Some combinatorial structures related to operads

Samuele Giraudo
LIGM, Université Paris-Est Marne-la-Vallée

Séminaire Philippe Flajolet

February 7, 2019

Outline

Types of algebraic structures and operads

From monoids to operads

Operads as tools for enumeration

Pairs of graded graphs

Outline

Types of algebraic structures and operads

Types of algebraic structures

Algebraic combinatorics deals with sets (or spaces) of structured objects:

- monoids;
- groups;
- lattices;
- associative alg.;
- Hopf bialg.;
- Lie alg.;
- pre-Lie alg.;
- dendriform alg.;
- duplicial alg.

Types of algebraic structures

Algebraic combinatorics deals with sets (or spaces) of structured objects:

- monoids;
- groups;
- lattices;
- associative alg.;
- Hopf bialg.;
- Lie alg.;
- pre-Lie alg.;
- dendriform alg.;
- duplicial alg.

Such types of algebras are specified by

1. a collection of operations;
2. a collection of relations between operations.

Types of algebraic structures

Algebraic combinatorics deals with sets (or spaces) of structured objects:

- monoids;
- groups;
- lattices;
- associative alg.;
- Hopf bialg.;
- Lie alg.;
- pre-Lie alg.;
- dendriform alg.;
- duplicial alg.

Such types of algebras are specified by

1. a collection of operations;
2. a collection of relations between operations.

- Example -

The type of monoids can be specified by

1. the operations \star (binary) and $\mathbb{1}$ (nullary);
2. the relations $\left(x_{1} \star x_{2}\right) \star x_{3}=x_{1} \star\left(x_{2} \star x_{3}\right)$ and $x \star \mathbb{1}=x=\mathbb{1} \star x$.

Working with operations

Strategy to study types of algebras \sim add a level of indirection by working with algebraic structures where

Working with operations

Strategy to study types of algebras \sim add a level of indirection by working with algebraic structures where

- elements are operations

having $n=|x|$ inputs and 1 output;

Working with operations

Strategy to study types of algebras \sim add a level of indirection by working with algebraic structures where

- elements are operations

having $n=|x|$ inputs and 1 output;
- the operation is the composition operation of operations.

Working with operations

Strategy to study types of algebras \leadsto add a level of indirection by working with algebraic structures where

- elements are operations

having $n=|x|$ inputs and 1 output;
- the operation is the composition operation of operations. If x and y are two operations,

1. by selecting an input of x specified by its position i;
2. and by grafting the output of y onto this input,

Working with operations

Strategy to study types of algebras \leadsto add a level of indirection by working with algebraic structures where

- elements are operations

having $n=|x|$ inputs and 1 output;
- the operation is the composition operation of operations. If x and y are two operations,

1. by selecting an input of x specified by its position i;
2. and by grafting the output of y onto this input, we obtain the new operation

Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple $\left(\mathcal{O}, \circ_{i}, \mathbb{1}\right)$ where

1. \mathcal{O} is a graded set

$$
\mathcal{O}:=\bigsqcup_{n \geqslant 1} \mathcal{O}(n) ;
$$

Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple $\left(\mathcal{O}, \circ_{i}, \mathbb{1}\right)$ where

1. \mathcal{O} is a graded set

$$
\mathcal{O}:=\bigsqcup_{n \geqslant 1} \mathcal{O}(n) ;
$$

2. \circ_{i} is a map, called partial composition map,

$$
\circ_{i}: \mathcal{O}(n) \times \mathcal{O}(m) \rightarrow \mathcal{O}(n+m-1), \quad 1 \leqslant i \leqslant n, \quad 1 \leqslant m ;
$$

Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple $\left(\mathcal{O}, \circ_{i}, \mathbb{1}\right)$ where

1. \mathcal{O} is a graded set

$$
\mathcal{O}:=\bigsqcup_{n \geqslant 1} \mathcal{O}(n) ;
$$

2. \circ_{i} is a map, called partial composition map,

$$
\circ_{i}: \mathcal{O}(n) \times \mathcal{O}(m) \rightarrow \mathcal{O}(n+m-1), \quad 1 \leqslant i \leqslant n, \quad 1 \leqslant m ;
$$

3. $\mathbb{1}$ is an element of $\mathcal{O}(1)$ called unit.

Operads

Operads are algebraic structures formalizing the notion of operations and their composition.

A (nonsymmetric set-theoretic) operad is a triple $\left(\mathcal{O}, \circ_{i}, \mathbb{1}\right)$ where

1. \mathcal{O} is a graded set

$$
\mathcal{O}:=\bigsqcup_{n \geqslant 1} \mathcal{O}(n) ;
$$

2. \circ_{i} is a map, called partial composition map,

$$
\circ_{i}: \mathcal{O}(n) \times \mathcal{O}(m) \rightarrow \mathcal{O}(n+m-1), \quad 1 \leqslant i \leqslant n, \quad 1 \leqslant m ;
$$

3. $\mathbb{1}$ is an element of $\mathcal{O}(1)$ called unit.

This data has to satisfy some axioms.

Operad axioms

The associativity relation

$$
\begin{aligned}
& \left(x \circ_{i} y\right) \circ_{i+j-1} z=x \circ_{i}\left(y \circ_{j} z\right) \\
& 1 \leqslant i \leqslant|x|, 1 \leqslant j \leqslant|y|
\end{aligned}
$$

says that the pictured operation can be constructed from top to bottom or from bottom to top.

Operad axioms

The associativity relation

$$
\begin{aligned}
& \left(x \circ_{i} y\right) \circ_{i+j-1} z=x \circ_{i}\left(y \circ_{j} z\right) \\
& 1 \leqslant i \leqslant|x|, 1 \leqslant j \leqslant|y|
\end{aligned}
$$

says that the pictured operation can be constructed from top to bottom or from bottom to top.

The commutativity relation

$$
\begin{aligned}
& \left(x \circ_{i} y\right) \circ_{j+|y|-1} z=\left(x \circ_{j} z\right) \circ_{i} y \\
& 1 \leqslant i<j \leqslant|x|
\end{aligned}
$$

says that the pictured operation can be constructed from left to right or from right to left.

Operad axioms

The associativity relation

$$
\begin{aligned}
& \left(x \circ_{i} y\right) \circ_{i+j-1} z=x \circ_{i}\left(y \circ_{j} z\right) \\
& 1 \leqslant i \leqslant|x|, 1 \leqslant j \leqslant|y|
\end{aligned}
$$

says that the pictured operation can be constructed from top to bottom or from bottom to top.

The commutativity relation

$$
\begin{aligned}
& \left(x \circ_{i} y\right) \circ_{j+|y|-1} z=\left(x \circ_{j} z\right) \circ_{i} y \\
& 1 \leqslant i<j \leqslant|x|
\end{aligned}
$$

says that the pictured operation can be constructed from left to right or from right to left.

The unitality relation

$$
\begin{aligned}
& \mathbb{1} \circ_{1} x=x=x \circ_{i} \mathbb{1} \\
& 1 \leqslant i \leqslant|x|
\end{aligned}
$$

says that $\mathbb{1}$ is the identity map.

Free operads

Let $\mathfrak{G}:=\bigsqcup_{n \geqslant 1} \mathfrak{G}(n)$ be a graded set.

Free operads

Let $\mathfrak{G}:=\bigsqcup_{n \geqslant 1} \mathfrak{G}(n)$ be a graded set.
The free operad over \mathfrak{G} is the operad $\mathrm{F}(\mathfrak{G})$ wherein

- $\mathrm{F}(\mathfrak{G})(n)$ is the set of all \mathfrak{G}-trees with n leaves.

- Example -

Let $\mathfrak{G}:=\mathfrak{G}(2) \sqcup \mathfrak{G}(3)$ with $\mathfrak{G}(2):=\{\mathrm{a}, \mathrm{b}\}$ and $\mathfrak{G}(3):=\{\mathrm{c}\}$.

is a \mathfrak{G}-tree having arity 8 and degree (number of internal nodes) 5 .

Free operads

Let $\mathfrak{G}:=\bigsqcup_{n \geqslant 1} \mathfrak{G}(n)$ be a graded set.
The free operad over \mathfrak{G} is the operad $\mathrm{F}(\mathfrak{G})$ wherein

- $\mathrm{F}(\mathfrak{G})(n)$ is the set of all \mathfrak{G}-trees with n leaves.

- Example -

Let $\mathfrak{G}:=\mathfrak{G}(2) \sqcup \mathfrak{G}(3)$ with $\mathfrak{G}(2):=\{\mathrm{a}, \mathrm{b}\}$ and $\mathfrak{G}(3):=\{\mathrm{c}\}$.

is a \mathfrak{G}-tree having arity 8 and degree (number of internal nodes) 5 .

- The partial composition is a tree grafting.

