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HASHING

CONTENT PLACEMENT




HASH TABLE

- m balls and n bins
- each ball chooses a bin uniformly at random
- Goal: avoid collisions.

This is known as the Birthday problem. The probability of no collision is given by

e = (57) (57) - ()
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To avoid collision we must have

Q

p(n,m)=~1 & m<<+/n.

Load factor p = > — O asn — 0.



CUCKOOQO HASHING

Introduced by Pagh & Rodler, ESA'01:
- two bins are assigned at random to each ball
- each ball is placed in one of these two bins

- bins have capacity one, i.e. no collision allowed
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Q: How many balls m can you put into . bins with these constraints?




RANDOM GRAPH ORIENTATION

O

Random graph G(n, m).



RANDOM GRAPH ORIENTATION

C

Q: How large can m be so that G(n, m) is still orientable?



POSITIVE LOAD FACTOR

2

Recall that the degree is a Bin (m, ?T_)l> random variable with mean = so that if

2
2m > n, there is a giant component:
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POSITIVE LOAD FACTOR

Recall that the degree is a Bin (m, "ET_)1> random variable with mean %m so that if
2

2m > n, there is a giant component:
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For cuckoo hashing with two choices, the critical load factor is p = 5.



GENERALIZATIONS

Adding capacities to the bins k& > 1:
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Q: k-orientation of the random graph G/(n, m)?

Cain, Sanders, Wormald, Fernholz, Ramachandran SODA’'07



GENERALIZATIONS

Adding choices for each ball A > 1:
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Q: 1-orientation of the random hypergraph H (n, m, h)?

Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Fountoulakis, Panagiotou ICALP'10

Frieze, Melsted, Bordenave, Lelarge, Salez



GENERALIZATIONS

Adding balls o > ¢ > 1 proposed by Gao, Wormald STOC'10:
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Case ¢ = 1 solved by Fountoulakis, Kosha, Panagiotou SODA'11

For large k£, Gao, Wormald STOC’10: “The full definition of [the critical load factor] is rather

complicated, involving the solution of a differential equation system given in (3.4-3.14).”
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A SIMPLE RESULT

Allocation is possible (in the large 7 limit w.h.p.) only if 1 = cn with ¢ < ¢, ¢ 1, and

_ &
bk = P Bin(h— 1,1 — Qe k) < £))

where Q(z,y) = e ") .-, ‘;—‘Z and £* is the unique solution to:

E |(¢ — Bin(h,1 — Q(&, k)>)+]

= ek DB (Bn(h— L1 - QEn k) <)

Lelarge SODA'12



1.07

0.9

0.87

SOME RESULTS

len ok

Critical load —== as a function of £ = 1. .. 10 capacity of each bin with:

- h = 4 choices per batch

- ¢ = 1,2, 3 balls per batch
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SOME RESULTS

. /
Critical load Ch]f’k

- h = 4,5, 6 choices per batch

- ¢ = 2 balls per batch

as a function of £ = 1. .. 10 capacity of each bin with:



HASHING

CONTENT PLACEMENT




BIPARTITE GRAPH REPRESENTATION

A
\j

- N contents
- m servers, each storing d contents sampled independently (but not uniformly).

- the degree of a content is the number of replicas for this content in the system.



OPTIMAL ALLOCATION




SPANNING SUBGRAPHS OF BIPARTITE RANDOM GRAPHS

- Black nodes = n bins
- Blue nodes = m batches of ¢ balls

- Edge = possible choice for the balls of the batch. Each blue node has degree h > /.

O O



SPANNING SUBGRAPHS OF BIPARTITE RANDOM GRAPHS

- n black nodes
- m blue nodes of degree h

- Allocation = for each blue node, select £ edges such that in the spanning subgraph, all

black nodes have degree less than k.

Example with k = ¢ = 2.



A COMBINATORIAL DETOUR

A simple identity:

Q(G, A, x) = H (1 4+ Aexpy) = Z \H xdeg(H)
vewekE HCE

with A = HeEH Ae and xdes(H) — HUEV xﬂeg(”’H).



