Ordre faible et cone

 imaginaire dans les groupes de Coxeter infinis- Séminaire de combinatoire Philippe Flajolet -

IHP, Paris, 3 avril 2014
Christophe Hohlweg, LaCIM, UQAM (en sabbatique à I'IRMA, Strasbourg)

Basé sur des travaux en collaboration avec :
\square J.P Labbé (FU Berlin), V. Ripoll (Vienne) and M. Dyer (U. Notre-Dame, USA)

Coxeter groups

- An introductory example: the symmetric group \mathcal{S}_{n}. \square Generators: simple transpositions $\tau_{i}=(i i+1)$;
\square Relations: $\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1}$ (braid relat ${ }^{\circ}$)

$$
\tau_{i} \tau_{j}=\tau_{j} \tau_{i},|i-j|>1 \quad\left(\text { commutation relat }{ }^{\circ}\right)
$$

So $e=\left(\tau_{i} \tau_{i+1} \tau_{i}\right)^{2}=\left(\tau_{i} \tau_{i+1} \tau_{i}\right)\left(\tau_{i+1} \tau_{i} \tau_{i+1}\right)=\left(\tau_{i} \tau_{i+1}\right)^{3}$, hence
$\left.\mathcal{S}_{n}=\left\langle\tau_{i}\right| \tau_{i}^{2}=\left(\tau_{i} \tau_{j}\right)^{2}=\left(\tau_{i} \tau_{i+1}\right)^{3}=e, 1 \leq i<n,|j-i|>1\right\rangle$

- - means $\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1}$ or $\left(\tau_{i} \tau_{i+1}\right)^{3}=e$
- - - means $\tau_{i} \tau_{j}=\tau_{j} \tau_{i}$ or $\left(\tau_{i} \tau_{j}\right)^{2}=e$ (they commute)

Coxeter groups

(W, S) Coxeter system of finite rank $|S|<\infty$ i.e.

- $W=\left\langle S \mid(s t)^{m_{s t}}=e\right\rangle$ group
- $m_{s s}=1\left(s_{\text {involut }}{ }^{\circ}\right) ; m_{s t}=m_{t s} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$ for $s \neq t$

A Coxeter graph Γ is given by:

- vertices S (finite)

Examples. Symmetric group \mathcal{S}_{n} is

- Dihedral group: $\mathcal{D}_{m}=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{m}=e\right\rangle$;
- Infinite dihedral group: $\mathcal{D}_{\infty}=\left\langle s, t \mid s^{2}=t^{2}=e\right\rangle$;
- Universal Coxeter group: $U_{n}=\left\langle a_{1}, \ldots, a_{n} \mid a_{i}^{2}=e\right\rangle$

Coxeter groups

(W, S) Coxeter system of finite rank $|S|<\infty$ i.e.

- $W=\left\langle S \mid(s t)^{m_{s t}}=e\right\rangle$ group
- $m_{s s}=1\left(s_{\text {involut }}{ }^{\circ}\right) ; m_{s t}=m_{t s} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$ for $s \neq t$

A Coxeter graph Γ is given by:

- vertices S (finite)

Examples. Symmetric group \mathcal{S}_{n} is

- Dihedral group: \mathcal{D}_{m} is \bigcirc or $\bullet \quad 0(m=2)$
- Infinite dihedral group: \mathcal{D}_{∞} is
- Universal Coxeter group: $U_{n}=\left\langle a_{1}, \ldots, a_{n} \mid a_{i}^{2}=e\right\rangle$

Coxeter groups

Words and Length

- any $w \in W$ is a word in the alphabet S;
- Length function $\ell: W \rightarrow \mathbb{N}$ with $\ell(e)=0$ and

$$
\ell(w)=\min \left\{k \mid w=s_{1} s_{2} \ldots s_{k}, s_{i} \in S\right\}
$$

How to study words on S representing w ? Is a word $s_{1} s_{2} \ldots s_{k}$ a reduced word for w (i.e. $k=\ell(w)$)?

