ÉLÉMENTS PLEINEMENT

COMMUTATIFS

DANS LES GROUPES DE COXETER

Philippe Nadeau (CNRS \& ICJ, Univ. Lyon 1)

Séminaire Flajolet, IHP, 3 Octobre 2013

I. Coxeter groups

Coxeter group

- S a finite set; $M=\left(m_{s t}\right)_{s, t \in S}$ a symmetric matrix. M must satisfy $m_{s s}=1$ and $m_{s t} \in\{2,3, \ldots\} \cup\{\infty\}$

Definition The Coxeter group W associated to M has generators S and relations $(s t)^{m_{s t}}=1$ for all $s, t \in S$.

Coxeter group

- S a finite set; $M=\left(m_{s t}\right)_{s, t \in S}$ a symmetric matrix. M must satisfy $m_{s s}=1$ and $m_{s t} \in\{2,3, \ldots\} \cup\{\infty\}$

Definition The Coxeter group W associated to M has generators S and relations $(s t)^{m_{s t}}=1$ for all $s, t \in S$.

Equivalent relations: $\left\{\begin{array}{l}s^{2}=1 \\ \underbrace{s t s \cdots}_{m_{s t}}=\underbrace{t s t \cdots}_{m_{s t}}\end{array}\right.$ Braid relations
In particular $m_{s t}=2$ imposes a commutation relation $s t=t s$

Coxeter group

- S a finite set; $M=\left(m_{s t}\right)_{s, t \in S}$ a symmetric matrix. M must satisfy $m_{s s}=1$ and $m_{s t} \in\{2,3, \ldots\} \cup\{\infty\}$

Definition The Coxeter group W associated to M has generators S and relations $(s t)^{m_{s t}}=1$ for all $s, t \in S$.

In particular $m_{s t}=2$ imposes a commutation relation $s t=t s$

- Coxeter graph: Labeled graph encoding M, with vertices S, edge if $m_{s t} \geq 3$, and label $m_{s t}$ when $m_{s t} \geq 4$.
All Coxeter groups are considered irreducible $\Leftrightarrow \Gamma$ connected.

Coxeter group: examples

(1) A_{n-1}

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
& s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1
\end{aligned}
$$

Isomorphic to the symmetric group S_{n} via $s_{i} \leftrightarrow(i, i+1)$.

Coxeter group: examples

(1) A_{n-1}

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
& s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1
\end{aligned}
$$

Isomorphic to the symmetric group S_{n} via $s_{i} \leftrightarrow(i, i+1)$.
(2) Dihedral group $I_{2}(m)$ which is the isometry group of the m-gon.

Coxeter group: examples

(1) A_{n-1}

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
& s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1
\end{aligned}
$$

Isomorphic to the symmetric group S_{n} via $s_{i} \leftrightarrow(i, i+1)$.
(2) Dihedral group $I_{2}(m)$ which is the isometry group of the m-gon.

Geometry: Every Coxeter group has a geometric representation in \mathbb{R}^{n} where $n=|S|$, where:

- Each $s \in S$ is a reflection through a hyperplane $\left(s^{2}=1\right)$;
- st is a rotation of order $m_{s t}\left((s t)^{m_{s t}}=1\right)$.

Rough classification of Coxeter groups

1. Finite groups

These are precisely groups of isometries of \mathbb{R}^{n} generated by orthogonal reflections.

Ex: group of isometries of regular polygons in \mathbb{R}^{3}

Rough classification of Coxeter groups

1. Finite groups

These are precisely groups of isometries of \mathbb{R}^{n} generated by orthogonal reflections.

Ex: group of isometries of regular polygons in \mathbb{R}^{3}
2. Affine groups

These are precisely groups of isometries generated by orthogonal affine reflections.

Ex: group preserving a regular tiling of \mathbb{R}^{3}.

Rough classification of Coxeter groups

1. Finite groups

These are precisely groups of isometries of \mathbb{R}^{n} generated by orthogonal reflections.

Ex: group of isometries of regular polygons in \mathbb{R}^{3}
2. Affine groups

These are precisely groups of isometries generated by orthogonal affine reflections.

