Java 7's Dual Pivot Quicksort - Analysis and Engineering

Markus E. Nebel
nebel @cs.uni-kl. de

based on joint work with Sebastian Wild

Seminaire Philippe Flajolet de combinatoire : 5 Décembre 2013

Sorting Algorithms in Practice

Many inventions by algorithms comunity

Sorting methods listed on Wikipedia

Sorting Algorithms in Practice

Many inventions by algorithms comunity

VS.

Few methods

 successful in practice- C
- C++
- Java 6
- .NET
- Haskell
- Python

Quicksort

+Mergesort variant as stable sort

Timsort

Sorting methods of standard libraries for random access data

History of Quicksort in Practice

- 1961,62 Hoare: first publication, average case analysis
- 1969 Singleton: median-of-three \& Insertionsort on small subarrays
- 1975-78 Sedgewick: detailled analysis of many optimizations
- 1993 Bentley, McIlroy: Engineering a Sort Function
- 1997 Musser: $\mathcal{O}(n \log n)$ worst case by bounded recursion depth

History of Quicksort in Practice

- 1961,62 Hoare: first publication, average case analysis
- 1969 Singleton: median-of-three \& Insertionsort on small subarrays
- 1975-78 Sedgewick: detailled analysis of many optimizations
- 1993 Bentley, McIlroy: Engineering a Sort Function
- 1997 Musser: $\mathcal{O}(n \log n)$ worst case by bounded recursion depth
$~$ Basic algorithm settled since 1961; latest tweaks from 1990's. Since then: Almost identical in all programming libraries!

History of Quicksort in Practice

- 1961,62 Hoare: first publication, average case analysis
- 1969 Singleton: median-of-three \& Insertionsort on small subarrays
- 1975-78 Sedgewick: detailled analysis of many optimizations
- 1993 Bentley, Mcllroy: Engineering a Sort Function
- 1997 Musser: $\mathcal{O}(\mathfrak{n} \log n)$ worst case by bounded recursion depth
$~$ Basic algorithm settled since 1961; latest tweaks from 1990's. Since then: Almost identical in all programming libraries!
- Until 2009: Java 7 switches to a new dual pivot Quicksort! Sept. 2009 Vladimir Yaroslavskiy announced algorithm on Java core library mailing list \sim July 2011 public release of Java 7 with Yaroslavskiy's Quicksort.

Running Time Experiments

Why switch to new, unknown algorithm?

$$
\longrightarrow \text { Java } 6 \text { Library }
$$

Normalized Java runtimes (in $m s$). Average and standard deviation of 1000 random permutations per size.

Running Time Experiments

Why switch to new, unknown algorithm? Because it is faster!

\longrightarrow Java 6 Library
—— Java 7 Library

Normalized Java runtimes (in ms).
Average and standard deviation of 1000 random permutations per size.

Running Time Experiments

Why switch to new, unknown algorithm? Because it is faster!

\square Java 6 Library

- Java 7 Library
- -o- - Classic Quicksort
- - - - Yaroslavskiy

Normalized Java runtimes (in ms).
Average and standard deviation of 1000 random permutations per size.

- remains true for basic variants of algorithms: -o-vs. - - - !

Dual Pivot Quicksort

- High Level Algorithm:
(1) Partition array arround two pivots $p \leqslant q$.
(2) Sort 3 subarrays recursively.

How to do partitioning?

Dual Pivot Quicksort

- High Level Algorithm:
(1) Partition array arround two pivots $p \leqslant q$.
(2) Sort 3 subarrays recursively.

How to do partitioning?
(1) For each element x, determine its class

- small for $x<p$
- medium for $\mathrm{p}<\mathrm{x}<\mathrm{q}$
- large for $\mathrm{q}<x$
by comparing x to p and/or q
(2) Arrange elements according to classes

Dual Pivot Quicksort - Previous Work

- Robert Sedgewick, 1975
- in-place dual pivot Quicksort implementation
- more comparisons and swaps than classic Quicksort
- Pascal Hennequin, 1991
- comparisons for list-based Quicksort with r pivots
- $\mathrm{r}=2 \sim$ same \#comparisons as classic Quicksort in one partitioning step: $\frac{5}{3}$ comparisons per element
- $r>2 \sim$ very small savings, but complicated partitioning

Dual Pivot Quicksort - Previous Work

- Robert Sedgewick, 1975
- in-place dual pivot Quicksort implementation
- more comparisons and swaps than classic Quicksort
- Pascal Hennequin, 1991
- comparisons for list-based Quicksort with r pivots
- $\mathrm{r}=2 \sim$ same \#comparisons as classic Quicksort in one partitioning step: $\frac{5}{3}$ comparisons per element
- $r>2 \sim$ very small savings, but complicated partitioning
\sim Using two pivots does not pay, and ...
... no theoretical explanation for impressive speedup.

