Éléments pleinement commutatifs dans les groupes de Coxeter

Philippe Nadeau (CNRS & ICJ, Univ. Lyon 1)

Séminaire Flajolet, IHP, 3 Octobre 2013

I. COXETER GROUPS

Coxeter group

• S a finite set; $M = (m_{st})_{s,t \in S}$ a symmetric matrix. M must satisfy $m_{ss} = 1$ and $m_{st} \in \{2, 3, \ldots\} \cup \{\infty\}$

Definition The Coxeter group W associated to M has generators S and relations $(st)^{m_{st}} = 1$ for all $s, t \in S$.

Coxeter group

• S a finite set; $M = (m_{st})_{s,t \in S}$ a symmetric matrix. M must satisfy $m_{ss} = 1$ and $m_{st} \in \{2, 3, \ldots\} \cup \{\infty\}$

Definition The Coxeter group W associated to M has generators S and relations $(st)^{m_{st}} = 1$ for all $s, t \in S$.

In particular $m_{st} = 2$ imposes a commutation relation st = ts

Coxeter group

• S a finite set; $M = (m_{st})_{s,t \in S}$ a symmetric matrix. M must satisfy $m_{ss} = 1$ and $m_{st} \in \{2, 3, \ldots\} \cup \{\infty\}$

Definition The Coxeter group W associated to M has generators S and relations $(st)^{m_{st}} = 1$ for all $s, t \in S$.

In particular $m_{st} = 2$ imposes a commutation relation st = ts

• Coxeter graph: Labeled graph encoding M, with vertices S, edge if $m_{st} \ge 3$, and label m_{st} when $m_{st} \ge 4$. All Coxeter groups are considered irreducible $\Leftrightarrow \Gamma$ connected.

Coxeter group: examples

Isomorphic to the symmetric group S_n via $s_i \leftrightarrow (i, i+1)$.

Coxeter group: examples

Isomorphic to the symmetric group S_n via $s_i \leftrightarrow (i, i+1)$.

(2) Dihedral group $I_2(m)$ which is the isometry group of the *m*-gon.

Coxeter group: examples

Isomorphic to the symmetric group S_n via $s_i \leftrightarrow (i, i+1)$.

(2) Dihedral group $I_2(m)$ which is the isometry group of the *m*-gon.

Geometry: Every Coxeter group has a geometric representation in \mathbb{R}^n where n = |S|, where:

- Each $s \in S$ is a reflection through a hyperplane $(s^2 = 1)$;
- st is a rotation of order m_{st} ($(st)^{m_{st}} = 1$).

1. Finite groups

These are precisely groups of isometries of \mathbb{R}^n generated by *orthogonal* reflections.

Ex: group of isometries of regular polygons in \mathbb{R}^3

1. Finite groups

These are precisely groups of isometries of \mathbb{R}^n generated by *orthogonal* reflections.

Ex: group of isometries of regular polygons in \mathbb{R}^3

2. Affine groups

These are precisely groups of isometries generated by orthogonal *affine* reflections.

Ex: group preserving a regular tiling of \mathbb{R}^3 .

1. Finite groups

These are precisely groups of isometries of \mathbb{R}^n generated by *orthogonal* reflections.

Ex: group of isometries of regular polygons in \mathbb{R}^3

2. Affine groups

These are precisely groups of isometries generated by orthogonal *affine* reflections.

Ex: group preserving a regular tiling of \mathbb{R}^3 .

A complete classification exists for both families, classified by their Coxeter graph.

Finite: A_{n-1}, B_n, D_n and $I_2(m), F_4, H_3, H_4, E_6, E_7, E_8$. Affine: $\widetilde{A}_{n-1}, \widetilde{B}_n, \widetilde{C}_n, \widetilde{D}_n$ and $\widetilde{G}_2, \widetilde{F}_4, \widetilde{E}_6, \widetilde{E}_7, \widetilde{E}_8$.

1. Finite groups

These are precisely groups of isometries of \mathbb{R}^n generated by *orthogonal* reflections.

Ex: group of isometries of regular polygons in \mathbb{R}^3

2. Affine groups

These are precisely groups of isometries generated by orthogonal *affine* reflections.

Ex: group preserving a regular tiling of \mathbb{R}^3 .

3. All the other Coxeter groups

These correspond to groups of linear transformations of \mathbb{R}^n generated by reflections which are *not* orthogonal.

 \rightarrow Study of sub families: right-angled groups, simply laced groups, hyperbolic groups, . . .