- Example -

Free operads

Let $\mathfrak{G}:=\bigsqcup_{n \geqslant 1} \mathfrak{G}(n)$ be a graded set.
The free operad over \mathfrak{G} is the operad $\mathrm{F}(\mathfrak{G})$ wherein

- $\mathrm{F}(\mathfrak{G})(n)$ is the set of all \mathfrak{G}-trees with n leaves.

- Example -

Let $\mathfrak{G}:=\mathfrak{G}(2) \sqcup \mathfrak{G}(3)$ with $\mathfrak{G}(2):=\{\mathrm{a}, \mathrm{b}\}$ and $\mathfrak{G}(3):=\{\mathrm{c}\}$.

is a \mathfrak{G}-tree having arity 8 and degree (number of internal nodes) 5.

- The partial composition is a tree grafting.

- Example -

- The unit is the leaf .

Algebras over operads

Let \mathcal{O} be an operad. An algebra over \mathcal{O} is a space \mathcal{V} equipped, for all $x \in \mathcal{O}(n)$, with linear maps

$$
x: \underbrace{\mathcal{V} \otimes \cdots \otimes \mathcal{V}}_{n} \rightarrow \mathcal{V}
$$

Algebras over operads

Let \mathcal{O} be an operad. An algebra over \mathcal{O} is a space \mathcal{V} equipped, for all $x \in \mathcal{O}(n)$, with linear maps

$$
x: \underbrace{\mathcal{V} \otimes \cdots \otimes \mathcal{V}}_{n} \rightarrow \mathcal{V}
$$

such that $\mathbb{1}$ is the identity map on \mathcal{V}

Algebras over operads

Let \mathcal{O} be an operad. An algebra over \mathcal{O} is a space \mathcal{V} equipped, for all $x \in \mathcal{O}(n)$, with linear maps

$$
x: \underbrace{\mathcal{V} \otimes \cdots \otimes \mathcal{V}}_{n} \rightarrow \mathcal{V}
$$

such that $\mathbb{1}$ is the identity map on \mathcal{V} and the compatibility relation

holds for any $x, y \in \mathcal{O}, i \in[|x|]$, and $v_{1}, \ldots, v_{|x|+|y|-1} \in \mathcal{V}$.

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$.

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$. This operad is minimally generated by \star_{2}.

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$. This operad is minimally generated by \star_{2}.
Any algebra over As is a space \mathcal{V} endowed with linear operations \star_{n} of arity $n \geqslant 1$

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$. This operad is minimally generated by \star_{2}.
Any algebra over As is a space \mathcal{V} endowed with linear operations \star_{n} of arity $n \geqslant 1$ where \star_{2} satisfies, for all $v_{1}, v_{2}, v_{3} \in \mathcal{V}$,

$$
\begin{gathered}
\left(\star_{2} \circ_{1} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right) \\
\| \\
\left(\star_{2} \circ_{2} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)
\end{gathered}
$$

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$. This operad is minimally generated by \star_{2}.
Any algebra over As is a space \mathcal{V} endowed with linear operations \star_{n} of arity $n \geqslant 1$ where \star_{2} satisfies, for all $v_{1}, v_{2}, v_{3} \in \mathcal{V}$,

$$
\begin{aligned}
& \left(\star_{2} \circ_{1} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)=\star_{2}\left(\star_{2}\left(v_{1}, v_{2}\right), v_{3}\right) \\
& \| \\
& \left(\star_{2} \circ_{2} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)
\end{aligned}
$$

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$. This operad is minimally generated by \star_{2}.
Any algebra over As is a space \mathcal{V} endowed with linear operations \star_{n} of arity $n \geqslant 1$ where \star_{2} satisfies, for all $v_{1}, v_{2}, v_{3} \in \mathcal{V}$,

$$
\begin{gathered}
\left(\star_{2} \circ_{1} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)=\star_{2}\left(\star_{2}\left(v_{1}, v_{2}\right), v_{3}\right) \\
\| \\
\left(\star_{2} \circ_{2} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)=\star_{2}\left(v_{1}, \star_{2}\left(v_{2}, v_{3}\right)\right) .
\end{gathered}
$$

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$. This operad is minimally generated by \star_{2}.
Any algebra over As is a space \mathcal{V} endowed with linear operations \star_{n} of arity $n \geqslant 1$ where \star_{2} satisfies, for all $v_{1}, v_{2}, v_{3} \in \mathcal{V}$,

$$
\begin{aligned}
\left(\star_{2} \circ_{1} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right) & =\star_{2}\left(\star_{2}\left(v_{1}, v_{2}\right), v_{3}\right) \\
\| & \| \\
\left(\star_{2} \circ_{2} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right) & =\star_{2}\left(v_{1}, \star_{2}\left(v_{2}, v_{3}\right)\right) .
\end{aligned}
$$

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$. This operad is minimally generated by \star_{2}.
Any algebra over As is a space \mathcal{V} endowed with linear operations \star_{n} of arity $n \geqslant 1$ where \star_{2} satisfies, for all $v_{1}, v_{2}, v_{3} \in \mathcal{V}$,

$$
\begin{aligned}
\left(\star_{2} \circ_{1} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right) & =\star_{2}\left(\star_{2}\left(v_{1}, v_{2}\right), v_{3}\right) \\
\| & \| \\
\left(\star_{2} \circ_{2} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right) & =\star_{2}\left(v_{1}, \star_{2}\left(v_{2}, v_{3}\right)\right) .
\end{aligned}
$$

Using infix notation for the binary operation \star_{2}, we obtain the relation

$$
\left(v_{1} \star_{2} v_{2}\right) \star_{2} v_{3}=v_{1} \star_{2}\left(v_{2} \star_{2} v_{3}\right),
$$

so that algebras over As are associative algebras.

Algebras over operads

- Example -

Let As be the associative operad defined by $\operatorname{As}(n):=\left\{\star_{n}\right\}$ for all $n \geqslant 1$ and $\star_{n} \circ_{i} \star_{m}:=\star_{n+m-1}$. This operad is minimally generated by \star_{2}.
Any algebra over As is a space \mathcal{V} endowed with linear operations \star_{n} of arity $n \geqslant 1$ where \star_{2} satisfies, for all $v_{1}, v_{2}, v_{3} \in \mathcal{V}$,

$$
\begin{gathered}
\left(\star_{2} \circ_{1} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)=\star_{2}\left(\star_{2}\left(v_{1}, v_{2}\right), v_{3}\right) \\
\| \\
\left(\star_{2} \circ_{2} \star_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)=\star_{2}\left(v_{1}, \star_{2}\left(v_{2}, v_{3}\right)\right) .
\end{gathered}
$$

Using infix notation for the binary operation \star_{2}, we obtain the relation

$$
\left(v_{1} \star_{2} v_{2}\right) \star_{2} v_{3}=v_{1} \star_{2}\left(v_{2} \star_{2} v_{3}\right),
$$

so that algebras over As are associative algebras.
In the same way, there are operads for

- Lie alg.;
- pre-Lie alg. [Chapoton, Livernet, 2001];
- dendriform alg. [Loday, 2001];
- duplicial alg. [Loday, 2008];
- diassociative alg. [Loday, 2001];
- brace alg.

Scope of operads

As main benefits, operads

- offer a formalism to compute over operations;
- allow us to work virtually with all the structures of a type;
- lead to discover the underlying combinatorics of types of algebras.

Scope of operads

As main benefits, operads

- offer a formalism to compute over operations;
- allow us to work virtually with all the structures of a type;
- lead to discover the underlying combinatorics of types of algebras.

Endowing a set of combinatorial objects with an operad structure helps to

- highlight elementary building block for the objects;
- build combinatorial structures on the objects (posets, lattices, etc.);
- enumerative prospects and discovery of statistics.

Outline

From monoids to operads

From monoids to operads

Let $\left(\mathcal{M}, \star, \mathbb{1}_{\mathcal{M}}\right)$ be a monoid.
We define $\left(\mathbb{T} \mathcal{M}, \circ_{i}, \mathbb{1}\right)$ as the triple such that

From monoids to operads

Let $\left(\mathcal{M}, \star, \mathbb{1}_{\mathcal{M}}\right)$ be a monoid.
We define $\left(T \mathcal{M}, \circ_{i}, \mathbb{1}\right)$ as the triple such that

- $T \mathcal{M}(n)$ is the set of all words of length n on \mathcal{M} seen as an alphabet.