Ex: group preserving a regular tiling of \mathbb{R}^{3}.
A complete classification exists for both families, classified by their Coxeter graph.
Finite: A_{n-1}, B_{n}, D_{n} and $I_{2}(m), F_{4}, H_{3}, H_{4}, E_{6}, E_{7}, E_{8}$.
Affine: $\widetilde{A}_{n-1}, \widetilde{B}_{n}, \widetilde{C}_{n}, \widetilde{D}_{n}$ and $\widetilde{G}_{2}, \widetilde{F}_{4}, \widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}$.

Rough classification of Coxeter groups

1. Finite groups

These are precisely groups of isometries of \mathbb{R}^{n} generated by orthogonal reflections.

Ex: group of isometries of regular polygons in \mathbb{R}^{3}
2. Affine groups

These are precisely groups of isometries generated by orthogonal affine reflections.

Ex: group preserving a regular tiling of \mathbb{R}^{3}.
3. All the other Coxeter groups

These correspond to groups of linear transformations of \mathbb{R}^{n} generated by reflections which are not orthogonal.
\rightarrow Study of sub families: right-angled groups, simply laced groups, hyperbolic groups, ...

Triangle group $T(2,4,5)$

$4 \quad 5$		
$0-\mathrm{O}$		
S_{0}	S_{1}	S_{2}
$s_{0} s_{2}=s_{2} s_{0}$		
$s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0}$		
$s_{1} s_{2} s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} s_{1} s_{2}$		

Triangle group $T(2,4,5)$

$$
s_{0} s_{2}=s_{2} s_{0}
$$

$s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0}$
$s_{1} s_{2} s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} s_{1} s_{2}$

Elements of W \downarrow
Chambers

Triangle group $T(2,4,5)$

$$
s_{0} s_{2}=s_{2} s_{0}
$$

$s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0}$
$s_{1} s_{2} s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} s_{1} s_{2}$

Elements of W \ddagger
Chambers

Length function

Definition Length $\ell(w)=$ minimal l such that $w=s_{1} s_{2} \ldots s_{l}$.
The minimal words are the reduced decompositions of w.
Example In type $A_{n-1} \simeq S_{n}, \ell(w)$ is the number of inversions of the permutation w.

Length function

Definition Length $\ell(w)=$ minimal l such that $w=s_{1} s_{2} \ldots s_{l}$.
The minimal words are the reduced decompositions of w.
Example In type $A_{n-1} \simeq S_{n}, \ell(w)$ is the number of inversions of the permutation w.

In the geometric representation, correspond to shortest paths from the fundamental chamber to the chamber of w.
$s_{2} s_{1} s_{0} s_{1} s_{2} s_{0} s_{1} s_{2}$

Enumeration of elements and reduced expressions.

- If W is a Coxeter group, define $W(q):=\sum_{w \in W} q^{\ell(w)}$

Theorem $W(q)$ is a rational function

(Proof by induction on $|S|$, needs a bit of Coxeter theory.)
Trivial for finite groups (polynomial), but nice product formula in that case; also nice for affine groups.
For $T(2,4,5)$ the g.f. is $\frac{\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)(1+q)}{q^{8}-q^{5}-q^{4}-q^{3}+1}$

Enumeration of elements and reduced expressions.

- If W is a Coxeter group, define $W(q):=\sum_{w \in W} q^{\ell(w)}$

Theorem $W(q)$ is a rational function

(Proof by induction on $|S|$, needs a bit of Coxeter theory.)
Trivial for finite groups (polynomial), but nice product formula in that case; also nice for affine groups.
For $T(2,4,5)$ the g.f. is $\frac{\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)(1+q)}{q^{8}-q^{5}-q^{4}-q^{3}+1}$

- $\operatorname{Red}_{W}(q):=\sum_{w}|\operatorname{Red}(w)| q^{\ell(w)}=\sum_{\mathbf{w} \text { reduced word }} q^{|\mathbf{w}|}$

Theorem [Brink, Howlett '93] $\operatorname{Red}_{W}(q)$ is a rational function
They show that the language of reduced words is regular.

II. Fully commutative elements and Heaps

Fully commutative elements

Property: Given any two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.
It is not trivial that one does not need the relations $s^{2}=1$

Fully commutative elements

Property: Given any two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.
It is not trivial that one does not need the relations $s^{2}=1$
Definition w is fully commutative if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.
w is fully commutative $\Leftrightarrow \operatorname{Red}(w)$ forms a unique commutation class.