Triangle group T(2, 4, 5)

 $S_{0} S_{1} S_{2}$ $s_{0}s_{2} = s_{2}s_{0}$ $s_{0}s_{1}s_{0}s_{1} = s_{1}s_{0}s_{1}s_{0}$ $s_{1}s_{2}s_{1}s_{2}s_{1} = s_{2}s_{1}s_{2}s_{1}s_{2}$

4

Triangle group T(2, 4, 5)

Triangle group T(2, 4, 5)

Length function

Definition Length $\ell(w)$ = minimal l such that $w = s_1 s_2 \dots s_l$. The minimal words are the reduced decompositions of w.

Example In type $A_{n-1} \simeq S_n$, $\ell(w)$ is the number of inversions of the permutation w.

Length function

Definition Length $\ell(w)$ = minimal l such that $w = s_1 s_2 \dots s_l$. The minimal words are the reduced decompositions of w.

Example In type $A_{n-1} \simeq S_n$, $\ell(w)$ is the number of inversions of the permutation w.

In the geometric representation, correspond to shortest paths from the fundamental chamber to the chamber of w.

 $s_2 s_1 s_0 s_1 s_2 s_0 s_1 s_2$

Enumeration of elements and reduced expressions.

• If W is a Coxeter group, define $W(q) := \sum_{w \in W} q^{\ell(w)}$

Theorem W(q) is a rational function

(Proof by induction on |S|, needs a bit of Coxeter theory.)

Trivial for finite groups (polynomial), but nice product formula in that case; also nice for affine groups.

For
$$T(2,4,5)$$
 the g.f. is $\frac{(q^3+q^2+q+1)(q^4+q^3+q^2+q+1)(1+q)}{q^8-q^5-q^4-q^3+1}$

Enumeration of elements and reduced expressions.

• If W is a Coxeter group, define $W(q) := \sum_{w \in W} q^{\ell(w)}$

Theorem W(q) is a rational function

(Proof by induction on |S|, needs a bit of Coxeter theory.)

Trivial for finite groups (polynomial), but nice product formula in that case; also nice for affine groups.

For
$$T(2,4,5)$$
 the g.f. is $\frac{(q^3+q^2+q+1)(q^4+q^3+q^2+q+1)(1+q)}{q^8-q^5-q^4-q^3+1}$

•
$$Red_W(q) := \sum_{w} |Red(w)| q^{\ell(w)} = \sum_{w \text{ reduced word}} q^{|w|}$$

Theorem [Brink, Howlett '93] $Red_W(q)$ is a rational function

They show that the language of reduced words is regular.

II. FULLY COMMUTATIVE ELEMENTS AND HEAPS

Fully commutative elements

Property : Given any two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.

It is not trivial that one does not need the relations $s^2 = 1$

Fully commutative elements

Property : Given any two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.

It is not trivial that one does not need the relations $s^2 = 1$

Definition w is **fully commutative** if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

w is fully commutative $\Leftrightarrow Red(w)$ forms a unique commutation class.

Fully commutative elements

Property : Given any two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.

It is not trivial that one does not need the relations $s^2 = 1$

Definition w is **fully commutative** if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

w is fully commutative $\Leftrightarrow Red(w)$ forms a unique commutation class.

Proposition [Stembridge '96] A commutation class of reduced words corresponds to a FC element if and only no word in it contains a braid word $\underline{sts}\cdots$ for a $m_{st} \ge 3$.

Geometric interpretation

- 1. Consider all hyperplane intersections where $m_{st} \leq 3$
- 2. The chamber which is the furthest away is not FC.
- 3. Neither are the chambers behind it.

Geometric interpretation

- 1. Consider all hyperplane intersections where $m_{st} \leq 3$
- 2. The chamber which is the furthest away is not FC.
- 3. Neither are the chambers behind it.

Previous work on FC elements

- The seminal combinatorics papers are [Stembridge '96,'98]:
- 1. First properties;
- 2. Classification of W with a finite number of FC elements;
- 3. Enumeration of these elements in each of these cases.
- [Fan '95] studies FC elements in the special case where $m_{st} \leq 3$ (the simply laced case).

• [Graham '95] shows that FC elements in any Coxeter group W naturally index a basis of the (generalized) Temperley-Lieb algebra of W.

• Subsequent works [Greene,Shi,Cellini,Papi] relate FC elements (and some related elements) to Kazhdan-Lusztig polynomials.

The theorems

Theorem [N. '13] Let W be a Coxeter group. The series $Red_W^{FC}(q)$ and $W^{FC}(q)$ are rational functions.