From monoids to operads

Let $\left(\mathcal{M}, \star, \mathbb{1}_{\mathcal{M}}\right)$ be a monoid.
We define $\left(\mathbb{T} \mathcal{M}, \circ_{i}, \mathbb{1}\right)$ as the triple such that

- $\operatorname{TM}(n)$ is the set of all words of length n on \mathcal{M} seen as an alphabet.
- For any $u \in T \mathcal{M}(n)$ and $v \in T \mathcal{M}(m)$,

$$
u \circ_{i} v:=u_{1} \ldots u_{i-1}\left(u_{i} \star v_{1}\right) \ldots\left(u_{i} \star v_{m}\right) u_{i+1} \ldots u_{n} .
$$

- Example -

$$
\ln T(\mathbb{N},+, 0),
$$

$$
2100213 \circ_{5} 3001=2100522313
$$

From monoids to operads

Let $\left(\mathcal{M}, \star, \mathbb{1}_{\mathcal{M}}\right)$ be a monoid.
We define $\left(\mathbb{T} \mathcal{M}, \circ_{i}, \mathbb{1}\right)$ as the triple such that

- $\operatorname{TM}(n)$ is the set of all words of length n on \mathcal{M} seen as an alphabet.
- For any $u \in T \mathcal{M}(n)$ and $v \in T \mathcal{M}(m)$,

$$
u \circ_{i} v:=u_{1} \ldots u_{i-1}\left(u_{i} \star v_{1}\right) \ldots\left(u_{i} \star v_{m}\right) u_{i+1} \ldots u_{n}
$$

- $\mathbb{1}$ is defined as $\mathbb{1}_{\mathcal{M}}$ seen as a word of length 1 .

- Example -

$\ln T(\mathbb{N},+, 0)$,

$$
2100213 \circ_{5} 3001=2100522313
$$

From monoids to operads

Let $\left(\mathcal{M}, \star, \mathbb{1}_{\mathcal{M}}\right)$ be a monoid.
We define $\left(T \mathcal{M}, \circ_{i}, \mathbb{1}\right)$ as the triple such that
$-\operatorname{T\mathcal {M}}(n)$ is the set of all words of length n on \mathcal{M} seen as an alphabet.

- For any $u \in \mathbb{M}(n)$ and $v \in \mathbb{T} \mathcal{M}(m)$,

$$
u \circ_{i} v:=u_{1} \ldots u_{i-1}\left(u_{i} \star v_{1}\right) \ldots\left(u_{i} \star v_{m}\right) u_{i+1} \ldots u_{n}
$$

$-\mathbb{1}$ is defined as $\mathbb{1}_{\mathcal{M}}$ seen as a word of length 1 .

- Example -

$$
\ln T(\mathbb{N},+, 0),
$$

$$
2100213 \circ_{5} 3001=2100522313
$$

- Theorem [G., 2015] -

For any monoid $\mathcal{M}, T \mathcal{M}$ is an operad.

Some combinatorial suboperads

Monoid	Operad	Generators	First dimensions	Combinatorial objects
$(\mathbb{N},+, 0)$	End	-	$1,4,27,256,3125$	Endofunctions
	PF	-	$1,3,16,125,1296$	Parking functions
	PW	-	$1,3,13,75,541$	Packed words
	Per $_{0}$	-	$1,2,6,24,120$	Permutations
	PRT	01	$1,1,2,5,14,42$	Planar rooted trees
	FCat $^{(m)}$	$00,01, \ldots, 0 m$	Fuß-Catalan numbers	m-trees
	Schr 2	$00,01,10$	$1,3,11,45,197$	Schröder trees
	Motz	00,010	$1,1,2,4,9,21,51$	Motzkin words
$(\mathbb{Z} / 2 \mathbb{Z},+, 0)$	Comp	00,01	$1,2,4,8,16,32$	Compositions
$(\mathbb{Z} / 3 \mathbb{Z},+, 0)$	DA	00,01	$1,2,5,13,35,96$	Directed animals
	SComp	$00,01,02$	$1,3,27,81,243$	Seg. compositions
$(\mathbb{N}, \max , 0)$	Dias	01,10	$1,2,3,4,5$	Bin. words with exact. one 0
	Trias	$00,01,10$	$1,3,7,15,31$	Bin. words with at least one 0

Diagram of operads

Operad of integer compositions

Let Comp be the suboperad of $\mathbb{T}(\mathbb{Z} / 2 \mathbb{Z},+, 0)$ generated by $\{00,01\}$.

Operad of integer compositions

Let Comp be the suboperad of $\mathbb{T}(\mathbb{Z} / 2 \mathbb{Z},+, 0)$ generated by $\{00,01\}$. First elements:

- Comp $(1)=\{0\}$;
- Comp $(2)=\{00,01\} ;$
- Comp $(3)=\left\{000=00 \circ_{1} 00=00 \circ_{2} 00, \quad 001=01 \circ_{1} 00=00 \circ_{2} 01\right.$, $\left.010=00 \circ_{1} 01=01 \circ_{2} 01, \quad 011=01 \circ_{1} 01=01 \circ_{2} 00\right\}$.

Operad of integer compositions

Let Comp be the suboperad of $\mathbb{T}(\mathbb{Z} / 2 \mathbb{Z},+, 0)$ generated by $\{00,01\}$.
First elements:

- Comp(1) $=\{0\}$;
- Comp $(2)=\{00,01\} ;$
- Comp(3) $=\left\{000=00 \circ_{1} 00=00 \circ_{2} 00, \quad 001=01 \circ_{1} 00=00 \circ_{2} 01\right.$, $\left.010=00 \circ_{1} 01=01 \circ_{2} 01, \quad 011=01 \circ_{1} 01=01 \circ_{2} 00\right\}$.

- Proposition -

For any $n \geqslant 1, \operatorname{Comp}(n)$ is the set of all the words of length n on $\{0,1\}$ beginning by 0 .

Operad of integer compositions

Let Comp be the suboperad of $\mathbb{T}(\mathbb{Z} / 2 \mathbb{Z},+, 0)$ generated by $\{00,01\}$.
First elements:

- Comp $(1)=\{0\}$;
- Comp $(2)=\{00,01\} ;$
- Comp(3) $=\left\{000=00 \circ_{1} 00=00 \circ_{2} 00, \quad 001=01 \circ_{1} 00=00 \circ_{2} 01\right.$, $\left.010=00 \circ_{1} 01=01 \circ_{2} 01, \quad 011=01 \circ_{1} 01=01 \circ_{2} 00\right\}$.

- Proposition -

For any $n \geqslant 1, \operatorname{Comp}(n)$ is the set of all the words of length n on $\{0,1\}$ beginning by 0 .

There is a one-to-one correspondence between $\operatorname{Comp}(n)$ and the set of all ribbon diagrams with n boxes (0 : new box at right, 1 : new box below).

- Example -

Operad of integer compositions
Under this realization, the partial composition of Comp is described as follows.

The ribbon $\mathfrak{r} \circ_{i} \mathfrak{s}$ is obtained by inserting \mathfrak{s} (resp. the transpose of \mathfrak{s}) into the i th box of \mathfrak{r} when this box is (resp. is not) the highest of its column.

Operad of integer compositions

Under this realization, the partial composition of Comp is described as follows.
The ribbon $\mathfrak{r} 0_{i} \mathfrak{s}$ is obtained by inserting \mathfrak{t} (resp. the transpose of \mathfrak{s}) into the i th box of r when this box is (resp. is not) the highest of its column.

- Proposition [G., 2015] -

The operad Comp is the quotient of $\mathrm{F}(\{\infty, 8\})$ by the finest operad congruence \equiv satisfying

$$
8 \circ_{1} \infty \equiv \infty \circ_{2} 8,
$$

$$
\begin{aligned}
& 8 \circ_{1} 8 \equiv 8 \circ_{2} \infty, \\
& \infty \circ_{1} 8 \equiv 8 \circ_{2} 8 .
\end{aligned}
$$

Operad of m-trees

For any $m \geqslant 0$, let FCat ${ }^{(m)}$ be the suboperad of $T(\mathbb{N},+, 0)$ generated by $\{00,01, \ldots, 0 m\}$.

Operad of m-trees

For any $m \geqslant 0$, let FCat ${ }^{(m)}$ be the suboperad of $T(\mathbb{N},+, 0)$ generated by $\{00,01, \ldots, 0 m\}$.

- Proposition -

For any $m \geqslant 0$ and $n \geqslant 1, \mathrm{FCat}^{(m)}(n)$ is the set of all the words u of length n on \mathbb{N} satisfying $u_{1}=0$ and $0 \leqslant u_{i+1} \leqslant u_{i}+m$ for all $i \in[n-1]$.

Operad of m-trees

For any $m \geqslant 0$, let FCat ${ }^{(m)}$ be the suboperad of $T(\mathbb{N},+, 0)$ generated by $\{00,01, \ldots, 0 m\}$.

- Proposition -

For any $m \geqslant 0$ and $n \geqslant 1$, FCat $^{(m)}(n)$ is the set of all the words u of length n on \mathbb{N} satisfying $u_{1}=0$ and $0 \leqslant u_{i+1} \leqslant u_{i}+m$ for all $i \in[n-1]$.

One-to-one correspondence between $\mathrm{FCat}^{(m)}(n)$ and the set of all m-trees (planar rooted trees where internal nodes have $m+1$ children) by inserting iteratively a node on the leaf specified by the letter (from right to left).