Examples. \mathcal{D}_{3} is

$\backsim ;$| | e | s | t | $s t$ | $t s$ | $s t s=t s t$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ℓ | 0 | 1 | 1 | 2 | 2 | 3 |

$$
\ell(s t s t s)=1 \text { since ststs }=(s t s) t s=(t s t) t s=t
$$

Proposition. Let $s \in S$ and $w \in W$, then $\ell(w s)=\ell(w) \pm 1$.

Weak order and reduced words

Cayley graph of $W=\langle S\rangle$ i.e.
\square vertices W
\square edges $w \xrightarrow[S]{s}$ ws $(s \in S)$
is naturally oriented by the (right) weak order:

$$
w<w s \text { if } \ell(w)<\ell(w s)
$$

write: $w \xrightarrow{s} w s$

Fact: (a) $u \leq w$ iff a reduced word of u is a prefix of a red. word of w.
(b) reduced words of w corresp. to maximal chains in the interval $[e, w]$.

Weak order and reduced words

Theorem (Björner). The weak order is a complete meetsemilattice. In particular $u \wedge v=\inf (u, v), \forall u, v \in W$, exists.

Proposition. Assume W is finite, then:
(i) there is a unique $w_{0} \in W$ such that: $u \leq w_{0}, \forall u \in W$.
(ii) the map $w \mapsto w w_{0}$ is a poset antiautomorphism. (iii) the weak order is a complete lattice. In part., $u \vee v=\sup (u, v)$ exists. (iv) $u \wedge v=\left(u w_{\circ} \vee v w_{\circ}\right) w_{\circ}$

Weak order: a combinatorial model

Cambrian (semi) lattices/fans in finite case (N. Reading, N . reading \& D.Speyer)/Generalized associahedra in finite case (CH, C. Lange, H. Thomas): link with subword complexes (C. Ceballos, J.P. Labbé, V. Pilaud, C. Stump); recovering the corresponding Cluster algebras (s.
 Stella).

Initial section of reflection orders and KL-polynomials (M. Dyer): combinatorial formulas for KL-polynomials (F. Brenti, M. Dyer).

A combinatorial model for cambrian lattices/generalized associahedra in infinite case, or twisted Bruhat order and KLpolynomials (M. Dyer)? Examples suggest to «enlarge» Coxeter groups to have a weak order that is a complete lattice. Is it possible?

Geometric representations

Many geometric representations of (W, S)
(Tits, Vinberg)
$\square(V, B)$ real quadratic space and $\Delta \subseteq V$ s.t.

- cone $(\Delta) \cap \operatorname{cone}(-\Delta)=\{0\}$;
- $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$ s.t.

$$
B\left(\alpha_{s}, \alpha_{t}\right)=\left\{\begin{array}{cl}
-\cos \left(\frac{\pi}{m_{s t}}\right) & \text { if } m_{s t}<\infty \square \square \\
a \leq-1 & \text { if } m_{s t}=\infty \quad m_{s t}^{\infty}
\end{array}\right.
$$

$\square W \leq \mathrm{O}_{B}(V)$ " B-isometry":

$$
s(v)=v-2 B(v, \alpha) \alpha, s \in S
$$

Root system: $\Phi=W(\Delta), \Phi^{+}=\operatorname{cone}(\Delta) \cap \Phi=-\Phi^{-}$
Proposition. Let $s \in S$ and $w \in W$, then:

$$
\ell(w s)=\ell(w)+1 \Longleftrightarrow w\left(\alpha_{s}\right) \in \Phi^{+}
$$

Geometric representations

$$
\rho_{n}^{\prime}=n \alpha+(n+1) \beta
$$

Infinite dihedral group I

$$
\rho_{n}=(n+1) \alpha+n \beta
$$

$$
\text { (a) } B(\alpha, \beta)=-1
$$

$$
s_{\alpha}(v)=v-2 B(v, \alpha) \alpha
$$

Geometric representations

Infinite dihedral group II

A Projective view of root systems

'Cut' cone(Δ) by an affine hyperplane: $V_{1}=\left\{v \in V \mid \sum_{\alpha \in \Delta} v_{\alpha}=1\right\}$ Normalized roots: $\widehat{\rho}:=\rho / \sum_{\alpha \in \Delta} \rho_{\alpha}$ in $\widehat{\Phi}:=\bigcup_{\rho \in \Phi} \mathbb{R} \rho \cap V_{1}$
Action of W on $\hat{\Phi}: w \cdot \hat{\rho}=\widehat{w(\rho)}$

