Counting and simulating planar order types

Xavier Goaoc
LORIA - Université de Lorraine

Based on joint works with

- Alfredo Hubard, Rémi de Joannis de Verclos, Jean-Sébastien Sereni and Jan Volec.
- Olivier Devillers, Philippe Duchon and Marc Glisse.
- Emo Welzl.

Geometric algorithms extract combinatorial information out of numerical data.

Geometric algorithms extract combinatorial information out of numerical data.

Geometric algorithms extract combinatorial information out of numerical data.

Geometric algorithms extract combinatorial information out of numerical data.

Algorithms based on the geometry of \mathbb{R}^{2} are run on finite precision arithmetic...

Geometric algorithms extract combinatorial information out of numerical data.

Algorithms based on the geometry of \mathbb{R}^{2} are run on finite precision arithmetic...

Geometric algorithms extract combinatorial information out of numerical data.

Algorithms based on the geometry of \mathbb{R}^{2} are run on finite precision arithmetic...

$0 \in \Omega$

Geometric algorithms extract combinatorial information out of numerical data.

Algorithms based on the geometry of \mathbb{R}^{2} are run on finite precision arithmetic...

$0 \in \Omega$

- \notin

Geometric algorithms extract combinatorial information out of numerical data.

Algorithms based on the geometry of \mathbb{R}^{2} are run on finite precision arithmetic...

$0 \in \Omega$
-

GOOD PRACTICE: algorithms make decisions based on input data, not intermediate constructions.

Geometric algorithms extract combinatorial information out of numerical data.

Algorithms based on the geometry of \mathbb{R}^{2} are run on finite precision arithmetic...

$0 \in \Omega$
-

GOOD PRACTICE: algorithms make decisions based on input data, not intermediate constructions.

EXAMPLE OF DECISION: ORIENTATIONS

$\begin{array}{cccc}{[a, b, c]=} & +1 & -1 & 0\end{array}$

Example of DECISION: ORIENTATIONS

$$
\begin{array}{llll}
{[a, b, c]=} & +1 & -1 & 0
\end{array}
$$

$$
=\operatorname{sign}\left(\left|\begin{array}{ccc}
x_{p} & x_{q} & x_{r} \\
y_{p} & y_{q} & y_{r} \\
1 & 1 & 1
\end{array}\right|\right)
$$

Can be certified.
Signs of polynomials. Interval arithmetic. Exact computation.

EXAMPLE OF DECISION: ORIENTATIONS

$[a, b, c]=\quad+1$

$$
=\operatorname{sign}\left(\left|\begin{array}{ccc}
x_{p} & x_{q} & x_{r} \\
y_{p} & y_{q} & y_{r} \\
1 & 1 & 1
\end{array}\right|\right)
$$

-1
0

Can be certified.
Signs of polynomials. Interval arithmetic. Exact computation.

Determine convex hulls, onion peelings, segment crossings, halfspace/simplicial depth, ...

When all you know are orientations

$$
\left.\begin{array}{c}
\text { two point sequences } \\
p_{1}, p_{2}, \ldots, p_{n} \text { and } q_{1}, q_{2}, \ldots, q_{n} \\
\text { have the same chirotope }
\end{array} \Leftrightarrow \quad \Leftrightarrow \quad\left[p_{i}, p_{j}, p_{k}\right]=\left[q_{i}, q_{j}, q_{k}\right]\right]
$$

When all you know are orientations

When all you know are orientations

Chirotopes \simeq labeled order types

Practice

Practice

Practice

Practice

Practice

Practice

A chirotope/order type is simple if no three points are aligned.

Reduce the infinitely many n-point sets to finitely many configurations.

Model what geometric algorithms operate on.

Questions

Count, enumerate, sample, recognize, ...
Understand their realization spaces.
Isotopy? Small-coordinates realizations? ...
Use to study discrete geometry questions.
Counting triangulations, Erdös-Szekeres conjecture, empty hexagon problem, ...