Fully commutative elements

Property: Given any two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.
It is not trivial that one does not need the relations $s^{2}=1$
Definition w is fully commutative if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.
w is fully commutative $\Leftrightarrow \operatorname{Red}(w)$ forms a unique commutation class.

Proposition [Stembridge '96] A commutation class of reduced words corresponds to a FC element if and only no word in it contains a braid word $\underbrace{s t s \cdots}$ for a $m_{s t} \geq 3$.

Geometric interpretation

1. Consider all hyperplane intersections where $m_{s t} \leq 3$
2. The chamber which is the furthest away is not FC.
3. Neither are the chambers behind it.

Geometric interpretation

1. Consider all hyperplane intersections where $m_{s t} \leq 3$
2. The chamber which is the furthest away is not FC.
3. Neither are the chambers behind it.

Previous work on FC elements

- The seminal combinatorics papers are [Stembridge '96,'98]:

1. First properties;
2. Classification of W with a finite number of FC elements;
3. Enumeration of these elements in each of these cases.

- [Fan '95] studies FC elements in the special case where $m_{s t} \leq 3$ (the simply laced case).
- [Graham '95] shows that FC elements in any Coxeter group W naturally index a basis of the (generalized) Temperley-Lieb algebra of W.
- Subsequent works [Greene,Shi,Cellini,Papi] relate FC elements (and some related elements) to Kazhdan-Lusztig polynomials.

The theorems

Theorem [N. '13] Let W be a Coxeter group.
The series $\operatorname{Red}_{W}^{F C}(q)$ and $W^{F C}(q)$ are rational functions.

The theorems

Theorem [N. '13] Let W be a Coxeter group.
The series $\operatorname{Red}{ }_{W}^{F C}(q)$ and $W^{F C}(q)$ are rational functions.

Theorem [Biagioli-Jouhet-N. '12]
W an irreducible affine Coxeter group.
(i) Characterization of FC elements.;
(ii) Computation of $W^{F C}(q)$;
(iii) $\left(W_{\ell}^{F C}\right)_{\ell \geq 0}$ is ultimately periodic.

AfFine Type	\widetilde{A}_{n-1}	\widetilde{C}_{n}	\widetilde{B}_{n+1}	\widetilde{D}_{n+2}	\widetilde{E}_{6}	\widetilde{E}_{7}	\widetilde{G}_{2}	$\widetilde{F}_{4}, \widetilde{E}_{8}$
Periodicity	n	$n+1$	$(n+1)(2 n+1)$	$n+1$	4	9	5	1

The theorems

Theorem [N . '13] Let W be a Coxeter group.
The series $\operatorname{Red}_{W}^{F C}(q)$ and $W^{F C}(q)$ are rational functions.

Theorem [Biagioli-Jouhet-N. '12]
W an irreducible affine Coxeter group.
(i) Characterization of FC elements.;
(ii) Computation of $W^{F C}(q)$;
(iii) $\left(W_{\ell}^{F C}\right)_{\ell \geq 0}$ is ultimately periodic.

AFFINE TYPE	\widetilde{A}_{n-1}	\widetilde{C}_{n}	\widetilde{B}_{n+1}	\widetilde{D}_{n+2}	\widetilde{E}_{6}	\widetilde{E}_{7}	\widetilde{G}_{2}	$\widetilde{F}_{4}, \widetilde{E}_{8}$
PERIODICITY	n	$n+1$	$(n+1)(2 n+1)$	$n+1$	4	9	5	1

Theorem [N .113] The sequence $\left(W_{l}^{F C}\right)_{l \geq 0}$ is ultimately periodic if and only if W is affine, $F C$-finite or is one of two exceptions, namely

Heaps

Let Γ be a finite graph.
Definition: A Γ-heap is a poset (H, \leq) with $\epsilon: H \rightarrow S$ satisfying:

1. $\{s, t\} \in \Gamma$ an edge \Rightarrow The h s.t. $\epsilon(h) \in\{s, t\}$ form a chain.
2. The poset (H, \leq) is the transitive closure of these chains.

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes of words.
(ii) Γ-heaps.

