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Abstract
The fact that global properties of matchings can be read from local properties of the

underlying graph has been rediscovered many times in statistical physics, combinatorics,
group theory and computer science. I will present a probabilistic approach allowing to
derive law of large numbers. I will show how it extends previous results in several directions
and describe some algorithmic applications.

1 Introduction and main result
A h-uniform hypergraph H = (V,E) is called (`, k)-orientable if there exists an assignment of
each hyperedge e ∈ E to exactly ` of its vertices v ∈ e such that no vertex is assigned more
than k hyperedges. Let Hn,m,h be a hypergraph, drawn uniformly at random from the set of all
h-uniform hypergraphs with n vertices and m edges. In this work, we determine the threshold of
the existence of a (`, k)-orientation of Hn,m,h for k ≥ 1 and h > ` ≥ 1, extending recent results
motivated by applications such as cuckoo hashing or load balancing with guaranteed maximum
load. Our main result is in the following theorem (see [1]).

Theorem 1. Let Q(x, y) = e−x∑
j≥y

xj

j! and Bin(n, p) denote a binomial random variable with
parameters n ∈ N and p ∈ [0, 1], i.e. P(Bin(n, p) = k) =

(n
k

)
pk(1−p)n−k. For integers h > ` ≥ 1,

k ≥ 1 with max(h− `, k) ≥ 2, let ξ∗ be the unique positive solution to

hk = ξ∗
E [max (`− Bin(h, 1−Q(ξ∗, k)), 0)]

Q(ξ∗, k + 1)P (Bin(h− 1, 1−Q(ξ∗, k)) < `) .

Let

c∗h,`,k = ξ∗

hP (Bin(h− 1, 1−Q(ξ∗, k)) < `) .

Then

lim
n→∞

P
(
Hn,bcnc,h is (`, k)-orientable

)
=
{

0 if c > c∗h,`,k,

1 if c < c∗h,`,k.

Our proof combines the local weak convergence of sparse graphs and a careful analysis of a
Gibbs measure on spanning subgraphs with degree constraints. It allows us to deal with a much
broader class than the uniform hypergraphs.

The previous characterisation of the threshold c∗h,k,` in (for k sufficiently large) involves the
solution of a differential equation system which is rather complicated and does not allow to get
explicit values for c∗h,k,`. We believe that our method of proof and the characterisation of the
threshold is much simpler.
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2 Approach and sketch of proof

2.1 Definitions

We consider a finite simple graph G = (V,E) with a vector of NV denoted by w = (wv, v ∈ V )
and called the vector of (degree) constraints. We are interested in spanning subgraphs (V, F )
with degree constraints given by the vector w. Each such subgraph is determined by its edge-set
F ⊆ E encoded by the vector B = (Be, e ∈ E) ∈ {0, 1}E defined by Be = 1 if and only if
e ∈ F . We say that a spanning subgraph B satisfies the degree constraints or is admissible if
for all v ∈ V , we have

∑
e∈∂v Be ≤ wv, where ∂v denotes the set of incident edges in G to v. We

introduce the family of probability distributions on the set of admissible spanning subgraphs
parametrised by a parameter z > 0:

µz
G(B) = z

∑
e

Be

PG(z) , (1)

where PG(z) =
∑

B z
∑

e
Be
∏

v∈V 1(
∑

e∈∂v Be ≤ wv). We also define the size of the spanning sub-
graph by |F | =

∑
eBe and denote the maximum size by M(G) = max{

∑
eBe : B admissible}.

Those spanning subgraphs which achieve this maximum are called maximum spanning sub-
graphs. For any finite graph, when z tends to infinity, the distribution µz

G converges to the
uniform distribution over maximum spanning subgraphs. For an admissible spanning subgraph,
the degree of v in the subgraph is simply

∑
e∈∂v Be. By linearity of expectation, the mean degree

of v under the law µz
G is Dz

v :=
∑

e∈∂v µ
z
G (Be = 1) so that we have

M(G) = 1
2
∑
v∈V

lim
z→∞

Dz
v . (2)

We see hypergraph H as bipartite graph G = (A ∪ B,E). Then, an hypergraph is (`, k)-
orientable if and only if all vertices in A have degree ` in any maximum spanning subgraph of
the corresponding bipartite graph with degree constraints (`, k). Indeed in this case, we have for
any v ∈ A, limz→∞D

z
v = ` so that the size of a maximum spanning subgraph is M(G) = `|A|.

A fundamental ingredient of the proof is the fact that the bipartite graphs associated to
h-uniform hypergraphs, i.e. with n vertices and cn hyperedges are locally tree-like: with high
probability, there is no cycle in a ball (of fixed radius) around a vertex chosen at random. It
is then instructive to study maximum spanning subgraphs when the underlying graph is a tree.
Let us first study the Gibbs measures defined by (1) in the limit z → ∞ in order to analyse
maximum spanning subgraphs. When the underlying graph is a finite tree, we can use a more
direct and algorithmic way that we now describe.