A COMBINATORIAL DETOUR

A simple identity:

QG Ax) =[] L+ Aempwy) = ) AfxdelD),
vewel HCFE

with A = [T,z Ae and xdea(H) — [Lev paeev.H)

We are interested in:

Z(G, A %) Z M xdes(H) 11( [ is a matching)
HCE



SCHUR-SZEGO COMPOSITION

If P(z) = Z;'i:o cjzj is nonvanishing in the open right half-plane and
K(z) = Z?:o (;Z) ;2 has only real nonpositive zeros, then Q(z) = Z?:o w;c;z is

nonvanishing in the open right half-plane.



APPLYING SCHUR-SZEGO COMPOSITION

Consider the case ug = u1 = 1 and ug, = 0 for £ > 2 and define
Ky(z) =1+ deg(v)=z.

Let Fi(x) = Q(G, A, x) and define F),(x) as the Schur-Szegé composition of
Fy_1(xy) and Ky (x,). (Wagner 2009)

Fo(x) = Z \H xdea(H)
HCE

Fi(x) = Y Al(deg(v,H) < 1)xds)
HCE

Fox) = Y M] I(deg(v, H) < 1)x%elD)
HCE v=1

_ Z )\HXdeg(H)]I(H is a matching) = Z (G, A, x).
HCE



ANALOGY WITH STATISTICAL PHYSICS

Z(G,1,2121) =5, M =57 mp(G)2F = Pg(z), where my (G) is the
number of k-edge matchings of G.
The fact that P (2) has its zeros on the negative real axis allows to define the Gibbs

measure

LM

~ Po(z)

on infinite graphs (as an 'analytic’ limit) = absence of phase transitions.

pe(M)

(Heilmann Lieb 1972)



ANALOGY WITH STATISTICAL PHYSICS

Z(G,1,2121) =5, M =57 mp(G)2F = Pg(z), where my (G) is the

number of k-edge matchings of G.

The fact that P (2) has its zeros on the negative real axis allows to define the Gibbs
measure

LM

~ Po(z)

pe(M)

on infinite graphs (as an 'analytic’ limit) = absence of phase transitions.
(Heilmann Lieb 1972)

This technique can be used as a step towards computations BUT it fails for more general

spanning subgraphs, i.e. for degree constraints larger than 3.



A SIMPLE GREEDY ALGORITHM ON TREES

For simplicity, spanning subgraph H with deg(v, H) < 2 = w.
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A SIMPLE GREEDY ALGORITHM ON TREES

For simplicity, spanning subgraph H with deg(v, H) < 2 = w.



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

Black arrow: 'l want to match you’



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

Black arrow: 'l want to match you’

Red arrow: 'Sorry, | am saturated’



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

Black arrow: 'l want to match you’

Red arrow: 'Sorry, | am saturated’



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

I, =Ps(1)

Replace black arrows by 1 messages and red arrows by 0 messages and run

simultaneously.

For any directed edge, sum the incoming messages from the other edges. If this sum is

larger than w = 2 then P returns 0, otherwise returns 1 on this directed edge.



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

Iterate...



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

... until you get a fixed point I*.



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

0 I* = Po(I")

On finite trees, the algorithm converges and I* allows to get the size of a maximum

spanning subgraph.

dolwt| > rw+t +%]I Yo IB<w]| Y IL

veV & v e cov e cov



RUNNING THE ALGORITHM ON AN INFINITE TREE

Let simplify further £ = k = 1 and Poisson Galton-Watson tree with mean offspring .

- Let p be the probability of sending a 1 message

p:P(]%zl)

- Thanks to the branching property:

p = P (no children send a 1 message) = e~ **?



A NAIVE GUESS
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The true value of p as a function of \.



WHAT HAPPENED?

Let py. be the probability of the root sending message 1 for the tree truncated at depth k.

-po =1
-pp=e
- thenfor k > 0

D1 = e Pk

We computed the fixed point of the map p — e~ P put the truth is given by iterating it...
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ABSENCE OF CORRELATION DECAY
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Influence of the boundary conditions remains positive.



BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

5. B.
Pa(z)
so that the size of a maximum allocation of the graph G = (V, E) is given by

3 3 (B = 1)

veV ecov

pe(B) =



BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

5. B.
Pa(z)
so that the size of a maximum allocation of the graph G = (V, E) is given by

3 3 (B = 1)

veV ecov

pe(B) =

- Show that on trees, the marginal ,ué(Be — 1) can be computed by a message

passing algorithm with a unique fixed point.