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes of words.
(ii) Γ-heaps.
\Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.
$s_{1} s_{0} s_{3} s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes of words.
(ii) Γ-heaps.
\Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.
(S1) $s_{0} s_{3} s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes of words.
(ii) Γ-heaps.
\Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.
(19) $)_{3} s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes of words.
(ii) Γ-heaps.
\Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.
(195S3 $s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes of words.
(ii) Γ-heaps.
\Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.
(19S3 $)^{5} s_{0} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes of words.
(ii) Γ-heaps.
\Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.
(195329 $)_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes of words.
(ii) Γ-heaps.
\Rightarrow Spell any word of the class; drop the letters; add edges when the letter does not commute with previous ones.
$s_{1} s_{0} s_{3} s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

FC heaps $=$ Special commutation classes

Let Γ be a Coxeter graph. Recall that FC elements correspond to commutation classes of reduced words avoiding $\underbrace{s t s \cdots}$ $m_{s t} \geq 3$
\rightarrow let us call FC heaps the corresponding heaps.

FC heaps $=$ Special commutation classes

Let Γ be a Coxeter graph. Recall that FC elements correspond to commutation classes of reduced words avoiding $\underbrace{s t s \cdots}_{m_{s t} \geq 3}$
\rightarrow let us call FC heaps the corresponding heaps.
Proposition [Stembridge '95] FC heaps on Γ are characterized by the following two restrictions:
(a) No covering relation
(b) No convex chain of the form

FC heaps $=$ Special commutation classes

Let Γ be a Coxeter graph. Recall that FC elements correspond to commutation classes of reduced words avoiding $\underbrace{s t s \cdots}_{m_{s t} \geq 3}$
\rightarrow let us call FC heaps the corresponding heaps.
Proposition [Stembridge '95] FC heaps on Γ are characterized by the following two restrictions:
(a) No covering relation
(b) No convex chain of the form

Summary

FC element w Length $\ell(w)$

Heap H satisfying (a) and (b)
Number of elements $|H|$

Rationality of $\operatorname{Red}_{W}^{F C}(q)$ and $W^{F C}(q)$.

Let W be a Coxeter group with Γ its graph.

- To determine if a word is a FC reduced word, construct the heap letter by letter. It turns out that only "finite information" about the heap needs to be stored.
Theorem The language $\operatorname{Red} d_{W}^{F C}$ of FC reduced words can be recognized by a finite automaton.
\Rightarrow it length generating function $\operatorname{Red}_{W}^{F C}(q)$ is rational.

Rationality of $\operatorname{Red}_{W}^{F C}(q)$ and $W^{F C}(q)$.

Let W be a Coxeter group with Γ its graph.

- To determine if a word is a FC reduced word, construct the heap letter by letter. It turns out that only "finite information" about the heap needs to be stored.
Theorem The language $\operatorname{Red} d_{W}^{F C}$ of FC reduced words can be recognized by a finite automaton.
\Rightarrow it length generating function $\operatorname{Red}_{W}^{F C}(q)$ is rational.
- Fix a total order of S, and associate to each Γ-commutation class its lexicographically minimal element. Now the language Shortlex (Γ) of such words is known [Anisimov-Knuth '79] to be regular, and we get
Corollary Shortlex $(\Gamma) \cap \operatorname{Re} d_{W}^{F C}$ is regular.
\Rightarrow its length generating function $W^{F C}(q)$ is rational.

$$
\text { III. FC elements in type } \widetilde{A}
$$

Affine permutations

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
& s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1
\end{aligned}
$$

Affine permutations

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
& s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1
\end{aligned}
$$

Isomorphic to the group of permutations σ of \mathbb{Z} such that:
(i) $\forall i \in \mathbb{Z} \sigma(i+n)=\sigma(i)+n$, and
(ii) $\sum_{i=1}^{n} \sigma(i)=\sum_{i=1}^{n} i$.
$\ldots, 13,-12,|-14,-1,17,-8,| \underset{\sigma(1) \sigma(2) \sigma(3) \sigma(4)}{-\mathbf{1 0}, \mathbf{3}, \mathbf{2 1},-\mathbf{4},|-6,7,25,0,|-2,11,29,4, \ldots}$

Affine permutations

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
& s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1
\end{aligned}
$$