- Example -

When $m=2$,

Generalization of the Stanley poset

There is a byproduct: for any $u, v \in \operatorname{FCat}^{(m)}(n)$, we set $u \preceq v$ if $u_{i} \leqslant v_{i}$ for all $i \in[n]$.
Each ($\left.\mathrm{FCat}^{(m)}(n), \preceq\right)$ is a poset.

Generalization of the Stanley poset

There is a byproduct: for any $u, v \in \operatorname{FCat}^{(m)}(n)$, we set $u \preceq v$ if $u_{i} \leqslant v_{i}$ for all $i \in[n]$.
Each ($\left.\mathrm{FCat}^{(m)}(n), \preceq\right)$ is a poset.

Example -

Some Hasse diagrams:

Generalization of the Stanley poset

There is a byproduct: for any $u, v \in \operatorname{FCat}^{(m)}(n)$, we set $u \preceq v$ if $u_{i} \leqslant v_{i}$ for all $i \in[n]$.
Each ($\left.\mathrm{FCat}^{(m)}(n), \preceq\right)$ is a poset.

Example

Some Hasse diagrams:

The $\left(\right.$ FCat $\left.^{(1)}(n), \preceq\right), n \geqslant 1$, are the Stanley posets (usually described in terms of inclusion of Dyck paths).

Generalization of the Stanley poset

There are injections

$$
\begin{gathered}
\iota: \mathrm{FCat}^{(m)}(n) \rightarrow \mathrm{FCat}^{(m+1)}(n), \quad \iota(u):=u, \\
\iota^{\prime}: \mathrm{FCat}^{(m)}(n) \rightarrow \mathrm{FCat}^{(m)}(n+1), \quad \iota^{\prime}(u):=0 u .
\end{gathered}
$$

Generalization of the Stanley poset

There are injections

$$
\begin{gathered}
\iota: \mathrm{FCat}^{(m)}(n) \rightarrow \mathrm{FCat}^{(m+1)}(n), \quad \iota(u):=u, \\
\iota^{\prime}: \mathrm{FCat}^{(m)}(n) \rightarrow \mathrm{FCat}^{(m)}(n+1), \quad \iota^{\prime}(u):=0 u .
\end{gathered}
$$

Some properties of $\left(\right.$ FCat $\left.^{(m)}(n), \preceq\right)$:

- covering relation $u \mathrm{ab} v \lessdot u \mathrm{a}(\mathrm{b}+1) v$ if $\mathrm{b}+1 \leqslant \mathrm{a}+m$;

Generalization of the Stanley poset

There are injections

$$
\begin{gathered}
\iota: \mathrm{FCat}^{(m)}(n) \rightarrow \operatorname{FCat}^{(m+1)}(n), \quad \iota(u):=u, \\
\iota^{\prime}: \mathrm{FCat}^{(m)}(n) \rightarrow \mathrm{FCat}^{(m)}(n+1), \quad \iota^{\prime}(u):=0 u .
\end{gathered}
$$

Some properties of $\left(\right.$ FCat $\left.^{(m)}(n), \preceq\right)$:

- covering relation u ab $v \lessdot u a(b+1) v$ if $b+1 \leqslant a+m$;
- graded by the rank function $\operatorname{rk}(u):=\sum_{i \in[n]} u_{i}$;

Generalization of the Stanley poset

There are injections

$$
\begin{gathered}
\iota: \mathrm{FCat}^{(m)}(n) \rightarrow \mathrm{FCat}^{(m+1)}(n), \quad \iota(u):=u, \\
\iota^{\prime}: \mathrm{FCat}^{(m)}(n) \rightarrow \mathrm{FCat}^{(m)}(n+1), \quad \iota^{\prime}(u):=0 u .
\end{gathered}
$$

Some properties of $\left(\right.$ FCat $\left.^{(m)}(n), \preceq\right)$:

- covering relation u ab $v \lessdot u a(b+1) v$ if $b+1 \leqslant a+m$;
- graded by the rank function $\mathrm{rk}(u):=\sum_{i \in[n]} u_{i}$;
- distributive lattices where $u \wedge v=\min \left(u_{1}, v_{1}\right) \ldots \min \left(u_{n}, v_{n}\right)$ and $u \vee v=\max \left(u_{1}, v_{1}\right) \ldots \max \left(u_{n}, v_{n}\right)$;

Generalization of the Stanley poset

There are injections

$$
\begin{gathered}
\iota: \mathrm{FCat}^{(m)}(n) \rightarrow \operatorname{FCat}^{(m+1)}(n), \quad \iota(u):=u, \\
\iota^{\prime}: \mathrm{FCat}^{(m)}(n) \rightarrow \mathrm{FCat}^{(m)}(n+1), \quad \iota^{\prime}(u):=0 u .
\end{gathered}
$$

Some properties of $\left(\right.$ FCat $\left.^{(m)}(n), \preceq\right)$:

- covering relation u ab $v \lessdot u a(b+1) v$ if $b+1 \leqslant a+m$;
- graded by the rank function $\operatorname{rk}(u):=\sum_{i \in[n]} u_{i}$;
- distributive lattices where $u \wedge v=\min \left(u_{1}, v_{1}\right) \ldots \min \left(u_{n}, v_{n}\right)$ and $u \vee v=\max \left(u_{1}, v_{1}\right) \ldots \max \left(u_{n}, v_{n}\right)$;
- number of intervals
- $m=1: 1,3,14,84,594,4719, \ldots$ (A005700)
- $m=2: 1,6,66,1001,18564,395352, \ldots$ (unknown)
- $m=3: 1,10,200,5700,210894, \ldots$ (unknown)

Outline

Operads as tools for enumeration

Factors and prefixes

Let $\mathfrak{t}, \mathfrak{s}_{1}, \ldots, \mathfrak{s}_{|t|}$ be \mathfrak{G}-trees. The tree $\mathrm{t} \circ\left[\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{|t|}\right]$ is obtained by grafting simultaneously the roots of each \mathfrak{s}_{i} onto the i th leaf of t .

- Example -

Factors and prefixes

Let $\mathfrak{t}, \mathfrak{s}_{1}, \ldots, \mathfrak{s}_{|t|}$ be \mathfrak{G}-trees. The tree $\mathrm{t} \circ\left[\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{|t|}\right]$ is obtained by grafting simultaneously the roots of each \mathfrak{s}_{i} onto the i th leaf of t .

- Example -

If \mathfrak{t} writes as $\mathfrak{t}=\mathfrak{r} \circ_{i}\left(\mathfrak{s} \circ\left[\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{[\mathfrak{s}]}\right]\right)$ for some trees $\mathfrak{s}, \mathfrak{r}, \mathfrak{r}_{1}, \ldots, \mathfrak{r}_{|\mathfrak{s}|}$, and $i \in[\mid \mathfrak{r}]$, \mathfrak{s} is a factor of \mathfrak{t} (denoted by $\mathfrak{s} \preccurlyeq_{\mathfrak{f}} \mathfrak{t}$).

- Example -

Factors and prefixes

Let $\mathfrak{t}, \mathfrak{s}_{1}, \ldots, \mathfrak{S}_{|t|}$ be \mathfrak{G}-trees. The tree $\mathfrak{t} \circ\left[\mathfrak{s}_{1}, \ldots, \mathfrak{F}_{|t|}\right]$ is obtained by grafting simultaneously the roots of each \mathfrak{s}_{i} onto the i th leaf of t .

- Example -

If \mathfrak{t} writes as $\mathfrak{t}=\mathfrak{r} \circ_{i}\left(\mathfrak{s} \circ\left[\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{[\mathfrak{s} \mid}\right]\right)$ for some trees $\mathfrak{s}, \mathfrak{r}, \mathfrak{r}_{1}, \ldots, \mathfrak{r}_{|\mathfrak{s}|}$, and $i \in[|\mathfrak{r}|], \mathfrak{s}$ is a factor of t (denoted by $\mathfrak{s} \preccurlyeq_{\mathrm{f}} \mathfrak{t}$).
When moreover $\mathfrak{r}=।, \mathfrak{s}$ is a prefix of $t\left(\right.$ denoted by $\left.\mathfrak{s} \preccurlyeq_{p} t\right)$.

- Example -

Rewrite systems on trees

A rewrite rule is a binary relation \rightarrow on $\mathrm{F}(\mathfrak{G})$ such that $\mathfrak{s} \rightarrow \mathfrak{s}^{\prime}$ implies $|\mathfrak{s}|=\left|\mathfrak{s}^{\prime}\right|$.

The pair $(\mathbb{F}(\mathfrak{G}), \rightarrow)$ is a rewrite system on trees.

Rewrite systems on trees

A rewrite rule is a binary relation \rightarrow on $\mathbb{F}(\mathfrak{G})$ such that $\mathfrak{s} \rightarrow \mathfrak{s}^{\prime}$ implies $|\mathfrak{s}|=\left|\mathfrak{s}^{\prime}\right|$.
The rewrite relation induced by \rightarrow is the binary relation \Rightarrow on $\mathbb{F}(\mathfrak{G})$ satisfying $t \Rightarrow t^{\prime}$ if

1. \mathfrak{t} admits a factor \mathfrak{s};
2. \mathfrak{t}^{\prime} is obtained by replacing this factor by \mathfrak{s}^{\prime};
3. $\mathfrak{s} \rightarrow \mathfrak{s}^{\prime}$.