Warm-up: counting

There are $\geq n^{4 n-o(n)}$ simple chirotopes of size n. [GP'86]

There are $\geq n^{4 n-o(n)}$ simple chirotopes of size n. [GP'86]

$$
2 \text { 。 }
$$

$$
1^{\circ}
$$

There are $\geq n^{4 n-o(n)}$ simple chirotopes of size n. [GP'86]

There are $\geq n^{4 n-o(n)}$ simple chirotopes of size n. [GP'86]

$1 * 2$

There are $\geq n^{4 n-o(n)}$ simple chirotopes of size n. [GP'86]

There are $\geq n^{4 n-o(n)}$ simple chirotopes of size n. [GP'86]

There are $\geq n^{4 n-o(n)}$ simple chirotopes of size n. [GP'86]

$$
1 * 2 * 7 \ldots
$$

Add the points one by one

When adding the $(n+1)$ th point, pick a cell in the arrangement of the $\binom{n}{2}$ lines through 2 points.
$\#$ cells is $\Omega\left(n^{4}\right)$
\# chirotopes grows as
$n^{4} \cdot(n-1)^{4} \cdot \ldots \simeq(n!)^{4}$

Chirotopes are sign-Patterns of polynomials

Work in the space of n-point sequences:

$$
p_{1}, p_{2}, \ldots, p_{n} \text { in } \mathbb{R}^{2} \leftrightarrow \tilde{p}=\left(p_{1 x}, p_{1 y}, p_{2 x}, \ldots, p_{n y}\right) \text { in } \mathbb{R}^{2 n} .
$$

Chirotopes are sign-Patterns of polynomials

Work in the space of n-point sequences:

$$
p_{1}, p_{2}, \ldots, p_{n} \text { in } \mathbb{R}^{2} \leftrightarrow \tilde{p}=\left(p_{1 x}, p_{1 y}, p_{2 x}, \ldots, p_{n y}\right) \text { in } \mathbb{R}^{2 n} .
$$

Triple's orientation are determined by polynomials in these $2 n$ variables:
$F_{i, j, k}(\tilde{p})=\left|\begin{array}{ccc}p_{i x} & p_{j x} & p_{k x} \\ p_{i y} & p_{j y} & p_{k y} \\ 1 & 1 & 1\end{array}\right|$

Chirotopes are sign-Patterns of polynomials

Work in the space of n-point sequences:

$$
p_{1}, p_{2}, \ldots, p_{n} \text { in } \mathbb{R}^{2} \leftrightarrow \tilde{p}=\left(p_{1 x}, p_{1 y}, p_{2 x}, \ldots, p_{n y}\right) \text { in } \mathbb{R}^{2 n} .
$$

Triple's orientation are determined by polynomials in these $2 n$ variables:

$$
F_{i, j, k}(\tilde{p})=\left|\begin{array}{ccc}
p_{i x} & p_{j x} & p_{k x} \\
p_{i y} & p_{j y} & p_{k y} \\
1 & 1 & 1
\end{array}\right|
$$

Consider sign sequences:

$$
\tilde{p} \in \mathbb{R}^{2 n} \mapsto \sigma(\tilde{p})=\left(\operatorname{sign} F_{1,2,3}(\tilde{p}), \ldots, \operatorname{sign} F_{n-2, n-1, n}(\tilde{p})\right) \in\{-1,+1\}^{\binom{n}{3}}
$$

Counting

\# sign sequences
of $\left\{P_{i}\right\}_{i=1, \ldots, t}$
in $\{-1,+1\}^{t}$
\# connected components of the complement
of $\bigcup_{i=1}^{t}\left\{P_{i}=0\right\}$.
\# sign sequences of $\left\{P_{i}\right\}_{i=1, \ldots, t} \leq$ of the complement

$$
\text { of } \bigcup_{i=1}^{t}\left\{P_{i}=0\right\} .
$$

Theorem.[W'68] Let P_{1}, \ldots, P_{t} be polynomials of degree $\leq \delta$ in v variables. If $t \geq v$, the number of connected components of $\mathbb{R}^{v} \backslash\left(\bigcup_{i=1}^{t} P_{i}=0\right)$ is at $\operatorname{most}\left(\frac{4 e t \delta}{v}\right)^{v}$.
\# sign sequences of $\left\{P_{i}\right\}_{i=1, \ldots, t} \leq$ of the complement

$$
\text { of } \bigcup_{i=1}^{t}\left\{P_{i}=0\right\} .
$$

Theorem.[W'68] Let P_{1}, \ldots, P_{t} be polynomials of degree $\leq \delta$ in v variables. If $t \geq v$, the number of connected components of $\mathbb{R}^{v} \backslash\left(\bigcup_{i=1}^{t} P_{i}=0\right)$ is at $\operatorname{most}\left(\frac{4 e t \delta}{v}\right)^{v}$.