Isomorphic to the group of permutations σ of \mathbb{Z} such that:
(i) $\forall i \in \mathbb{Z} \sigma(i+n)=\sigma(i)+n$, and
(ii) $\sum_{i=1}^{n} \sigma(i)=\sum_{i=1}^{n} i$.
$\ldots, 13,-12,|-14,-1,17,-8,| \underset{\underset{\sigma(1)}{\mathbf{1 0}, \mathbf{3}, \mathbf{2 1}(2) \sigma(3),-4, \mid} \underset{\sigma(4)}{\mid}-6,7,25,0, \mid-2,11,29,4, \ldots}{ }$
Theorem [Green '01] Fully commutative elements of type \widetilde{A}_{n-1} correspond to 321-avoiding permutations.
This generalizes [Billey, Jockush,Stanley '93] for type A_{n-1}, i.e. the symmetric group S_{n}.

Periodicity

Theorem [Hanusa-Jones '09] The sequence $\left(\widetilde{A}_{n-1, l}^{F C}\right)_{l \geq 0}$ is ultimately periodic of period n.

$$
\begin{aligned}
& \widetilde{A}_{2}^{F C}(q)=1+3 q+\mathbf{6} \mathbf{q}^{\mathbf{2}}+\mathbf{6} \mathbf{q}^{\mathbf{3}}+\mathbf{6} \mathbf{q}^{\mathbf{4}}+\cdots \\
& \widetilde{A}_{3}^{F C}(q)=1+4 q+10 q^{2}+\mathbf{1 6} \mathbf{q}^{\mathbf{3}}+\mathbf{1 8} \mathbf{q}^{\mathbf{4}}+\mathbf{1 6} \mathbf{q}^{\mathbf{5}}+\mathbf{1 8} \mathbf{q}^{\mathbf{6}}+\cdots
\end{aligned}
$$

Their proof relies the representation as affine permutations.

FC heaps in type \widetilde{A}

FC heaps in type \widetilde{A}

\rightarrow FC heaps must avoid

Proposition FC heaps are characterized by:
For all $i, H_{\mid\left\{s_{i}, s_{i+1}\right\}}$ is a chain with alternating labels

FC Heap

$$
s_{0} \quad s_{1} \quad s_{2}
$$

From heaps to paths

- No labels needed at height 0 .
- Size of the heap \rightarrow Area under the path.

From heaps to paths

$\mathcal{O}_{n}^{*}=$ Paths ≥ 0, length n :

- Starting height $=$ Ending height.
- Horizontal steps at height $h>0$ are labeled L or R.

From heaps to paths

$\mathcal{O}_{n}^{*}=$ Paths ≥ 0, length n :

- Starting height $=$ Ending height.
- Horizontal steps at height $h>0$ are labeled L or R.

Theorem [BJN '12] This is a bijection between

1. FC elements (heaps) of \widetilde{A}_{n-1} and
2. \mathcal{O}_{n}^{*}

From heaps to paths

$\mathcal{O}_{n}^{*}=$ Paths ≥ 0, length n :

- Starting height $=$ Ending height.
- Horizontal steps at height $h>0$ are labeled L or R.

Theorem [BJN '12] This is a bijection between

1. FC elements (heaps) of \widetilde{A}_{n-1} and
2. $\mathcal{O}_{n}^{*} \backslash\{$ paths at constant height $h>0$ with all steps having the same label L or $R\}$.

The non-trivial part of the proof is to show surjectivity.

From heaps to paths

$\mathcal{O}_{n}^{*}=$ Paths ≥ 0, length n :

- Starting height $=$ Ending height.
- Horizontal steps at height $h>0$ are labeled L or R.

Theorem [BJN '12] This is a bijection between

1. FC elements (heaps) of \widetilde{A}_{n-1} and
2. $\mathcal{O}_{n}^{*} \backslash\{$ paths at constant height $h>0$ with all steps having the same label L or $R\}$.

The non-trivial part of the proof is to show surjectivity.
Periodicity: for l large enough, shift the paths up by 1 unit: this is bijective, and the area under the path increases by n. \rightarrow that the length function is ultimately periodic of period n.

Enumerative results

- "Large enough length" ? Shifting is not bijective if the starting path P has a horizontal step at height $h=0$
$\Rightarrow \operatorname{Area}(P) \leq l_{0}=\lceil(n-1) / 2\rceil\lfloor(n+1) / 2\rfloor$.