$$
\widehat{Q}:=Q \cap V_{1}
$$

- Rank 2 root systems

A Projective view of root systems

'Cut' cone(Δ) by an affine hyperplane: $V_{1}=\left\{v \in V \mid \sum_{\alpha \in \Delta} v_{\alpha}=1\right\}$ Normalized roots: $\widehat{\rho}:=\rho / \sum_{\alpha \in \Delta} \rho_{\alpha}$ in $\widehat{\Phi}:=\bigcup_{\rho \in \Phi} \mathbb{R} \rho \cap V_{1}$
Action of W on $\hat{\Phi}: w \cdot \hat{\rho}=\widehat{w(\rho)}$

$$
\widehat{Q}:=Q \cap V_{1}
$$

- Rank 2 root systems

A Projective view of root systems

- Rank 3 root systems

From joint works with:
\square J.P Labbé and V. Ripoll (2012) \square M. Dyer and V. Ripoll (2013)

A dihedral subgroup group is infinite iff the associated line cuts

A Projective view of root systems

- Rank 4 root systems

From joint works with:
\square J.P Labbé and V. Ripoll (2012) - M. Dyer and V. Ripoll (2013)
finite

Sgn is (2,2)

(weakly) hyperbolic

Weak order and roots

Definition. The inversion set of a reduced word $w=s_{1} s_{2} \ldots s_{k}$ is $N(w):=\left\{\alpha_{1}, s_{1}\left(\alpha_{2}\right), \cdots, s_{1} \ldots s_{k-1}\left(\alpha_{k}\right)\right\}$

	$s=s_{\alpha}$		$t=s_{\beta}$	$s t$	$t s$	$s t s=t s t$
$\ell(w)$	0	1	1	2	2	3
$\widehat{N(w)}$	\emptyset	$\hat{\alpha}$	$\hat{\beta}$	$\hat{\alpha} ; s_{\alpha} \cdot \hat{\beta}=\hat{\gamma}$	$\hat{\beta} ; \widehat{\gamma}$	$\hat{\Phi}$

$\stackrel{\bullet}{\hat{\beta}} \underset{\hat{\gamma}=\stackrel{\bullet}{\alpha+\beta}}{\hat{\alpha}} \quad \stackrel{3}{\square} \quad$ Proposition. $|N(w)|=\ell(w)$

Proposition. The map

$$
N:(W, \leq) \rightarrow(\mathcal{P}(\Phi), \subseteq)
$$

is an injective morphism of posets.
What is $\operatorname{Im}(N) ?$

Weak order and roots

$\square A \subseteq \Phi^{+}$is closed if for all $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \forall \alpha, \beta \in A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$

Proposition. The map

$$
N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)
$$

is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

$\xrightarrow{-3}$

Weak order and roots

$\square A \subseteq \Phi^{+}$is closed if for all $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \forall \alpha, \beta \in A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$

Proposition. The map

$$
N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)
$$

is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

Weak order and roots

$\square A \subseteq \Phi^{+}$is closed if for all $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \forall \alpha, \beta \in A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$

Proposition. The map

$$
N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)
$$

is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

$\stackrel{\hat{\beta}}{\hat{\gamma}=\hat{\alpha+\beta}} \quad \stackrel{\hat{\alpha}}{0} \quad \stackrel{+}{\text { closed not }}$| bicolsed |
| :--- |

Weak order and roots

$\square A \subseteq \Phi^{+}$is closed if for all $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \forall \alpha, \beta \in A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$

Proposition. The map

$$
N:(W, \leq) \rightarrow\left(\mathcal{B}_{0}(W), \subseteq\right)
$$

is a poset isomorphism and $N\left(w_{\circ}\right)=\Phi^{+}$if W is finite.