For chirotopes: $v=2 n, t=\binom{n}{3}$ gives $\left(O\left(n^{2}\right)\right)^{2 n}=n^{4 n+o(n)}$.
\# sign sequences of $\left\{P_{i}\right\}_{i=1, \ldots, t} \leq$ of the complement
in $\{-1,+1\}^{t}$

$$
\text { of } \bigcup_{i=1}^{t}\left\{P_{i}=0\right\} .
$$

Theorem.[W'68] Let P_{1}, \ldots, P_{t} be polynomials of degree $\leq \delta$ in v variables. If $t \geq v$, the number of connected components of $\mathbb{R}^{v} \backslash\left(\bigcup_{i=1}^{t} P_{i}=0\right)$ is at $\operatorname{most}\left(\frac{4 e t \delta}{v}\right)^{v}$.

For chirotopes: $v=2 n, t=\binom{n}{3}$ gives $\left(O\left(n^{2}\right)\right)^{2 n}=\underbrace{n^{4 n+o(n)}}$. matches the
lower bound

Some landmarks

$n^{4 n-o(n)} \leq \#$ simple n-point chirotopes $\leq n^{4 n+o(n)}$.
$n^{4 n-o(n)} \leq \#$ simple n-point chirotopes $\leq n^{4 n+o(n)}$.

Order types enumerated up to size 11 (mod. mirror images).

3	4	5	6	7	8	9	10	11
1	2	3	16	135	3315	158817	14309547	2334512907

$n^{4 n-o(n)} \leq \#$ simple n-point chirotopes $\leq n^{4 n+o(n)}$.

Order types enumerated up to size 11 (mod. mirror images).

3	4	5	6	7	8	9	10	11
1	2	3	16	135	3315	158817	14309547	2334512907

"Is a given map $\binom{n}{3} \rightarrow\{-1,+1\}$ a chirotope?" NP-hard.
$n^{4 n-o(n)} \leq \#$ simple n-point chirotopes $\leq n^{4 n+o(n)}$.

Order types enumerated up to size 11 (mod. mirror images).

3	4	5	6	7	8	9	10	11
1	2	3	16	135	3315	158817	14309547	2334512907

"Is a given map $\binom{n}{3} \rightarrow\{-1,+1\}$ a chirotope?" NP-hard. $\exists \mathbb{R}$-hard.
$n^{4 n-o(n)} \leq \#$ simple n-point chirotopes $\leq n^{4 n+o(n)}$.

Order types enumerated up to size 11 (mod. mirror images).

3	4	5	6	7	8	9	10	11
1	2	3	16	135	3315	158817	14309547	2334512907

"Is a given map $\binom{n}{3} \rightarrow\{-1,+1\}$ a chirotope?" NP-hard. $\exists \mathbb{R}$-hard. NP?

$n^{4 n-o(n)} \leq \#$ simple n-point chirotopes $\leq n^{4 n+o(n)}$.

Order types enumerated up to size 11 (mod. mirror images).

3	4	5	6	7	8	9	10	11
1	2	3	16	135	3315	158817	14309547	2334512907

"Is a given map $\binom{n}{3} \rightarrow\{-1,+1\}$ a chirotope?" NP-hard. $\exists \mathbb{R}$-hard. NP?

There exist $c>0$ such that any simple n-point order type can be realized on $\left\{0,1, \ldots, 2^{2^{c n}}\right\} \times\left\{0,1, \ldots, 2^{2^{c n}}\right\}$.
$n^{4 n-o(n)} \leq \#$ simple n-point chirotopes $\leq n^{4 n+o(n)}$.

Order types enumerated up to size 11 (mod. mirror images).

3	4	5	6	7	8	9	10	11
1	2	3	16	135	3315	158817	14309547	2334512907

"Is a given map $\binom{n}{3} \rightarrow\{-1,+1\}$ a chirotope?" NP-hard. $\exists \mathbb{R}$-hard. NP?

There exist $c>0$ such that any simple n-point order type can be realized on $\left\{0,1, \ldots, 2^{2^{c n}}\right\} \times\left\{0,1, \ldots, 2^{2^{c n}}\right\}$.

That much precision is sometimes needed.