The pair $(\mathrm{F}(\mathfrak{G}), \rightarrow)$ is a rewrite system on trees.

Rewrite systems on trees

A rewrite rule is a binary relation \rightarrow on $\mathbb{F}(\mathfrak{G})$ such that $\mathfrak{s} \rightarrow \mathfrak{s}^{\prime}$ implies $|\mathfrak{s}|=\left|\mathfrak{s}^{\prime}\right|$.
The rewrite relation induced by \rightarrow is the binary relation \Rightarrow on $\mathbb{F}(\mathfrak{G})$ satisfying $\mathfrak{t} \Rightarrow \mathfrak{t}^{\prime}$ if

1. \mathfrak{t} admits a factor \mathfrak{s};
2. \mathfrak{t}^{\prime} is obtained by replacing this factor by \mathfrak{s}^{\prime};
3. $\mathfrak{s} \rightarrow \mathfrak{s}^{\prime}$.

- Example -

If \rightarrow is the rewrite rule satisfying $\rightarrow{ }^{a}$, one has

The pair $(\mathrm{F}(\mathfrak{G}), \rightarrow)$ is a rewrite system on trees.

Rewrite systems on trees

Let $(\mathbb{F}(\mathfrak{G}), \rightarrow)$ be a rewrite system.
A normal form for \Rightarrow is a tree t such that there is no t^{\prime} such that $t \Rightarrow t^{\prime}$. The graded set of such trees is $\mathcal{N} \rightarrow$.

Rewrite systems on trees

Let $(\mathbb{F}(\mathfrak{G}), \rightarrow)$ be a rewrite system.
A normal form for \Rightarrow is a tree t such that there is no t^{\prime} such that $t \Rightarrow t^{\prime}$. The graded set of such trees is $\mathcal{N} \rightarrow$.

When there is no infinite chain $\mathrm{t}_{0} \Rightarrow \mathrm{t}_{1} \Rightarrow \mathrm{t}_{2} \Rightarrow \cdots, \Rightarrow$ is terminating.

Rewrite systems on trees

Let $(\mathbb{F}(\mathfrak{G}), \rightarrow)$ be a rewrite system.
A normal form for \Rightarrow is a tree t such that there is no t^{\prime} such that $t \Rightarrow t^{\prime}$. The graded set of such trees is $\mathcal{N} \rightarrow$.

When there is no infinite chain $\mathrm{t}_{0} \Rightarrow \mathrm{t}_{1} \Rightarrow \mathrm{t}_{2} \Rightarrow \cdots, \Rightarrow$ is terminating.
When $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_{1}$ and $\mathfrak{t} \stackrel{*}{\Rightarrow} \mathfrak{s}_{2}$ implies the existence of \mathfrak{t}^{\prime} such that $\mathfrak{s}_{1} \stackrel{*}{\Rightarrow} \mathfrak{t}^{\prime}$ and $\mathfrak{s}_{2} \stackrel{*}{\Rightarrow} \mathfrak{t}^{\prime}, \Rightarrow$ is confluent.

Rewrite systems on trees

Let $(\mathbb{F}(\mathfrak{G}), \rightarrow)$ be a rewrite system.
A normal form for \Rightarrow is a tree t such that there is no t^{\prime} such that $t \Rightarrow t^{\prime}$. The graded set of such trees is $\mathcal{N} \rightarrow$.

When there is no infinite chain $\mathrm{t}_{0} \Rightarrow \mathrm{t}_{1} \Rightarrow \mathrm{t}_{2} \Rightarrow \cdots, \Rightarrow$ is terminating.
When $t \stackrel{*}{\Rightarrow} \mathfrak{s}_{1}$ and $t \stackrel{*}{\Rightarrow} \mathfrak{s}_{2}$ implies the existence of \mathfrak{t}^{\prime} such that $\mathfrak{s}_{1} \xlongequal{*} \mathfrak{t}^{\prime}$ and $\mathfrak{s}_{2} \stackrel{*}{\Rightarrow} \mathfrak{t}^{\prime}, \Rightarrow$ is confluent.

Proposition -

Let $(\mathrm{F}(\mathfrak{G}), \rightarrow)$ be a rewrite system. If \Rightarrow is terminating and confluent, then for any $n \geqslant 1, \mathcal{N} \rightarrow(n)$ is

- in a one-to-one correspondence with the connected components of the graph $(\mathrm{F}(\mathfrak{G})(n), \Rightarrow)$;
- the set of all \mathfrak{G}-trees of arity n factor-avoiding $\mathcal{P}_{\rightarrow}$, the set of the left members of \rightarrow.

Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by

Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{a\})(n), \Rightarrow)$:

Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{a\})(n), \Rightarrow)$:

Properties:
$>\Rightarrow$ is terminating and confluent;
$\checkmark \mathcal{N}_{\rightarrow}$ is the set of the trees factor-avoiding \quad (right comb trees);
$>$ Numbers of connected components of the graphs: $1,1,1,1, \ldots$.

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by

A variant of Tamari lattices

Let $(\mathbb{F}(\{\mathrm{a}\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{a\})(n), \Rightarrow)$:

| 1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| 1 | 2 | 3 | 4 | 5 |

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{a\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -
> \Rightarrow is terminating but not confluent;
$\rightarrow \mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{\mathrm{a}\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -
$>\Rightarrow$ is terminating but not confluent;
$\rightarrow \mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;
- Numbers of connected components of the graphs:

$$
1,1,2,4,8
$$

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{\mathrm{a}\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -
$>\Rightarrow$ is terminating but not confluent;
$\rightarrow \mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;
- Numbers of connected components of the graphs:

$$
1,1,2,4,8,14
$$

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{\mathrm{a}\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -
$>\Rightarrow$ is terminating but not confluent;
$\rightarrow \mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;
- Numbers of connected components of the graphs:

$$
1,1,2,4,8,14,20
$$

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{\mathrm{a}\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -
$>\Rightarrow$ is terminating but not confluent;
$\rightarrow \mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;
- Numbers of connected components of the graphs:

$$
1,1,2,4,8,14,20,19
$$

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{\mathrm{a}\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -
$>\Rightarrow$ is terminating but not confluent;
$\rightarrow \mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;
- Numbers of connected components of the graphs:

$$
1,1,2,4,8,14,20,19,16
$$

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{\mathrm{a}\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -

$>\Rightarrow$ is terminating but not confluent;
$\rightarrow \mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;

- Numbers of connected components of the graphs:

$$
1,1,2,4,8,14,20,19,16,14
$$

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{\mathrm{a}\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -

$>\Rightarrow$ is terminating but not confluent;
$-\mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;

- Numbers of connected components of the graphs:

$$
1,1,2,4,8,14,20,19,16,14,14
$$

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{\mathrm{a}\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] —

$>\Rightarrow$ is terminating but not confluent;
$\rightarrow \mathcal{N} \rightarrow$ can be described as the set of the $\{a\}$-trees avoiding eleven patterns;

- Numbers of connected components of the graphs:

$$
1,1,2,4,8,14,20,19,16,14,14,15,16,17, \ldots
$$

A variant of Tamari lattices

Let $(\mathbb{F}(\{a\}), \rightarrow)$ be the rewrite system defined by
First graphs $(\mathbb{F}(\{a\})(n), \Rightarrow)$:

- Theorem [Chenavier, Cordero, G., 2018] -

- \Rightarrow is terminating but not confluent;
- $\mathcal{N} \rightarrow$ can be described as the set of the $\{$ a $\}$-trees avoiding eleven patterns;
- Numbers of connected components of the graphs:

$$
1,1,2,4,8,14,20,19,16,14,14,15,16,17, \ldots
$$

and its generating function is

$$
\frac{t}{(1-t)^{2}}\left(1-t+t^{2}+t^{3}+2 t^{4}+2 t^{5}-7 t^{7}-2 t^{8}+t^{9}+2 t^{10}+t^{11}\right)
$$

Pattern avoidance and enumeration

Given a set $\mathcal{P} \subseteq \mathrm{F}(\mathfrak{G})$, let $\mathrm{A}(\mathcal{P})$ be the set of all \mathfrak{G}-trees factor-avoiding all patterns of \mathcal{P}.

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a natural question.

Pattern avoidance and enumeration

Given a set $\mathcal{P} \subseteq \mathbb{F}(\mathfrak{G})$, let $\mathrm{A}(\mathcal{P})$ be the set of all \mathfrak{G}-trees factor-avoiding all patterns of \mathcal{P}.

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a natural question.

- Example -

Pattern avoidance and enumeration

Given a set $\mathcal{P} \subseteq \mathbb{F}(\mathfrak{G})$, let $\mathrm{A}(\mathcal{P})$ be the set of all \mathfrak{G}-trees factor-avoiding all patterns of \mathcal{P}.