Proposition: Periodicity starts exactly at length $l_{0}+1$.

Enumerative results

- "Large enough length" ? Shifting is not bijective if the starting path P has a horizontal step at height $h=0$
$\Rightarrow \operatorname{Area}(P) \leq l_{0}=\lceil(n-1) / 2\rceil\lfloor(n+1) / 2\rfloor$.

Proposition: Periodicity starts exactly at length $l_{0}+1$.

- $\widetilde{A}_{n-1}^{F C}(q)=\frac{q^{n}\left(X_{n}(q)-2\right)}{1-q^{n}}+X_{n}^{*}(q)$
$\sum_{n \geq 0} X_{n}(q) x^{n}=Y(x)\left(1+q x^{2} \frac{\partial(x Y)}{\partial x}(x q)\right) \quad Y^{*}(x)=1+x Y^{*}(x)+q x\left(Y^{*}(x)-1\right) Y^{*}(q x)$
$\sum_{n \geq 0} X_{n}^{*}(q) x^{n}=Y^{*}(x)\left(1+q x^{2} \frac{\partial(x Y)}{\partial x}(x q)\right) \quad Y(x)=\frac{Y^{*}(x)}{1-x Y^{*}(x)}$

Minimal period

Theorem [Jouhet, N. '13] The length function of FC elements in type \widetilde{A}_{n-1} has ultimate minimal period:
$\left\{\begin{array}{l}n \text { if } n \text { has at least two distinct prime factors } \\ p^{k-1} \text { if } n=p^{k}\end{array}\right.$

$$
\widetilde{A}_{2}^{F C}(q)=1+3 q+\mathbf{6} \mathbf{q}^{\mathbf{2}}+\mathbf{6} \mathbf{q}^{\mathbf{3}}+\mathbf{6} \mathbf{q}^{\mathbf{4}}+\cdots
$$

$$
\widetilde{A}_{3}^{F C}(q)=1+4 q+10 q^{2}+\mathbf{1 6} \mathbf{q}^{\mathbf{3}}+\mathbf{1 8} \mathbf{q}^{\mathbf{4}}+\mathbf{1 6} \mathbf{q}^{\mathbf{5}}+\mathbf{1 8} \mathbf{q}^{\mathbf{6}}+\cdots
$$

$$
\widetilde{A}_{4}^{F C}(q)=1+5 q+15 q^{2}+30 q^{3}+45 q^{4}
$$

$$
+50 q^{5}+50 q^{6}+50 q^{7}+50 q^{8}+50 q^{9}+\cdots
$$

$$
\begin{aligned}
& \widetilde{A}_{5}^{F C}(q)=1+6 q+21 q^{2}+50 q^{3}+90 q^{4}+126 q^{5}+146 q^{6} \\
&+\mathbf{1 5 0} \mathbf{q}^{7}+\mathbf{1 5 6} \mathbf{q}^{\mathbf{8}}+\mathbf{1 5 2} \mathbf{q}^{\mathbf{9}}+\mathbf{1 5 6} \mathbf{q}^{10}+\mathbf{1 5 0} \mathbf{q}^{11}+\mathbf{1 5 8} \mathbf{q}^{\mathbf{1 2}} \\
& \quad+\mathbf{1 5 0} \mathbf{q}^{13}+\mathbf{1 5 6} \mathbf{q}^{14}+\mathbf{1 5 2} \mathbf{q}^{15}+\mathbf{1 5 6} \mathbf{q}^{\mathbf{1 6}}+\mathbf{1 5 0} \mathbf{q}^{\mathbf{1 7}}+\mathbf{1 5 8} \mathbf{q}^{\mathbf{1 8}}
\end{aligned}
$$

IV. FC ELEmENTS In OTHER AFFInE TYPES

Type \widetilde{C}

Two families of heaps survive for large enough length:

Type \widetilde{C}

Here a period is $n+1$. The minimal period can be determined also: it is the largest odd number dividing $n+1$ [JN '13].
The full characterization of FC elements is more complex, as is the generating function.
Types \widetilde{B} and \widetilde{D} very similar.

Exceptional types

$\widetilde{E}_{7} \longrightarrow 0 \square 0 \square$
$\widetilde{G}_{2} \stackrel{6}{6}$

Fila