$\stackrel{\hat{\beta}}{\hat{\gamma}=\hat{\alpha+\beta}} \quad \hat{\alpha} \quad \stackrel{+\quad{ }^{3}}{$| closed not |
| :--- |
| bicolsed |$}$

Weak order and roots

$\square A \subseteq \Phi^{+}$is closed if for all $[\hat{\alpha}, \hat{\beta}] \cap \hat{\Phi} \subseteq \hat{A}, \forall \alpha, \beta \in A$;
$\square A \subseteq \Phi^{+}$is biclosed if $A, A^{c}:=\Phi^{+} \backslash A$ are closed.
$\square \mathcal{B}(W)=\{$ biclosed sets $\} ; \mathcal{B}_{0}(W)=\{A \subseteq \mathcal{B}(W)| | A \mid<\infty\}$

Proposition. The map
Inverse map (recursive construction)
is
$\exists \alpha \in \Delta \cap A, s_{\alpha}(A \backslash\{\alpha\})$ is finite biclosed and

$$
\begin{aligned}
& A=\{\alpha\} \sqcup s_{\alpha}(A \backslash\{\alpha\}) \\
& w_{A}=s_{\alpha} w_{s_{\alpha}}(A \backslash\{\alpha\})
\end{aligned}
$$

Weak order and root system

world of words
If W is finite, then:
(i) a unique $w_{0} \in W$ s.t

$$
u \leq w_{0}, \forall u \in W
$$

(ii) $w \mapsto w w_{0}$ is a poset antiautomorphism.
(iii) the weak order is a complete lattice.
(iv) $u \wedge v=\left(u w_{\circ} \vee v w_{\circ}\right) w_{0}$

world of roots

If W is finite, then:
(i) $N\left(w_{\circ}\right)=\Phi^{+}$and $A \subseteq \Phi^{+}, \forall A \in \mathcal{B}=\mathcal{B}_{0}$
(ii) $A \mapsto A^{c}$ is a poset antiautomorphism.
(iii) the weak order is a complete lattice.
(iv) $A \wedge B=\left(A^{c} \vee B^{c}\right)^{c}$

Weak order and root system

world of words

If W is finite, then:
(i) a unique $w_{0} \in W$ s.t

$$
u \leq w_{o}, \forall u \in W
$$

(ii) $w \mapsto w w_{0}$ is a poset antiautomorphism.
(iii) the weak order is a complete lattice.
(iv) $u \wedge v=\left(u w_{\circ} \vee v w_{\circ}\right) w_{\circ}$

Conjecture (M. Dyer, 2011). (\mathcal{B}, \subseteq) is a complete lattice (with minimal element \emptyset and maximal element Φ^{+}).

Weak order and Bruhat order

Bruhat order: transitive closure of $w \leq_{B} w s_{\beta}$ if $\ell(w)<\ell\left(w s_{\beta}\right)$ Bruhat graph of $W=\langle S\rangle$

Weak order implies Bruhat order.
\square vertices W
\square edges $w \xrightarrow{\beta} w_{s_{\beta}}$

A-path: path starting with e in the Bruhat graph and indexed by elements in $A \cup B$.

Exemple. $A=\{\alpha, \gamma\}$:

$$
\begin{aligned}
& e \rightarrow w_{\circ}=s_{\gamma} \\
& e \rightarrow s \rightarrow t s
\end{aligned}
$$

$\stackrel{\bullet}{\beta} \quad \hat{\gamma}=\stackrel{\bullet}{\alpha+\beta} \quad \stackrel{\hat{\alpha}}{\bullet} \quad \stackrel{3}{\longrightarrow}$

Weak order and Bruhat order

B-closure of $A \subseteq \Phi^{+}: \bar{A}=\left\{\beta \in \Phi^{+} \mid s_{\beta}\right.$ is in a A - path $\}$

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

$$
A \vee B=\overline{A \cup B}
$$

This conjecture is open even in finite cases!

Exemple. $A=\{\alpha, \gamma\}$:

$$
\begin{aligned}
& e \rightarrow w_{\circ}=s_{\gamma} \\
& e \rightarrow s \rightarrow t s
\end{aligned}
$$

Weak order and Bruhat order

Another example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; \quad s_{\alpha_{1}+\alpha_{2}}=\tau_{1} \tau_{2} \tau_{1}$
$B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$

$$
\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3}
$$

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

$$
A \vee B=\overline{A \cup B}
$$

This conjecture is open even in finite cases!