MESSAGE PASSING ALGORITHM

Define Ye(z) € Rby pug (Be = 1) =

Ye(2)
14+Ye(2)"

Then the recursion is

Y (2) = 2Ra(Y'(2))

with

Re(Y)

o ZS<6,|S|§w—1 .

.—[feS Yy

ZS<6,|S|§wF

:feS Yy |



MESSAGE PASSING ALGORITHM

Ye(2)

Define 1/@(Z> e R by ,ué,e(Be = 1) = HTe(Z)'

Then the recursion is
Y (2) = 2Ra(Y'(2))

with

B ZS<6,|S|§w—1 :.—[fES Yf

Ro(Y) = _ |
ZS<6,|S|§w F.fES Yf

In the case of matchings, w = 1 so that

1

(YY) = :
R( ) 1+Zf<eyf




BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

5. B.
Pa(z)
so that the size of a maximum allocation of the graph G = (V, E) is given by

3 3 Y (B =)

veV ecov

pe(B) =

- Show that on trees, the marginal ,ué(Be — 1) can be computed by a message

passing algorithm with a unique fixed point.

- Show that on trees, when z — 00, this message passing algorithm reduces to the
previously described 0 — 1 valued message passing algorithm and that the limit of

p&(Be = 1) can be computed from the minimal fixed point solution.



BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

5. B.
Pa(z)
so that the size of a maximum allocation of the graph G = (V, E) is given by

3 3 Y (B =)

veV ecov

pe(B) =

- Show that on trees, the marginal ,ué(Be — 1) can be computed by a message

passing algorithm with a unique fixed point.

- Show that on trees, when z — 00, this message passing algorithm reduces to the
previously described 0 — 1 valued message passing algorithm and that the limit of

p&(Be = 1) can be computed from the minimal fixed point solution.

- Using a convexity argument, invert the limits in n and z.



RESULT ON INFINITE UNIMODULAR TREES

Assumption: (&, has random weak limit p (|G o]), a unimodular probability measure
concentrated on trees.

Forany I € {0, 1}3,

Fo(I> — wo]I(Z P:c—m(]:) > Wo + 1) + Wo N Z Iy so.
x€do x€Edo

Then

Tim L7(G,) = Lins { [ Pmane. o])} ,

where the infimum is over all spatially invariant solutions of I = Pg o Pg(1).



ON GALTON-WATSON TREES

For matchings, the Recursive Distributional Equation (RDE) becomes:
d z
- N

1+ Zz‘:1 Yi(2)

where [N ~ the standard size biased degree distribution of the random graph.

Y(2)

By iterating once

Y(2) d 1

N
z 14+

1=1 Nij Y;(2)
PR e

Y(z)

€ 10, 1] the simple RDE:

1
N

14> 05

so that we obtain for X = lim,_,

x &

1
N -
> =1 Xij



SOLVING THE RDE AT z = o0

If © is the generating function of the asymptotic degree distribution, let
G(z) = ¢ ()27 + p(1 —2) + (1 —7) — 1,

where T = /(1 — ) /¢’ (1).
G admits an historical record at z if z = T and G(z) > G(y) forany 0 < y < .

Theorem 1. If p; < ... < p, are the locations of the historical records of (&, then the
RDE admits exactly  solutions, say 0 < X< ... <gX, < 1, and for any
ied{l,...,r} E[X;] = G(p;) and P(X; > 0) = p;.

From the values p1 < ... < p,, we can compute the limit of the matching number

(rescaled by n) when n — ©0.



CONCLUSION

- General method to compute law of large numbers for combinatorial structures on

sparse (random) graphs.
(a) to bypass the correlation decay, add a (small) noise parameter.
(b) crucially use monotonicity of the recursions

- Our method works for matchings, spanning subgraphs with degree constraints and

b-matchings.

- The absence of phase transition has also algorithmic implications: sublinear

algorithms to approximate the number of matchings.

- Open problem: Counting of other large subgraphs: long cycles (Marinari & Semerjian
2006).



THANK YOU!