The theorems

Theorem [N. '13] Let W be a Coxeter group. The series $Red_W^{FC}(q)$ and $W^{FC}(q)$ are rational functions.

Theorem [Biagioli-Jouhet-N. '12] W an irreducible affine Coxeter group. (i) Characterization of FC elements.; (ii) Computation of $W^{FC}(q)$; (iii) $(W_{\ell}^{FC})_{\ell \geq 0}$ is ultimately periodic.

AFFINE TYPE \widetilde{A}_{n-1} \widetilde{C}_n \widetilde{B}_{n+1} \widetilde{D}_{n+2} \widetilde{E}_6 \widetilde{E}_7 \widetilde{G}_2 $\widetilde{F}_4, \widetilde{E}_8$ PERIODICITYnn+1(n+1)(2n+1)n+14951

The theorems

Theorem [N. '13] Let W be a Coxeter group. The series $Red_W^{FC}(q)$ and $W^{FC}(q)$ are rational functions.

Theorem [Biagioli-Jouhet-N. '12] W an irreducible affine Coxeter group. (i) **Characterization** of FC elements.; (ii) **Computation of** $W^{FC}(q)$; (iii) $(W_{\ell}^{FC})_{\ell>0}$ is **ultimately periodic.**

AFFINE TYPE \widetilde{A}_{n-1} \widetilde{C}_n \widetilde{B}_{n+1} \widetilde{D}_{n+2} \widetilde{E}_6 \widetilde{E}_7 \widetilde{G}_2 $\widetilde{F}_4, \widetilde{E}_8$ PERIODICITYnn+1(n+1)(2n+1)n+14951

Theorem [N. '13] The sequence $(W_l^{FC})_{l\geq 0}$ is ultimately periodic if and only if W is affine, FC-finite or is one of two exceptions, namely $-\frac{7}{2}$ and $-\frac{4}{2}$

Heaps

Let Γ be a finite graph.

Definition: A Γ -heap is a poset (H, \leq) with $\epsilon : H \to S$ satisfying: 1. $\{s, t\} \in \Gamma$ an edge \Rightarrow The h s.t. $\epsilon(h) \in \{s, t\}$ form a chain. 2. The poset (H, \leq) is the transitive closure of these chains.

Theorem [Viennot '86] Bijection between: (*i*) Commutation classes of words. (*ii*) Γ -heaps.

Theorem [Viennot '86] Bijection between: (*i*) Commutation classes of words. (*ii*) Γ -heaps.

 \Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.

Theorem [Viennot '86] Bijection between: (*i*) Commutation classes of words. (*ii*) Γ -heaps.

 $s_0s_3s_2s_0s_3s_1s_2s_1$

 \Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.

 $s_0 s_1$ s_2 s_3 s_1

Theorem [Viennot '86] Bijection between: (*i*) Commutation classes of words. (*ii*) Γ -heaps.

 \Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.

 $s_1s_0s_3s_2s_0s_3s_1s_2s_1$ $s_0s_1s_2s_3s_1s_2s_1$ $s_0s_1s_3s_2s_0s_3s_1s_2s_1$ $s_0s_1s_2s_3s_1s_2s_2s_1s_2s_2s_1s_2s_2s_1s_2s_2s_1s_2s_2s_1s_2s_2s_1s$

Theorem [Viennot '86] Bijection between: (*i*) Commutation classes of words. (*ii*) Γ -heaps.

 \Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.

 $s_1s_0s_3s_2s_0s_3s_1s_2s_1$

Theorem [Viennot '86] Bijection between: (*i*) Commutation classes of words. (*ii*) Γ -heaps.

 \Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.

 $\underbrace{s_1 s_0 s_3 s_2 s_0 s_3 s_1 s_2 s_1}_{s_0 s_1 s_2 s_3}$

Heaps = Commutation classes

Theorem [Viennot '86] Bijection between: (*i*) Commutation classes of words. (*ii*) Γ -heaps.

 \Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.

 \Leftarrow Take the labels of each linear extension of H

Heaps = Commutation classes

Theorem [Viennot '86] Bijection between: (*i*) Commutation classes of words. (*ii*) Γ -heaps.

 \Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.

 \Leftarrow Take the labels of each linear extension of H

FC heaps = Special commutation classes

Let Γ be a Coxeter graph. Recall that FC elements correspond to commutation classes of reduced words avoiding <u>sts</u>...

 $m_{st}>3$

 \rightarrow let us call **FC heaps** the corresponding heaps.

FC heaps = Special commutation classes

Let Γ be a Coxeter graph. Recall that FC elements correspond to commutation classes of reduced words avoiding $sts \cdots$

 \rightarrow let us call **FC heaps** the corresponding heaps.