Von Staudt's constructions

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2},

+ and $*$ can be constructed by reporting parallel lines:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2},

+ and $*$ can be constructed by reporting parallel lines:

This can be projectivized:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

This can be projectivized:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

This can be projectivized:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

This can be projectivized:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

This can be projectivized:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

This can be projectivized:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

This can be projectivized:

Von Staudt's constructions

If we represent real numbers by points on a line in \mathbb{R}^{2}, + and $*$ can be constructed by reporting parallel lines:

This can be projectivized:

Intrinsic spread

Intrinsic spread

Intrinsic spread

Intrinsic spread

INTRINSIC SPREAD

Apply n times.
From $\infty, 0,1$ and x, construct $x^{2}, x^{4}, x^{8}, \ldots, x^{2^{n}}$
$\rightarrow \Theta(n)$ points with many alignments.

INTRINSIC SPREAD

Apply n times.
From $\infty, 0,1$ and x, construct $x^{2}, x^{4}, x^{8}, \ldots, x^{2^{n}}$
$\rightarrow \Theta(n)$ points with many alignments.

The chirotope of this point set is very rigid:
all realizations are projectively equivalent!

INTRINSIC SPREAD

Apply n times.
From $\infty, 0,1$ and x, construct $x^{2}, x^{4}, x^{8}, \ldots, x^{2^{n}}$
$\rightarrow \Theta(n)$ points with many alignments.

The chirotope of this point set is very rigid:
all realizations are projectively equivalent!

The ratio "smallest distance / diameter" recasts as a projective invariant.

INTRINSIC SPREAD

Apply n times.
From $\infty, 0,1$ and x, construct $x^{2}, x^{4}, x^{8}, \ldots, x^{2^{n}}$
$\rightarrow \Theta(n)$ points with many alignments.

Any realization of this chirotope on a grid requires 2^{n} bits.

INTRINSIC SPREAD

Apply n times.
From $\infty, 0,1$ and x, construct $x^{2}, x^{4}, x^{8}, \ldots, x^{2^{n}}$
$\rightarrow \Theta(n)$ points with many alignments.

Any realization of this chirotope on a grid requires 2^{n} bits.

The same holds without alignments.

INTRINSIC SPREAD

Apply n times.
From $\infty, 0,1$ and x, construct $x^{2}, x^{4}, x^{8}, \ldots, x^{2^{n}}$
$\rightarrow \Theta(n)$ points with many alignments.

Any realization of this chirotope on a grid requires 2^{n} bits.

The same holds without alignments.

Theorem. [M'88] For every finite simplicial complex K, there exists a 2D chirotope whose space of realizations has the same homotopy type as K.

$$
\begin{gathered}
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in\left(\mathbb{R}^{2}\right)^{n} \\
\leftrightarrow \\
\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right) \in \mathbb{R}^{2 n}
\end{gathered}
$$

Disproved the conjecture that realization spaces were connected [R56].

Also holds for simplicial polytopes [AP17].

Random generation

\mathcal{O}_{n} the set of n points order types.
$\left\{\mu_{k}\right\}_{k \geq 1}$ where μ_{n} is a probability on \mathcal{O}_{n}.
$\left\{\mu_{k}\right\}_{k \geq 1}$ exhibits concentration if there exists $A_{n} \subset \mathcal{O}_{n}$
s.t. $\frac{\left|A_{n}\right|}{\left|\mathcal{O}_{n}\right|} \rightarrow 0$ and $\mu_{n}\left(A_{n}\right) \rightarrow 1$.

Can we sample order types efficiently and avoid concentration?

Counting is only up to superexponential multiplicative error.
For combinatorial representations, membership testing is NP-hard.
Geometric representation requires exponential storage.

Order types of Random point sets?
\mathcal{O}_{n} the set of n points order types.
μ a probability over \mathbb{R}^{2} that charges no line.
Sample n random points independently from μ.
Read off their order type or chirotope.

\hookrightarrow a probability μ_{n} over \mathcal{O}_{n}
\mathcal{O}_{n} the set of n points order types.
μ a probability over \mathbb{R}^{2} that charges no line.
Sample n random points independently from μ.
Read off their order type or chirotope.

\hookrightarrow a probability μ_{n} over \mathcal{O}_{n}

Conjecture. This family of distributions exhibits concentration.
[DDGG'18]

Same for

Theorem. $\forall \mu, \exists$ order types ω_{1}, ω_{2} of size 6
s.t. $\mu_{6}\left(\omega_{1}\right)>1.8 \mu_{6}\left(\omega_{2}\right)$.