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a natural question.

- Example -

 $1,2,4,8,16,32,64,128, \ldots$.

$$
1,1,2,4,9,21,51,127, \ldots(\mathrm{~A} 001006)
$$

Pattern avoidance and enumeration

Given a set $\mathcal{P} \subseteq \mathbb{F}(\mathfrak{G})$, let $\mathrm{A}(\mathcal{P})$ be the set of all \mathfrak{G}-trees factor-avoiding all patterns of \mathcal{P}.

Counting the elements of $A(\mathcal{P})$ w.r.t. the arity is a natural question.

- Example -

 $1,2,4,8,16,32,64,128, \ldots$.

$$
1,1,2,4,9,21,51,127, \ldots(\mathrm{~A} 001006)
$$

$$
1,2,5,13,35,96,267,750, \ldots(\mathrm{~A} 005773)
$$

Formal power series of trees

For any $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{F}(\mathfrak{G})$, let

$$
\mathfrak{f}(\mathcal{P}, \mathcal{Q}):=\sum_{\substack{t \in F(\mathfrak{G}) \\ \\ \forall s \in \mathcal{P}, \mathfrak{s} \not / \mathrm{t} \mathrm{t} \\ \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \neq \mathrm{p} \mathrm{t}}} \mathrm{t}
$$

be the formal sum of all the \mathfrak{G}-trees factor-avoiding all patterns of \mathcal{P} and prefix-avoiding all patterns of \mathcal{Q}.

Formal power series of trees

For any $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{F}(\mathfrak{G})$, let

$$
\mathfrak{f}(\mathcal{P}, \mathcal{Q}):=\sum_{\substack{t \in F(\mathfrak{G}) \\ \\ \forall s \in \mathcal{P}, \mathfrak{s} \not / \mathrm{t} \mathrm{t} \\ \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \neq \mathrm{p} \mathrm{t}}} \mathrm{t}
$$

be the formal sum of all the \mathfrak{G}-trees factor-avoiding all patterns of \mathcal{P} and prefix-avoiding all patterns of \mathcal{Q}.

Since

- $f(\mathcal{P}, \emptyset)$ is the formal sum of all the trees of $\mathrm{A}(\mathcal{P})$;

Formal power series of trees

For any $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{F}(\mathfrak{G})$, let

$$
\mathfrak{f}(\mathcal{P}, \mathcal{Q}):=\sum_{\substack{t \in \mathrm{~F}(\mathfrak{G}) \\ \forall \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not \not / \mathrm{t} \\ \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \not \mathrm{p}_{\mathrm{t}} \mathrm{t}}} \mathrm{t}
$$

be the formal sum of all the \mathfrak{G}-trees factor-avoiding all patterns of \mathcal{P} and prefix-avoiding all patterns of \mathcal{Q}.

Since

- $\mathrm{f}(\mathcal{P}, \emptyset)$ is the formal sum of all the trees of $\mathrm{A}(\mathcal{P})$;
- the linear map $t \mapsto t^{|t|} q^{\operatorname{deg}(t)}$ sends $f(\mathcal{P}, \emptyset)$ to a refinement of the generating series of $\mathrm{A}(\mathcal{P})$;

Formal power series of trees

For any $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{F}(\mathfrak{G})$, let

$$
\mathfrak{f}(\mathcal{P}, \mathcal{Q}):=\sum_{\substack{t \in \mathcal{F}(\mathfrak{G}) \\ \\ \forall \mathfrak{s} \in \mathcal{P}, \mathfrak{s} \not \not / \mathrm{t} \\ \\ \forall \mathfrak{s} \in \mathcal{Q}, \mathfrak{s} \nexists \mathrm{p} t}} t
$$

be the formal sum of all the \mathfrak{G}-trees factor-avoiding all patterns of \mathcal{P} and prefix-avoiding all patterns of \mathcal{Q}.

Since

- $f(\mathcal{P}, \emptyset)$ is the formal sum of all the trees of $A(\mathcal{P})$;
- the linear map $t \mapsto t^{|t|} q^{\operatorname{deg}(t)}$ sends $f(\mathcal{P}, \emptyset)$ to a refinement of the generating series of $\mathrm{A}(\mathcal{P})$;
the series $f(\mathcal{P}, \mathcal{Q})$ contains all the enumerative data about the trees factor-avoiding \mathcal{P}.

System of equations

When $\mathfrak{G}, \mathcal{P}$, and \mathcal{Q} satisfy some conditions, $\mathrm{f}(\mathcal{P}, \mathcal{Q})$ expresses as an inclusion-exclusion formula involving simpler terms $f\left(\mathcal{P}, \mathcal{S}_{i}\right)$.

- Theorem [G., 2017] -

The series $f(\mathcal{P}, \mathcal{Q})$ satisfies

$$
\mathrm{f}(\mathcal{P}, \mathcal{Q})=1+\sum_{\substack{k \geq 1 \\ \mathrm{a} \in \mathcal{E}(k)}} \sum_{\substack{\left.\ell \geqslant 1 \\\left\{\mathcal{R}^{(1)}, \ldots, \mathcal{R}^{(\ell)}\right\} \subseteq \mathrm{C}(\mathcal{P} \cup \mathcal{Q})_{\mathrm{a}}\right) \\\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}\right)=\mathcal{R}^{(1)}+\cdots+\mathcal{R}^{(\ell)}}}(-1)^{1+\ell_{\mathrm{a}} \overline{\mathrm{o}}\left[\mathrm{f}\left(\mathcal{P}, \mathcal{S}_{1}\right), \ldots, \mathrm{f}\left(\mathcal{P}, \mathcal{S}_{k}\right)\right] .}
$$

System of equations

When $\mathfrak{G}, \mathcal{P}$, and \mathcal{Q} satisfy some conditions, $\mathrm{f}(\mathcal{P}, \mathcal{Q})$ expresses as an inclusion-exclusion formula involving simpler terms $f\left(\mathcal{P}, \mathcal{S}_{i}\right)$.

- Theorem [G., 2017] -

The series $\mathrm{f}(\mathcal{P}, \mathcal{Q})$ satisfies

$$
\mathrm{f}(\mathcal{P}, \mathcal{Q})=1+\sum_{\substack{k \geqslant 1 \\ \mathrm{a} \in \mathfrak{G}(k)}} \sum_{\substack{\ell \geqslant 1 \\\left\{\mathcal{R}^{(1)}, \ldots, \mathcal{R}^{(\ell)}\right\} \subseteq \mathrm{C}\left((\mathcal{P} \cup \mathcal{Q})_{\mathrm{a}}\right)}}(-1)^{1+\ell} \mathrm{a}_{\mathrm{a} \bar{o}}\left[\mathrm{f}\left(\mathcal{P}, \mathcal{S}_{1}\right), \ldots, \mathrm{f}\left(\mathcal{P}, \mathcal{S}_{k}\right)\right] .
$$

This leads to a system of equations for the generating series of $A(\mathcal{P})$.

- Example -

For $\mathcal{P}:=\left\{\begin{array}{cll} & \\ & & \\ & & \\ & \end{array}\right.$, we obtain the system of formal power series of trees

$$
\begin{aligned}
f(\mathcal{P}, \emptyset)= & +a \bar{o}[f(\mathcal{P},\{a\}), f(\mathcal{P}, \emptyset)]+a \bar{o}[f(\mathcal{P}, \emptyset), f(\mathcal{P},\{b\})]-a \bar{o}[f(\mathcal{P},\{a\}), f(\mathcal{P},\{b\})] \\
& +b \overline{\mathrm{o}}[f(\mathcal{P}, \emptyset), f(\mathcal{P}, \emptyset)], \\
\mathrm{f}(\mathcal{P},\{\mathrm{a}\})= & +b \bar{o}[f(\mathcal{P}, \emptyset), f(\mathcal{P}, \emptyset)], \\
f(\mathcal{P},\{b\})= & +a \bar{o}[f(\mathcal{P},\{a\}), f(\mathcal{P}, \emptyset)]+a \bar{o}[f(\mathcal{P}, \emptyset), f(\mathcal{P},\{b\})]-a \bar{o}[f(\mathcal{P},\{a\}), f(\mathcal{P},\{b\})] .
\end{aligned}
$$

Operads for enumeration

Let \mathcal{O} be an operad admitting a presentation (\mathfrak{G}, \equiv). A rewrite rule \rightarrow on $\mathrm{F}(\mathfrak{G})$ is a faithful orientation of \equiv if

1. \rightarrow generates \equiv as an operad congruence;
2. \Rightarrow is terminating and confluent.

Operads for enumeration

Let \mathcal{O} be an operad admitting a presentation (\mathfrak{G}, \equiv). A rewrite rule \rightarrow on $\mathrm{F}(\mathfrak{G})$ is a faithful orientation of \equiv if

1. \rightarrow generates \equiv as an operad congruence;
2. \Rightarrow is terminating and confluent.