Proposition [Stembridge '95] FC heaps on Γ are characterized by the following two restrictions:

(a) No covering relation

(b) No convex chain of the form

 $m_{st}>3$

FC heaps = Special commutation classes

Let Γ be a Coxeter graph. Recall that FC elements correspond to commutation classes of reduced words avoiding $sts \cdots$

 \rightarrow let us call FC heaps the corresponding heaps.

Proposition [Stembridge '95] FC heaps on Γ are characterized by the following two restrictions:

(a) No covering relation (b) No convex chain of the form

 $m_{st}>3$

Summary

FC element w \longleftarrow Heap H satisfying (a) and (b)Length $\ell(w)$ \longleftarrow Number of elements |H|

Rationality of $Red_W^{FC}(q)$ and $W^{FC}(q)$.

Let W be a Coxeter group with Γ its graph.

• To determine if a word is a FC reduced word, construct the heap letter by letter. It turns out that only "finite information" about the heap needs to be stored.

Theorem The language Red_W^{FC} of FC reduced words can be recognized by a finite automaton.

 \Rightarrow it length generating function $Red_W^{FC}(q)$ is rational.

Rationality of $Red_W^{FC}(q)$ and $W^{FC}(q)$.

Let W be a Coxeter group with Γ its graph.

• To determine if a word is a FC reduced word, construct the heap letter by letter. It turns out that only "finite information" about the heap needs to be stored.

Theorem The language Red_W^{FC} of FC reduced words can be recognized by a finite automaton.

 \Rightarrow it length generating function $Red_W^{FC}(q)$ is rational.

• Fix a total order of S, and associate to each Γ -commutation class its lexicographically minimal element. Now the language $Shortlex(\Gamma)$ of such words is known [Anisimov-Knuth '79] to be regular, and we get

Corollary $Shortlex(\Gamma) \cap Red_W^{FC}$ is regular.

 \Rightarrow its length generating function $W^{FC}(q)$ is rational.

III. FC ELEMENTS IN TYPE \widetilde{A}

Affine permutations

 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ $s_i s_j = s_j s_i, \quad |j - i| > 1$

Affine permutations

Isomorphic to the group of permutations σ of \mathbb{Z} such that: (i) $\forall i \in \mathbb{Z} \ \sigma(i+n) = \sigma(i) + n$, and (ii) $\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i$.

$$\ldots, 13, -12, -14, -1, 17, -8, -10, 3, 21, -4, -6, 7, 25, 0, -2, 11, 29, 4, \ldots$$

$$\sigma(1) \sigma(2) \sigma(3) \sigma(4)$$

Affine permutations

Isomorphic to the group of permutations σ of \mathbb{Z} such that: (i) $\forall i \in \mathbb{Z} \ \sigma(i+n) = \sigma(i) + n$, and (ii) $\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i$.

..., 13, -12, -14, -1, **17**, -8, -**10**, **3**, **21**, **-4**, -6, 7, 25, 0, -2, 11, 29, 4, ...
$$\sigma(1)\sigma(2)\sigma(3)\sigma(4)$$

Theorem [Green '01] Fully commutative elements of type \widetilde{A}_{n-1} correspond to 321-avoiding permutations.

This generalizes [Billey, Jockush, Stanley '93] for type A_{n-1} , i.e. the symmetric group S_n .

Periodicity

Theorem [Hanusa-Jones '09] The sequence $(\widetilde{A}_{n-1,l}^{FC})_{l\geq 0}$ is ultimately periodic of period n.

$$\widetilde{A}_2^{FC}(q) = 1 + 3q + 6q^2 + 6q^3 + 6q^4 + \cdots$$

 $\widetilde{A}_{3}^{FC}(q) = 1 + 4q + 10q^2 + 16q^3 + 18q^4 + 16q^5 + 18q^6 + \cdots$

Their proof relies the representation as affine permutations.

FC heaps in type \widetilde{A}

FC heaps in type \widetilde{A}

Proposition FC heaps are characterized by: For all i, $H_{|\{s_i, s_{i+1}\}}$ is a chain with alternating labels

FC Heap

- No labels needed at height 0.
- Size of the heap \rightarrow Area under the path.

 $\mathcal{O}_n^* = \mathsf{Paths} \ge 0$, length n:

- Starting height = Ending height.
- Horizontal steps at height h > 0 are labeled L or R.