2.2 Message Passing Algorithm

To study the (`, k)-orientability of the hypergraph H associated to the bipartite graph G, the
vector of degree constraints w should be chosen such that wv = ` for v ∈ A and wv = k for
v ∈ B. For simplicity, we assume here that the vector of degree constraints is constant so that all
vertices have the same degree constraint say w ≥ 1. Consider now the following message-passing
algorithm forwarding messages in {0, 1} on the oriented edges of the underlying tree G as follows:
at each round, each oriented edge forwards a message, hence two messages are sent on each edge
(one in each direction) at each round. The message passed on the oriented edge −→e = (u, v) is 0
if the sum of the incoming messages to u from neighbours different from v in previous round is
at least w and the message is 1 otherwise, i.e. if the sum of the incoming messages is strictly less
than w. Let Ik ∈ {0, 1}

−→
E be the vector describing the messages sent on the oriented edges in −→E
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at the k-th round of the algorithm. Denote by PG the action of the algorithm on the messages
in one round so that Ik+1 = PG(Ik). It is easy to see that the algorithm will converge on any
finite tree after a number of steps equals to at most the diameter of the tree, whatever the initial
condition. Hence the messages of the algorithm converge to a vector I∗ = (I∗−→e ,

−→e ∈
−→
E ) solving

the fixed-point equation I∗ = PG(I∗) and the size of a maximum spanning subgraph is given by

1
2
∑
v∈V

2w1

 ∑
−→e ∈∂v

I∗−→e ≥ w + 1

+ 1

 ∑
−→e ∈∂v

I∗−→e ≤ w

 ∑
−→e ∈∂v

I∗−→e

 , (3)

where ∂v is the set of oriented edges toward v.
Note that the correctness of the algorithm is ensured for trees only, but the definition of the

algorithm does not require the graph to be a tree. It makes only local computations and can
be used on any graph. Since the bipartite graphs associated to Hn,bcnc,h are not trees but are
locally tree like, it is tempting to use the algorithm directly on these graphs. It turns out that
for low values of c, the algorithm will converge and will also be correct (with high probability).
The algorithm allows to compute the size of a maximum spanning subgraph for values of c above
1/h but it breaks down at some higher value of c. From an algorithmic viewpoint, there is ’no
correlation decay’ and the computations made by the algorithm is not anymore local.

2.3 Bypassing corelation decay

In order to bypass this absence of ’correlation decay’, we borrow ideas from statistical physics
by introducing the Gibbs measures µz

G parametrised by a parameter z > 0 (usually called the
activity or the fugacity). Informally, the introduction of this parameter z will allow us to capture
sufficient additional information on our problem in order to identify the ’right’ solution to the
fixed-point equation I = PG(I), when we let z goes to infinity. Our first step in the analysis of
these measures is to derive a message-passing algorithm allowing to compute the mean degreeDz

v

of any vertex v in a spanning subgraph taken at random according to the probability distribution
µz

G. We will proceed by first defining the local computations required at each node and we call
them the local operators. We use these building blocks to define a message-passing algorithm
which is valid on any finite tree. In particular, we show that as z tends to infinity, the dynamic
of the algorithm becomes exactly the one described previously in this section. We shows that
the message-passing algorithm converges to a unique fixed point for any z <∞.

3 Extensions
The absence of phase transition has also algorithmic implications, such as sublinear algorithm
to approximate the number of matchings (see [2]). A matching is a special case of a spanning
subgraph with degree constraint being 1 for every node. For a graph G, let Z(G,λ) be the
partition function of the monomer-dimer system defined by: Z(G,λ) =

∑
k mk(G)λk, where

mk(G) is the number of matchings of cardinality k in G. We consider graphs of bounded degree
and develop a sublinear-time algorithm for approximating logZ(G,λ) at an arbitrary value λ > 0
within additive error εn with high probability. The query complexity of our algorithm does not
depend on the size of G and is polynomial in 1/ε, and we also provide a lower bound quadratic in
1/ε for this problem. This is the first analysis of a sublinear-time approximation algorithm for a
#P -complete problem. Our approach is based on the correlation decay of the Gibbs distribution
associated with Z(G,λ). We show that our algorithm approximates the probability for a vertex
to be covered by a matching, sampled according to this Gibbs distribution in a near-optimal
sublinear-time. We extend our results to approximate the average size and the entropy of such
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a matching within an additive error with high probability, where again the query complexity
is polynomial in 1/ε and the lower bound is quadratic in 1/ε. This result can be extended to
many other problems where the correlation decay is known to hold as for independent sets or
the Ising model up to the critical activity.
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