- Proposition -

If \rightarrow is a faithful orientation of \equiv, for any $n \geqslant 1$, the sets $\mathcal{O}(n)$ and $\mathcal{N} \rightarrow(n)$ are in one-to-one correspondence.

Operads for enumeration

Let \mathcal{O} be an operad admitting a presentation (\mathscr{G}, \equiv). A rewrite rule \rightarrow on $\mathrm{F}(\mathfrak{G})$ is a faithful orientation of \equiv if

1. \rightarrow generates \equiv as an operad congruence;

2 . \Rightarrow is terminating and confluent.

Proposition -

If \rightarrow is a faithful orientation of \equiv, for any $n \geqslant 1$, the sets $\mathcal{O}(n)$ and $\mathcal{N} \rightarrow(n)$ are in one-to-one correspondence.

This provides a tool for the enumeration of a family X of combinatorial objects (and for the definition of statistics) by

1. endowing X with the structure of an operad \mathcal{O};

Operads for enumeration

Let \mathcal{O} be an operad admitting a presentation (\mathscr{G}, \equiv). A rewrite rule \rightarrow on $\mathbb{F}(\mathfrak{G})$ is a faithful orientation of \equiv if

1. \rightarrow generates \equiv as an operad congruence;

2 . \Rightarrow is terminating and confluent.

Proposition -

If \rightarrow is a faithful orientation of \equiv, for any $n \geqslant 1$, the sets $\mathcal{O}(n)$ and $\mathcal{N} \rightarrow(n)$ are in one-to-one correspondence.

This provides a tool for the enumeration of a family X of combinatorial objects (and for the definition of statistics) by

1. endowing X with the structure of an operad \mathcal{O};
2. exhibiting a presentation (\mathfrak{G}, \equiv) of \mathcal{O} and a faithful orientation \rightarrow;

Operads for enumeration

Let \mathcal{O} be an operad admitting a presentation (\mathscr{G}, \equiv). A rewrite rule \rightarrow on $\mathrm{F}(\mathfrak{G})$ is a faithful orientation of \equiv if

1. \rightarrow generates \equiv as an operad congruence;

2 . \Rightarrow is terminating and confluent.

Proposition -

If \rightarrow is a faithful orientation of \equiv, for any $n \geqslant 1$, the sets $\mathcal{O}(n)$ and $\mathcal{N} \rightarrow(n)$ are in one-to-one correspondence.

This provides a tool for the enumeration of a family X of combinatorial objects (and for the definition of statistics) by

1. endowing X with the structure of an operad \mathcal{O};
2. exhibiting a presentation (\mathfrak{G}, \equiv) of \mathcal{O} and a faithful orientation \rightarrow;
3. computing the series $f(\mathcal{P} \rightarrow \emptyset)$.

Outline

Pairs of graded graphs

Young lattice

The Young lattice is a lattice on the set of all integer partitions. Its Hasse diagram is

Young lattice

The Young lattice is a lattice on the set of all integer partitions. Its Hasse diagram is

Saturated chains connecting \emptyset with a partition λ are in one-to-one correspondence with the set of standard Young tableaux of shape λ.

Young lattice

The Young lattice is a lattice on the set of all integer partitions. Its Hasse diagram is

Saturated chains connecting \emptyset with a partition λ are in one-to-one correspondence with the set of standard Young tableaux of shape λ.

- Example -

The saturated chain

$$
\emptyset \rightarrow \bigcirc \rightarrow \infty \rightarrow 8 \circ \rightarrow 800 \rightarrow 8 O^{\circ}
$$

is in correspondence with the standard Young tableau

$$
\begin{aligned}
& 1 \\
& 1 \\
& 2 \\
& 3 / 5 \\
& 3
\end{aligned}
$$

Graded graphs

A graded graph is a pair (G, U) where $G:=\bigsqcup_{d \geqslant 0} G(d)$ is a graded set and U is a linear map

$$
\mathrm{U}: \mathbb{K}\langle G(d)\rangle \rightarrow \mathbb{K}\langle G(d+1)\rangle, \quad d \geqslant 0 .
$$

This map sends any $x \in G$ to its next vertices (with multiplicities).

Graded graphs

A graded graph is a pair (G, U) where $G:=\bigsqcup_{d \geqslant 0} G(d)$ is a graded set and U is a linear map

$$
\mathrm{U}: \mathbb{K}\langle G(d)\rangle \rightarrow \mathbb{K}\langle G(d+1)\rangle, \quad d \geqslant 0 .
$$

This map sends any $x \in G$ to its next vertices (with multiplicities).
Classical examples include

- the Young lattice [Stanley, 1988];
- the bracket tree [Fomin, 1994];
- the composition poset [Björner, Stanley, 2005];
- the Fibonacci lattice [Fomin, 1988], [Stanley, 1988].

Duality of graded graphs

Let (G, U) and $(G, \mathrm{~V})$ be two graded graphs on the same graded set G.

Duality of graded graphs

Let (G, U) and $(G, \mathrm{~V})$ be two graded graphs on the same graded set G.
The pair of graded graphs (G, U, V) is

- dual [Stanley, 1988] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=I ;
$$

Each one is a generalization of the previous.

Duality of graded graphs

Let (G, U) and $(G, \mathrm{~V})$ be two graded graphs on the same graded set G.
The pair of graded graphs (G, U, V) is

- dual [Stanley, 1988] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=I
$$

- r-dual [Fomin, 1994] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=r I
$$

for an $r \in \mathbb{K}$;

Each one is a generalization of the previous.

Duality of graded graphs

Let (G, U) and $(G, \mathrm{~V})$ be two graded graphs on the same graded set G.
The pair of graded graphs $(G, \mathrm{U}, \mathrm{V})$ is

- dual [Stanley, 1988] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=I
$$

- r-dual [Fomin, 1994] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=r I
$$

for an $r \in \mathbb{K}$;

- ϕ-diagonal dual [G., 2018] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=\phi
$$

for a nonzero diagonal linear map $\left(\phi(x)=\lambda_{x} x\right.$ where $\left.\lambda_{x} \in \mathbb{K} \backslash\{0\}\right)$.
Each one is a generalization of the previous.

Duality of graded graphs

Let (G, U) and $(G, \mathrm{~V})$ be two graded graphs on the same graded set G.
The pair of graded graphs (G, U, V) is

- dual [Stanley, 1988] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=I
$$

- r-dual [Fomin, 1994] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=r I
$$

for an $r \in \mathbb{K}$;

- ϕ-diagonal dual [G., 2018] if

$$
\mathrm{V}^{\star} \mathrm{U}-\mathrm{UV}^{\star}=\phi
$$

for a nonzero diagonal linear map $\left(\phi(x)=\lambda_{x} x\right.$ where $\left.\lambda_{x} \in \mathbb{K} \backslash\{0\}\right)$.
Each one is a generalization of the previous.
Other relations can be considered, like quantum duality [Lam, 2010] or filtered duality [Patrias, Pylyavskyy, 2018].

A first graded graph from free operads

Let \mathfrak{G} be a graded set such that all $\mathfrak{G}(n), n \geqslant 1$, are finite.

A first graded graph from free operads

Let \mathfrak{G} be a graded set such that all $\mathfrak{G}(n), n \geqslant 1$, are finite.
Let $(\mathbb{F}(\mathfrak{G}), \mathrm{U})$ be the graded graph where

$$
\mathrm{U}(\mathrm{t}):=\sum_{\substack{\mathrm{a} \in \mathfrak{G} \\ i \in[|t|]}} \mathfrak{t} o_{i} \mathrm{a} .
$$

A first graded graph from free operads

Let \mathfrak{G} be a graded set such that all $\mathfrak{G}(n), n \geqslant 1$, are finite.
Let $(\mathbb{F}(\mathfrak{G}), \mathrm{U})$ be the graded graph where

$$
\mathrm{U}(\mathrm{t}):=\sum_{\substack{\mathrm{a} \in \mathfrak{G} \\ i \in[|t|]}} \mathfrak{t} o_{i} \mathrm{a} .
$$

- Example -

For $\mathfrak{G}=\{\phi$, ㅅㅈ $\}$, the $\operatorname{graph}(\mathbb{F}(\mathfrak{G}), \mathrm{U})$ is

A second graded graph from free operads
Let $(\mathbb{F}(\mathfrak{G}), \mathrm{V})$ be the graded graph defined from the adjoint V^{\star} of V by

$$
\begin{gathered}
\mathrm{V}^{\star}(\mathrm{I}):=0, \quad \mathrm{~V}^{\star}(\mathrm{a} \bar{o}[\mathfrak{s},|, \ldots,|]):=\mathfrak{s}, \\
\mathrm{V}^{\star}\left(\mathrm{a} \overline{\mathrm{o}}\left[\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{|\mathrm{a}|}\right]\right):=\sum_{2 \leqslant j \leqslant|\mathrm{a}|} \mathrm{a} \overline{\mathrm{o}}\left[\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{j-1}, \mathrm{~V}^{\star}\left(\mathfrak{s}_{j}\right), \mathfrak{s}_{j+1}, \ldots, \mathfrak{s}_{|\mathrm{a}|}\right] .
\end{gathered}
$$

