nn|= 2(3n+3)!
(n+2)!(2n+3)!

and |Gi,j |= |Ni,j |= (2i+j+1)!(2j+i+1)!
(i+1)!(j+1)!(2i+1)!(2j+1)!

[Tutte’63] [Brown-Tutte’64]

Rk: Ni,j ←→ Qi,j := {rooted simple quadrang. i+ 2 vertices j + 2 faces}



2 Superfamilies for generalized Tamari intervals

≺

γ

p
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p′
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• If γ ≤ γ′ in Tamν then
γ is below γ′ (and above ν)

⇒ Gi,j ⊆ Ri,j with Ri,j := {non-crossing triples from (0, 0) to (i, j)}

a triple in R7,5
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• An interval (γ, γ′) ∈ In is called synchronized if Can(γ) = Can(γ′)

Then Gn ' Sn ⊆ In



2 Superfamilies for generalized Tamari intervals

≺

γ

p

p′

ν p

p′
γ′

• If γ ≤ γ′ in Tamν then
γ is below γ′ (and above ν)

⇒ Gi,j ⊆ Ri,j with Ri,j := {non-crossing triples from (0, 0) to (i, j)}

a triple in R7,5

Let Sn := subfamily of synchronized intervals from In.

(Rk: on the other hand In ⊂ G2n)

• An interval (γ, γ′) ∈ In is called synchronized if Can(γ) = Can(γ′)

Then Gn ' Sn ⊆ In

Let Si,j := subfamily of synchronized intervals from Ii+j−1.
where common canopy word is in S(EiNj)

Then Gi,j ' Si,j ⊆ Ii+j−1



Non-intersecting triples and Baxter families
A Baxter family is a family Bi,j indexed by two parameters i, j such that

|Bi,j | = 2
(i+ j)!(i+ j + 1)!(i+ j + 2)!

i!(i+ 1)!(i+ 2)!j!(j + 1)!(j + 2)!

non-intersecting separating plane bipolar rectangular
triples of walks decompositions orientations floorplans

[Felsner,F,Noy,Orden’11]
[Albenque,Poulalhon’15]Lindström-Gessel-

Viennot lemma
[Dulucq,Guibert’96]
[Ackerman et al.’06]

[F, Poulalhon, Schaeffer’09]

s

t

[Kenyon et al.’19]



Bijection via separating decompositions

s

t

s′ t′
/∈ {s, t}

Local conditions:
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t

Sepi,j := set of separating decompositions with i+2 vertices, j+2 faces



Bijection via separating decompositions

s

t

s′ t′
/∈ {s, t}

Local conditions:

s

t

Theorem:

It has a unique one that is minimal (no cw cycle)
Any simple quadrangulation admits a separating decomposition

[de Fraysseix et al.95]

Sepi,j := set of separating decompositions with i+2 vertices, j+2 faces

Property: edges in each color form a tree



Bijection via separating decompositions
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close to bijection in
[F, Poulalhon, Schaeffer’09]



Bijection via separating decompositions

N
E E E

N

N

N

E

E

N

E

E
3

0

1

2

0

1

1

1

0

1

2 2

, ,

,

, ,

3
0
2
1
0
1

1
0
1
1
2
2

s

s t′′

[F, Humbert’19]

The mapping is a bijection between Sepi,j and Ri,j
A separating decomposition is minimal iff its image is in Gi,j
⇒ specialization into a bijection from Qi,j to Gi,j

s

t

s′
t′

close to bijection in
[F, Poulalhon, Schaeffer’09]



Link to the Bernardi-Bonichon bijection

mapping preserves minimality

⇒ Bernardi-Bonichon bijection ' case where white vertices have blue indegree 1
(bottom-walk= (NE)n)



Link to the Bernardi-Bonichon bijection

mapping preserves minimality

More generally,
m-Tamari intervals
ν = (NEm)n

minimal separating decompositions
where white vertices have blue indegree m

Not yet a bijective interpretation of the formula

I
(m)
n =

m+ 1

m(nm+ 1)

((m+ 1)2n+m

n− 1

)

⇒ Bernardi-Bonichon bijection ' case where white vertices have blue indegree 1
(bottom-walk= (NE)n)



Symmetric reformulation of the bijection
2-book embedding of

st′

s′t

3 0 2 1 0 1

1 0 1 1 2 2

E E E E E E EN N N N N

a separating decomposition

3
0
2
1
0
1

1
0
1
1
2
2

[Felsner et al.’07]



Symmetric reformulation of the bijection

3
0
2
1
0
1

1
0
1
1
2
2

Corollary: bijection commutes with half-turn rotation

3
0
2
1
0
1

1
0
1
1
2
2

⇒ stability of Gi,j ⊂ Ri,j under half-turn rotation

half-turn

half-turn



Proof of the bijection Sepi,j ←→ Ri,j
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Non-minimality on arc-diagrams