Graph of $A \cup B$ paths

Weak order and Bruhat order

Another example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; \quad s_{\alpha_{1}+\alpha_{2}}=\tau_{1} \tau_{2} \tau_{1}$
$B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$

$$
\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3}
$$

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

$$
A \vee B=\overline{A \cup B}
$$

This conjecture is open even in finite cases!

$$
\overline{A \cup B}=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}=N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)
$$

Another way to interpret the join?

B
A

$$
\tau_{1} \tau_{2} \nabla \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3}
$$

Conjecture (M. Dyer).
Let A, B be biclosed sets, then

$$
A \vee B=\overline{A \cup B}
$$

This conjecture is open even in finite cases!

$$
\overline{A \cup B}=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}=N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)
$$

Join in finite Coxeter groups

Example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$ $\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3} \quad ; N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$

Join in finite Coxeter groups

Example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$ $\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3} \quad ; N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$
$\hat{A} \vee \hat{B}=\operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}$

Join in finite Coxeter groups

Example: (W, S) is

$A=N\left(\tau_{1} \tau_{2}\right)=\left\{\alpha_{1}, \tau_{1}\left(\alpha_{2}\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} ; \quad B=N\left(\tau_{3}\right)=\left\{\alpha_{3}\right\}$ $\tau_{1} \tau_{2} \vee \tau_{3}=\tau_{1} \tau_{3} \tau_{2} \tau_{3} \quad ; N\left(\tau_{1} \tau_{3} \tau_{2} \tau_{3}\right)=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$
$A \cup B=\left\{\alpha_{1}, \alpha_{3}, \alpha_{1}+\alpha_{2}\right\}$
Proposition (CH, Labbé).
Let A, B be biclosed sets in a finite Coxeter group, then

$$
\hat{A} \vee \hat{B}=\operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}
$$

Ex No true in general: the convex hull of the union of biclosed is not biclosed in general A
τ_{1}
A (counterexample in rank 4).

Proposition (CH, Labbé).
Let A, B be biclosed sets in a finite Coxeter group, then

$$
\hat{A} \vee \hat{B}=\operatorname{conv}(\hat{A} \cup \hat{B}) \cap \hat{\Phi}
$$

Is it possible to recognize biclosed sets??
Depth of a root is $\operatorname{dp}(\rho)=1+\min \left\{k \mid \rho=s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{k}}\left(\alpha_{k+1}\right)\right.$,

$$
\left.\alpha_{1}, \ldots, \alpha_{k}, \alpha_{k+1} \in \Delta\right\} .
$$

If A is biclosed, properties of

$$
\sum_{\beta \in A} q^{\operatorname{dp}(\beta)} ?
$$

Limit roots

Limit roots (CH, Labbé, Ripoll 2013): the set of limit roots is:

$$
E(\Phi)=\operatorname{Acc}(\widehat{\Phi}) \subseteq Q \cap \operatorname{conv}(\Delta)
$$

- Action of W on $\widehat{\Phi} \sqcup E$: given on E by $\widehat{Q} \cap L(\alpha, x)=\left\{x, s_{\alpha} \cdot x\right\}$

Remark. $E=\hat{Q}$ is a singleton in the case of affine root system.

$$
\begin{array}{llllll}
\beta=\rho_{1}^{\prime} & \rho_{2}^{\prime} & \ldots & \rho_{2} & \alpha=\rho_{1} \\
\beta=\rho_{1}^{\prime} & \rho_{2}^{\prime} & \ldots & \rho_{2} & \alpha=\rho_{1}
\end{array}
$$

Limit roots

Theorem (Dyer, CH, Ripoll, 2013)

$$
E=\hat{Q} \Longleftrightarrow \hat{Q} \subseteq \operatorname{conv}(\Delta)
$$

Morever, in this case,

$$
\operatorname{sgn}(B)=(n, 1,0)
$$

Problems: is it true for other indefinite types? Classification of Coxeter graphs for a given signature?