A second graded graph from free operads
Let $(\mathbb{F}(\mathfrak{G}), \mathrm{V})$ be the graded graph defined from the adjoint V^{\star} of V by

$$
\begin{aligned}
\mathrm{V}^{\star}(1):=0, \quad \mathrm{~V}^{\star}(\mathrm{ao}[\mathfrak{s},|, \ldots,|]):=\mathfrak{s}, \\
\mathrm{V}^{\star}\left(\mathrm{a} \overline{\mathrm{o}}\left[\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{|\mathrm{a}|}\right]\right):=\sum_{2 \leqslant j \leqslant|\mathrm{a}|} \mathrm{a} \overline{\mathrm{o}}\left[\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{j-1}, \mathrm{~V}^{\star}\left(\mathfrak{s}_{j}\right), \mathfrak{s}_{j+1}, \ldots, \mathfrak{s}_{|\mathrm{a}|}\right] .
\end{aligned}
$$

- Example -

For $\mathfrak{G}=\{\phi, \dot{\phi}, \dot{\phi}\}$,

A second graded graph from free operads

Let $(\mathbb{F}(\mathfrak{G}), \mathrm{V})$ be the graded graph defined from the adjoint V^{\star} of V by

$$
\begin{aligned}
\mathrm{V}^{\star}(1) & :=0, \quad \mathrm{~V}^{\star}(\mathrm{ao}[\mathfrak{s},|, \ldots,|]):=\mathfrak{s}, \\
\mathrm{V}^{\star}\left(\mathrm{a} \overline{\mathrm{o}}\left[\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{|\mathrm{a}|}\right]\right) & :=\sum_{2 \leqslant j \leqslant|a|} \mathrm{a} \overline{0}\left[\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{j-1}, \mathrm{~V}^{\star}\left(\mathfrak{s}_{j}\right), \mathfrak{s}_{j+1}, \ldots, \mathfrak{s}_{|\mathrm{a}|}\right] .
\end{aligned}
$$

- Example -

For $\mathfrak{G}=\{\phi, \dot{\phi}, \dot{\phi}\}$,

This graph be seen as a generalization of the bracket tree [Fomin, 1994] defined on binary trees.

Dual graded graphs from free operads

- Example -

$$
\text { For } \mathfrak{G}=\{\phi, \dot{<}\}, \text { the pair }(\mathrm{F}(\mathfrak{G}), \mathrm{U}, \mathrm{~V}) \text { is }
$$

Dual graded graphs from free operads

- Example -

For $\mathfrak{G}=\{$,,$\dot{\gamma}\}$, the pair $(\mathrm{F}(\mathfrak{G}), \mathrm{U}, \mathrm{V})$ is

For any $\mathfrak{t} \in \mathbb{F}(\mathfrak{G})$, let $\alpha(\mathfrak{t})$ be the number of leaves of t that are not in a first subtree of any internal node of t.

- Example -

Dual graded graphs from free operads

- Example -

For $\mathfrak{G}=\{$,,$\dot{\gamma}\}$, the pair $(\mathrm{F}(\mathfrak{G}), \mathrm{U}, \mathrm{V})$ is

For any $t \in \mathbb{F}(\mathfrak{G})$, let $\alpha(\mathfrak{t})$ be the number of leaves of t that are not in a first subtree of any internal node of t.

Generalization to operads

An operad \mathcal{O} is homogeneous if $\mathcal{O}(1)$ is trivial and its presentation (\mathfrak{G}, \equiv) is so that $\mathfrak{t} \equiv \mathfrak{t}^{\prime}$ implies that t and \mathfrak{t}^{\prime} have the same degree.

Generalization to operads

An operad \mathcal{O} is homogeneous if $\mathcal{O}(1)$ is trivial and its presentation (\mathfrak{G}, \equiv) is so that $\mathfrak{t} \equiv \mathfrak{t}^{\prime}$ implies that t and \mathfrak{t}^{\prime} have the same degree.

Let the graphs $(\mathcal{O}, \mathrm{U})$ and $(\mathcal{O}, \mathrm{V})$ defined by

$$
\mathrm{U}(x):=\sum_{\substack{\mathrm{a} \in \mathcal{H} \\ i \in\lfloor|x|]}} x \circ_{i} \mathrm{a}, \quad \mathrm{~V}(x):=\sum_{\substack{y \in \mathcal{O} \\ \exists(s, t) \in \mathrm{ev}^{-1}(x) \times \mathrm{ev}^{-1}(y) \\\langle\mathrm{t}, \mathrm{~V}(\mathrm{~s})\rangle \neq 0}} y .
$$

The multiplicities of the edges of $(\mathcal{O}, \mathrm{U})$ are in \mathbb{N}, while the ones of $(\mathcal{O}, \mathrm{V})$ are in $\{0,1\}$.

Generalization to operads

An operad \mathcal{O} is homogeneous if $\mathcal{O}(1)$ is trivial and its presentation (\mathfrak{G}, \equiv) is so that $\mathfrak{t} \equiv \mathfrak{t}^{\prime}$ implies that \mathfrak{t} and \mathfrak{t}^{\prime} have the same degree.

Let the graphs $(\mathcal{O}, \mathrm{U})$ and $(\mathcal{O}, \mathrm{V})$ defined by

$$
\mathrm{U}(x):=\sum_{\substack{\mathrm{a} \in \mathcal{G} \\ i \in\lfloor|x|]}} x \circ_{i} \mathrm{a}, \quad \mathrm{~V}(x):=\sum_{\substack{y \in \mathcal{O} \\ \exists(s, t) \in \mathrm{ev}^{-1}(x) \times \mathrm{ev}^{-1}(y) \\\langle\mathrm{t}, \mathrm{~V}(\mathrm{~s})\rangle \neq 0}} y .
$$

The multiplicities of the edges of $(\mathcal{O}, \mathrm{U})$ are in \mathbb{N}, while the ones of $(\mathcal{O}, \mathrm{V})$ are in $\{0,1\}$.

- Theorem [G., 2018] -

If \mathcal{O} is an homogeneous operad, then $(\mathcal{O}, \mathrm{U}, \mathrm{V})$ is a pair of graded graphs.

Generalization to operads

An operad \mathcal{O} is homogeneous if $\mathcal{O}(1)$ is trivial and its presentation (\mathfrak{G}, \equiv) is so that $\mathfrak{t} \equiv \mathfrak{t}^{\prime}$ implies that \mathfrak{t} and \mathfrak{t}^{\prime} have the same degree.

Let the graphs $(\mathcal{O}, \mathrm{U})$ and $(\mathcal{O}, \mathrm{V})$ defined by

$$
\mathrm{U}(x):=\sum_{\substack{\mathrm{a} \in \mathcal{F} \\ i \in[|x|]}} x \circ_{i} \mathrm{a}, \quad \mathrm{~V}(x):=\sum_{\substack{y \in \mathcal{O} \\ \exists(s, t) \in \mathrm{ev}^{-1}(x) \times \mathrm{ev}^{-1}(y) \\\langle\mathrm{t}, \mathrm{~V}(\mathrm{~s})\rangle \neq 0}} y .
$$

The multiplicities of the edges of $(\mathcal{O}, \mathrm{U})$ are in \mathbb{N}, while the ones of $(\mathcal{O}, \mathrm{V})$ are in $\{0,1\}$.

- Theorem [G., 2018] -

If \mathcal{O} is an homogeneous operad, then $(\mathcal{O}, \mathrm{U}, \mathrm{V})$ is a pair of graded graphs.
For some operads \mathcal{O}, the pair $(\mathcal{O}, \mathrm{U}, \mathrm{V})$ is ϕ-diagonal dual while for others, is not.

Some pairs of graded graphs from operads

- Example -

The pair (Comp, U, V) is 2-dual.
The graded graph (Comp, U) is the Hasse diagram of the composition poset [Bjöner, Stanley, 2005].

Some pairs of graded graphs from operads

- Example -

The pair (Comp, U, V) is 2-dual.
The graded graph (Comp, U) is the Hasse diagram of the composition poset [Bjöner, Stanley, 2005].

- Example -

The pair (FCat $(m), \mathrm{U}, \mathrm{V})$ is $m+1$-diagonal dual.

Some pairs of graded graphs from operads

- Example -

The pair (Comp, U, V) is 2-dual.
The graded graph (Comp, U) is the Hasse diagram of the composition poset [Bjöner, Stanley, 2005].

- Example -

The pair (FCat $(m), \mathrm{U}, \mathrm{V})$ is $m+1$-diagonal dual.

- Example -

The pair (Dias, U, V)
is
ϕ-diagonal dual.

