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Example of decision: orientations

Can be certified.

Signs of polynomials.

Interval arithmetic.
Exact computation.

Determine convex hulls, onion peelings,
segment crossings, halfspace/simplicial
depth, . . .
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A chirotope/order type is simple if no three points are aligned.

Practice

∼



Why care?

Reduce the infinitely many n-point sets to
finitely many configurations.

Model what geometric algorithms operate on.

Questions

Count, enumerate, sample, recognize, . . .

Understand their realization spaces.

Use to study discrete geometry questions.

Counting triangulations, Erdös-Szekeres conjecture,
empty hexagon problem, . . .

Isotopy? Small-coordinates realizations? . . .



Warm-up: counting
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Add the points one by one

When adding the (n+ 1)th
point, pick a cell in the
arrangement of the

(
n
2

)
lines

through 2 points.

# cells is Ω(n4)

# chirotopes grows as
n4 · (n− 1)4 · . . . ' (n!)4
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There exist c > 0 such that any simple n-point order type
can be realized on

{
0, 1, . . . , 22

cn}× {0, 1, . . . , 22
cn}

.

That much precision is sometimes needed.
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Von Staudt’s constructions

+ and ∗ can be constructed by reporting parallel lines:

This can be projectivized:

0 x y x+ y 0 1 x y x ∗ y

If we represent real numbers by points on a line in R2,

0 x y∞

lin
e

at
in
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ity

0 x y∞

lin
e

at
in

fin
ity

1x+ y x ∗ y

Value t changed to

cross ratio [t, 1, 0,∞]
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Apply n times.
From ∞, 0, 1 and x,
construct x2, x4, x8, . . . , x2

n

→ Θ(n) points with
many alignments.

The chirotope of this
point set is very rigid:

all realizations are projectively equivalent!

The ratio ”smallest distance / diameter”
recasts as a projective invariant.

Any realization of this
chirotope on a grid
requires 2n bits.

The same holds without alignments.

[GPS’90]



Mnëv’s universality theorem

Theorem. [M’88] For every finite simplicial complex
K, there exists a 2D chirotope whose space of
realizations has the same homotopy type as K.

Theorem. [M’88] For every finite simplicial complex
K, there exists a 2D chirotope whose space of
realizations has the same homotopy type as K.

Disproved the conjecture that realization spaces
were connected [R56].

Also holds for simplicial polytopes [AP17].

((x1, y1), (x2, y2), . . . , (xn, yn)) ∈ (R2)n

↔
(x1, y1, x2, y2, . . . , xn, yn) ∈ R2n



Random generation



The problem

Can we sample order types efficiently and avoid concentration?

Geometric representation requires exponential storage.

On the set of n points order types.

{µk}k≥1 where µn is a probability on On.

{µk}k≥1 exhibits concentration if there exists An ⊂ On
s.t. |An|

|On| → 0 and µn(An)→ 1.

Counting is only up to superexponential multiplicative error.

For combinatorial representations, membership testing is NP-hard.
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On the set of n points order types.

Sample n random points independently from µ.

Read off their order type or chirotope.

µ a probability over R2 that charges no line.



Order types of random point sets?

↪→ a probability µn over On

On the set of n points order types.

Sample n random points independently from µ.

Read off their order type or chirotope.

µ a probability over R2 that charges no line.

Conjecture. This family of distributions exhibits concentration.
[DDGG’18]
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Evidence of concentration

Theorem. ∀µ, ∃ order types ω1, ω2 of size 6
s.t. µ6(ω1) > 1.8µ6(ω2).

[GHJSV15]

[DDGG’18]

Size 10 Size 11
s d s d

50% 1 0.5 26 16.5
33% 1 0.5 84 39.4
25% 2 0.8 157 60.1
15% 6 1.6 432 112
10% 11 2.2 - -
5% 31 3.6 - -
4% 41 4 - -
3% 60 4.7 - -
2% 98 5.6 - -
1% 221 7.3 - -

0.5% 476 9.1 - -
0.25% 991 10.8 - -



Proof of concentration



Extreme points

p ∈ P is extreme in P

⇔
p can be separated from P \ {p} by a line



Extreme points

p ∈ P is extreme in P

⇔
p can be separated from P \ {p} by a line

Probabilistic geometry studied the number Kn of extreme
points in n random points chosen uniformly from a compact
convex set K.

E[Kn] ∼
{

log n if K is a polygon
n1/3 if K is smooth

Var[Kn] = Θ (E[Kn]) if K is smooth or polygonal.



Extreme points

Theorem. The average number of extreme points in a simple
order type of size n in the plane is at most 4 + o(1).

The average number of extreme points in a simple chirotope of
size n in the plane equals 4− 8

n2−n+2 .

The uniform distribution on On.



Extreme points

Theorem. The average number of extreme points in a simple
order type of size n in the plane is at most 4 + o(1).

The average number of extreme points in a simple chirotope of
size n in the plane equals 4− 8

n2−n+2 .

The uniform distribution on On.

Corollary. Order types and chirotopes read off random samples of
polygonal or smooth compact convex sets exhibit concentration.

[GW20]



Approach

∞ ∞

Lemma. Let A be a finite planar point set in general position and
g : R2 → R2 a projective transform that sends no point of A to infinity.
If A and g(A) have different order types, then there are at most 4
extreme vertices of A whose images are also extreme in g(A).

Match order types!
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Go projective

A subset of S2 is affine if it is contained in
an open hemisphere.

Order types are the same as in R2.

Complete an affine set A into a
projective set A ∪ −A.

Study together the affine sets with the same
projective completion.

Relate affine and projective symmetries.

Chirotopes:

duality + miracle + averaging.

Order types:

Klein’s proof + ...



To conclude...



We do not know how to count.

A combinatorial structure with a geometric twist
and algorithmic meaning.

A wonderful playground for all kinds of algebra.

Milnor-Thom, Von Staudt, semi-algebraic graphs, flag algebras,
finite subgroups of SO(3), . . .

We do not know how to sample efficiently.

And now we know that we don’t know.



Thank you

for

your attention!