Theorem (Dyer, CH, Ripoll 2013) For irfeducible root of signature $(n, 1,0)$ we have: $E=\operatorname{conv}(E) \cap Q$

Inversion sets of infinite words

Infinite reduced words on S. For an infinite word $w=s_{1} s_{2} s_{3} \ldots, s_{i} \in S$, write:

- $w_{i}=s_{1} s_{2} s_{3} \cdots s_{i}$;
- $\beta_{0}=\alpha_{s_{1}}$ and $\beta_{i}=w_{i}\left(\alpha_{s_{i+1}}\right) \in \Phi^{+}$.
- w is reduced if the w_{i} 's are.
- Inversion set: $N(w)=\left\{\beta_{i} \mid i \in \mathbb{N}\right\}$.

Theorem (Cellini \& Papi, 1998). Let the root system be affine, i.e., E is a singleton. Let $A \subseteq \Phi^{+}$, then $A=N(w)$, with w finite or infinite iff A biclosed and $\operatorname{conv}(\hat{A}) \cap E=\emptyset$ iff A is $\operatorname{conv}(\hat{A}) \cap \operatorname{conv}\left(\hat{A}^{c}\right)=\emptyset$ and $\operatorname{conv}(\hat{A}) \cap E=\emptyset$

Inversion sets of infinite words

Remark. The class of $A \subseteq \Phi^{+}$s.t. A or A^{c} verify $\operatorname{conv}(\hat{A}) \cap E=\emptyset$ is not satisfying (negative answer to a question asked by Lam \& Pylyavskyy; Baumann, Kamnitzer \& Tingley)

$$
\begin{aligned}
\hat{N}(21321) \vee \hat{N}(214) & =\bullet \vee \bullet \\
& =\operatorname{conv}(\bullet \cup \bullet) \cap \hat{\Phi}
\end{aligned}
$$

does not arise as an inversion set of a word (finite or infinite)

Inversion sets of infinite words (CH \& JP Labbé)

Proposition. Let the root system be arbitrary.
If $A=N(w)$ with w reduced infinite or finite word, then A is $\operatorname{conv}(\hat{A}) \cap \operatorname{conv}\left(\hat{A}^{c}\right)=\emptyset$ and $\operatorname{conv}(\hat{A}) \cap E=\emptyset$.

Questions:
i) Is the converse true? (true for affine by Cellini \& Papi);
ii) $\mid \operatorname{Acc}(N(w) \mid \leq 1$?; obviously true for finite and affine; true for weakly hyperbolic (H. Chen \& JP Labbé, 2014)

Christophe Hohlweg, 2014

Limit roots and imaginary cone

 Tiling of $\operatorname{conv}(E)$Assume the root system to be not finite nor affine

- Imaginary convex set \mathcal{I} is the W-orbit of the polytope

$$
K=\{v \in \operatorname{conv}(\Delta) \mid B(v, \alpha) \leq 0, \forall \alpha \in \Delta\}
$$

Theorem (Dyer, 2012). $\overline{\mathcal{I}}=\operatorname{conv}(E)$

Proposition (Dyer, CH, Ripoll 2013). The action of W on E extends to an action of W on $\operatorname{conv}(E)$. So W acts on $\widehat{\Phi} \sqcup \operatorname{conv}(E)$

Limit roots and i
Tiling of

Inversion sets of infinite words (CH \& JP Labbé)

 and $\operatorname{conv}(E)$Assume the root system to be not finite nor affine
For a reduced $w=s_{1} s_{2} s_{3} \ldots, s_{i} \in S$, recall that:

- $w_{i}=s_{1} s_{2} s_{3} \cdots s_{i} ;$ reduced; $\beta_{0}=\alpha_{s_{1}}$ and $\beta_{i}=w_{i}\left(\alpha_{s_{i+1}}\right) \in \Phi^{+}$.
- Inversion set: $N(w)=\left\{\beta_{i} \mid i \in \mathbb{N}\right\}$.

Representation in $\operatorname{conv}(E)$:
$z \in \operatorname{relint}(K)$ and $\left\{w_{i} \cdot z, i \in \mathbb{N}\right\}$

Ordre faible et cone imaginaire dans les groupes de Coxeter infinis

- Séminaire de combinatoire Philippe Flajolet -

IHP, Paris, 3 avril 2014
Christophe Hohlweg, LaCIM, UQAM
(en sabbatique à l'IRMA, Strasbourg)

FIN