Evidence of concentration

Theorem. $\forall \mu, \exists$ order types ω_{1}, ω_{2} of size 6

s.t. $\mu_{6}\left(\omega_{1}\right)>1.8 \mu_{6}\left(\omega_{2}\right)$.

Proof of concentration

$p \in P$ is extreme in P

\Leftrightarrow
p can be separated from $P \backslash\{p\}$ by a line

$$
p \in P \text { is extreme in } P
$$

\Leftrightarrow
p can be separated from $P \backslash\{p\}$ by a line

Probabilistic geometry studied the number K_{n} of extreme points in n random points chosen uniformly from a compact convex set K.

$$
\mathbb{E}\left[K_{n}\right] \sim \begin{cases}\log n & \text { if } K \text { is a polygon } \\ n^{1 / 3} & \text { if } K \text { is smooth }\end{cases}
$$

$\operatorname{Var}\left[K_{n}\right]=\Theta\left(\mathbb{E}\left[K_{n}\right]\right) \quad$ if K is smooth or polygonal.

Theorem. The average number of extreme points in a simple order type of size n in the plane is at most $4+o(1)$.

The average number of extreme points in a simple chirotope of size n in the plane equals $4-\frac{8}{n^{2}-n+2}$.

The uniform distribution on \mathcal{O}_{n}.

Theorem. The average number of extreme points in a simple order type of size n in the plane is at most $4+o(1)$.

The average number of extreme points in a simple chirotope of size n in the plane equals $4-\frac{8}{n^{2}-n+2}$.

The uniform distribution on \mathcal{O}_{n}.

Corollary. Order types and chirotopes read off random samples of polygonal or smooth compact convex sets exhibit concentration.
[GW20]

Approach

Match order types!

Lemma. Let A be a finite planar point set in general position and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a projective transform that sends no point of A to infinity. If A and $g(A)$ have different order types, then there are at most 4 extreme vertices of A whose images are also extreme in $g(A)$.

Go PRojective

A subset of \mathbb{S}^{2} is affine if it is contained in an open hemisphere.

Order types are the same as in \mathbb{R}^{2}.

A subset of \mathbb{S}^{2} is affine if it is contained in an open hemisphere.

Order types are the same as in \mathbb{R}^{2}.
Complete an affine set A into a projective set $A \cup-A$.

Study together the affine sets with the same
 projective completion.

A subset of \mathbb{S}^{2} is affine if it is contained in an open hemisphere.

Order types are the same as in \mathbb{R}^{2}.
Complete an affine set A into a projective set $A \cup-A$.

Study together the affine sets with the same projective completion.

A subset of \mathbb{S}^{2} is affine if it is contained in an open hemisphere.

Order types are the same as in \mathbb{R}^{2}.
Complete an affine set A into a projective set $A \cup-A$.

Study together the affine sets with the same projective completion.

A subset of \mathbb{S}^{2} is affine if it is contained in an open hemisphere.

Order types are the same as in \mathbb{R}^{2}.
Complete an affine set A into a projective set $A \cup-A$.

Study together the affine sets with the same
 projective completion.

Relate affine and projective symmetries.

A subset of \mathbb{S}^{2} is affine if it is contained in an open hemisphere.

Order types are the same as in \mathbb{R}^{2}.
Complete an affine set A into a projective set $A \cup-A$.

Study together the affine sets with the same
 projective completion.

Relate affine and projective symmetries.
Chirotopes:

duality + miracle + averaging.

A subset of \mathbb{S}^{2} is affine if it is contained in an open hemisphere.

Order types are the same as in \mathbb{R}^{2}.
Complete an affine set A into a projective set $A \cup-A$.

Study together the affine sets with the same
 projective completion.

Relate affine and projective symmetries.
Chirotopes:

duality + miracle + averaging.
Order types: Klein's proof + ...

To conclude...

A combinatorial structure with a geometric twist and algorithmic meaning.

A wonderful playground for all kinds of algebra.
Milnor-Thom, Von Staudt, semi-algebraic graphs, flag algebras, finite subgroups of $S O(3), \ldots$

We do not know how to count.

We do not know how to sample efficiently.
And now we know that we don't know.

Thank you

for
your attention!