 $\mathcal{O}_n^* = \mathsf{Paths} \ge 0$, length n:

- Starting height = Ending height.
- Horizontal steps at height h > 0 are labeled L or R.

```
Theorem [BJN '12] This is a bijection between
1. FC elements (heaps) of \widetilde{A}_{n-1} and
2. \mathcal{O}_n^*
```

 $\mathcal{O}_n^* = \mathsf{Paths} \ge 0$, length n:

- Starting height = Ending height.
- Horizontal steps at height h > 0 are labeled L or R.

Theorem [BJN '12] This is a bijection between

- 1. FC elements (*heaps*) of A_{n-1} and
- 2. $\mathcal{O}_n^* \setminus \{ \text{paths at constant height } h > 0 \text{ with all steps having the same label } L \text{ or } R \}.$

The non-trivial part of the proof is to show surjectivity.

 $\mathcal{O}_n^* = \mathsf{Paths} \ge 0$, length n:

- Starting height = Ending height.
- Horizontal steps at height h > 0 are labeled L or R.

Theorem [BJN '12] This is a bijection between

- 1. FC elements (*heaps*) of A_{n-1} and
- 2. $\mathcal{O}_n^* \setminus \{ \text{paths at constant height } h > 0 \text{ with all steps having the same label } L \text{ or } R \}.$

The non-trivial part of the proof is to show surjectivity.

Periodicity: for l large enough, shift the paths up by 1 unit: this is bijective, and the area under the path increases by n. \rightarrow that the length function is ultimately periodic of period n.

Enumerative results

• "Large enough length" ? Shifting is *not* bijective if the starting path P has a horizontal step at height h = 0 $\Rightarrow \operatorname{Area}(P) \leq l_0 = \lceil (n-1)/2 \rceil \lfloor (n+1)/2 \rfloor.$

Proposition: Periodicity starts exactly at length $l_0 + 1$.

Enumerative results

(n odd)

• "Large enough length" ? Shifting is *not* bijective if the starting path P has a horizontal step at height h = 0 $\Rightarrow \operatorname{Area}(P) \leq l_0 = \lceil (n-1)/2 \rceil \lfloor (n+1)/2 \rfloor$.

Proposition: Periodicity starts exactly at length $l_0 + 1$.

•
$$\widetilde{A}_{n-1}^{FC}(q) = \frac{q^n (X_n(q) - 2)}{1 - q^n} + X_n^*(q)$$

 $\sum_{n \ge 0} X_n(q) x^n = Y(x) \left(1 + qx^2 \frac{\partial(xY)}{\partial x}(xq) \right) \qquad Y^*(x) = 1 + xY^*(x) + qx(Y^*(x) - 1)Y^*(qx)$
 $\sum_{n \ge 0} X_n^*(q) x^n = Y^*(x) \left(1 + qx^2 \frac{\partial(xY)}{\partial x}(xq) \right) \qquad Y(x) = \frac{Y^*(x)}{1 - xY^*(x)}$

Minimal period

Theorem [Jouhet, N. '13] The length function of FC elements in type \widetilde{A}_{n-1} has ultimate minimal period: $\begin{cases} n & \text{if } n \text{ has at least two distinct prime factors} \\ p^{k-1} & \text{if } n = p^k \end{cases}$

$$\widetilde{A}_{2}^{FC}(q) = 1 + 3q + 6q^{2} + 6q^{3} + 6q^{4} + \cdots$$

$$\widetilde{A}_{3}^{FC}(q) = 1 + 4q + 10q^2 + 16q^3 + 18q^4 + 16q^5 + 18q^6 + \cdots$$

$$\widetilde{A}_{4}^{FC}(q) = 1 + 5q + 15q^2 + 30q^3 + 45q^4 + 50q^5 + 50q^6 + 50q^7 + 50q^8 + 50q^9 + \cdots$$

$$\begin{split} \widetilde{A}_5^{FC}(q) &= 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 \\ &+ 150q^7 + 156q^8 + 152q^9 + 156q^{10} + 150q^{11} + 158q^{12} \\ &+ 150q^{13} + 156q^{14} + 152q^{15} + 156q^{16} + 150q^{17} + 158q^{18} \\ &+ \cdots \end{split}$$

IV. FC ELEMENTS IN OTHER AFFINE TYPES

Type \widetilde{C}

Two families of heaps survive for large enough length:

Type \widetilde{C}

Here a period is n + 1. The minimal period can be determined also: it is the largest odd number dividing n + 1 [JN '13].

The full characterization of FC elements is more complex, as is the generating function.

Types \widetilde{B} and \widetilde{D} very similar.

 \widetilde{C}_{2}

Exceptional types