· · · b′ w′

bw

b′ w′

bw

2-book embedding arc-diagram

non-minimal (i.e., ∃ clockwise cycle)
⇓

∃ clockwise 4-cycle



Non-minimality on arc-diagrams

· · · b′ w′

bw

b′ w′

bw

2-book embedding arc-diagram

non-minimal (i.e., ∃ clockwise cycle)
⇓

∃ clockwise 4-cycle

Remains to see that for R ∈ Ri,j
R is in Gi,j iff arc-diagram of R has no



Bracket-vectors in the ν-Tamari lattice

0 1 2 3
ν

γ

2 0 2 2 4

Vν(γ) = (2, 0, 2, 2, 4)

[Ceballos,Padrol,Sarniento’18]

Property: γ ≤ γ′ in Tamν iff Vν(γ) ≤ Vν(γ′)

4



Condition for R ∈ Ri,j to be in Gi,j

(ν, γ, γ′) ∈ R7,5



Condition for R ∈ Ri,j to be in Gi,j

(ν, γ, γ′) ∈ R7,5

γ

γ′



Condition for R ∈ Ri,j to be in Gi,j

(ν, γ, γ′) ∈ R7,5

γ

γ′

Vν(γ) ≤ Vν(γ′)⇔ no



Condition for R ∈ Ri,j to be in Gi,j

(ν, γ, γ′) ∈ R7,5

γ

γ′

Vν(γ) ≤ Vν(γ′)⇔ no no⇔



Other approach via the canopy

• Let F (x, y, z) := series of Tamari intervals, with x#
E
E

N
N

E
Ny# z#

F (x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xz + 3yz + 4xy)

x3 + y3 + z3 + 6x2z + 6xz2 + 10x2y + 10xy2 + 6y2z + 6yz2 + 21xyz

Rk: symmetry x↔ y cf ≤ ⇔
NEENEE

≤
E N N E N N

mirrors

t F (t, t, t) =
∑
n≥1 |In|tnRk:

F (x, y, 0) =
∑
i,j |Gi,j |xiyj

Recall that if γ ≤ γ′ in Tamn then Can(γ) ≤ Can(γ′) (with N < E)



3 parameters via Bernardi-Bonichon bijection

(E
N

) (N
N

) (E
E

)

0

1

0

3

⇒ ⇒

0

1

0

3

canopy-parameters via the bijection:

minimal



Composition to bijection with tree-structures
[F, Poulalhon, Schaeffer’07]

3-mobile



Composition to bijection with tree-structures
[F, Poulalhon, Schaeffer’07]

(E
N

) (N
N

) (E
E

)

3-mobile

canopy-parameters via the bijection:



Results
• Trivariate generating function expression:

• Simplification of the trees in the synchronized case:

known to be in bijection to quadrangulations
[Schaeffer’98, Bernardi, F’10]

F = xR+ yG+ zRG− RG

(1 +R)(1 +G)

where

{
R = (y + zR)(1 +R)(1 +G)2

G = (x+ zG)(1 +G)(1 +R)2

no



New Tamari intervals and canopy symmetry

,

[Chapoton’06]

γ γ′

an interval γ ≤ γ′ that is not new

• An interval (γ, γ′) ∈ In is called new if (with dissection
point of view) γ and γ′ have no common chord



New Tamari intervals and canopy symmetry

,

[Chapoton’06]

γ γ′

an interval γ ≤ γ′ that is not new

• Let G(x, y, z) := series F (x, y, z) restricted to new Tamari intervals
1
z
G(x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xy + 3xz + 3yz)

+(x3 + y3 + z3 + 6x2y + 6xy2 + 6x2z + 6xz2 + 6y2z + 6yz2 + 17xyz) + · · ·

symmetry in the 3 variables!

• An interval (γ, γ′) ∈ In is called new if (with dissection
point of view) γ and γ′ have no common chord



New Tamari intervals and canopy symmetry

,

[Chapoton’06]

γ γ′

an interval γ ≤ γ′ that is not new

• Let G(x, y, z) := series F (x, y, z) restricted to new Tamari intervals
1
z
G(x, y, z) = 1 + (x+ y + z) + (x2 + y2 + z2 + 3xy + 3xz + 3yz)

+(x3 + y3 + z3 + 6x2y + 6xy2 + 6x2z + 6xz2 + 6y2z + 6yz2 + 17xyz) + · · ·

symmetry in the 3 variables!

• An interval (γ, γ′) ∈ In is called new if (with dissection
point of view) γ and γ′ have no common chord

Bijective explanation via bipartite maps! [Fang’19+]