Overview of talk

In this talk:

- We explain, why the new QS variant can be benefitcal even from a theoretical point of view,
- by providing a detailed average-case analysis (which carves out the reason for its success),
- this way provide more insight than running time measurements.
- Additionally, we discuss variations of the algorithm aiming for further improvements.
... stay tuned

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

p								
(3)	5	1	8	4	7	2	9	(6)

Select two elements as pivots.

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$\begin{array}{llllllllll}p \\ \text { (3) } & 5 & 1 & 8 & 4 & 7 & 2 & 9 & (6)\end{array}$

Only value relative to pivot counts.

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$$
A[k] \text { is medium } \leadsto \text { go on }
$$

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$A[k]$ is small \sim Swap to left

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

Swap small element to left end.

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

Swap small element to left end.

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$A[k]$ is large \sim Find swap partner.

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$A[k]$ is large \sim Find swap partner: g skips over large elements.

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$$
A[k] \text { is large } \leadsto \text { Swap }
$$

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$$
A[k] \text { is large } \leadsto \text { Swap }
$$

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$A[k]$ is old $A[g]$, small \sim Swap to left

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$A[k]$ is old $A[g]$, small \sim Swap to left

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$$
A[k] \text { is medium } \leadsto \text { go on }
$$

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$A[k]$ is large \sim Find swap partner.

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$A[k]$ is large \sim Find swap partner: g skips over large elements.

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

g and k have crossed!
Swap pivots in place
Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

g and k have crossed!
Swap pivots in place
Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

$\begin{array}{llllllllll}2 & 1 & \text { (3) } & 5 & 4 & \text { (6) } & 8 & 9 & 7\end{array}$

Partitioning done!

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

Recursively sort three sublists.

Invariant:

Java 7's Dual Pivot Quicksort - Example

Yaroslavskiy's Dual Pivot Quicksort (used in Oracle's Java 7 Arrays.sort (int []))

Done.

Invariant:

Dual Pivot Quicksort - Comparison Costs

How many comparisons to determine classes (small, medium or large) ?

- Assume, we first compare x with p. \leadsto small elements need 1, others 2 comparisons
- on average: $\frac{1}{3}$ of all elements are small
$\sim \frac{1}{3} \cdot 1+\frac{2}{3} \cdot 2=\frac{5}{3}$ comparisons per element
- if inputs are uniform random permutations, knowledge about $x \neq y$ does not tell us whether y is small, medium or large.
- \sim Any partitioning method needs at least $\frac{5}{3}(n-2) \sim \frac{20}{12} n$ comparisons on average?

Dual Pivot Quicksort - Comparison Costs

How many comparisons to determine classes (small, medium or large) ?

- Assume, we first compare x with p.
\leadsto small elements need 1, others 2 comparisons
- on average: $\frac{1}{3}$ of all elements are small
$\sim \frac{1}{3} \cdot 1+\frac{2}{3} \cdot 2=\frac{5}{3}$ comparisons per element
- if inputs are uniform random permutations, knowledge about $x \neq y$ does not tell us whether y is small, medium or large.
- \sim Any partitioning method needs at least $\frac{5}{3}(n-2) \sim \frac{20}{12} n$ comparisons on average?
- No!

Beating the "Lower Bound"

- $\sim \frac{20}{12} \mathrm{n}$ comparisons only needed,
if there is one comparison location (implying fixed order like "first p then q");
only then checks for x and y are independent
- But: Can have several comparison locations!

Here: Assume two locations C_{1} and C_{2} s.t.

- C_{1} first compares with p .
- C_{2} first compares with q .
- C_{1} executed often, iff p is large.
- C_{2} executed often, iff q is small.
- $\sim \quad C_{1}$ executed often iff many small elements iff good chance that C_{1} needs only one comparison (C_{2} similar)
- \sim less comparisons than $\frac{5}{3}$ per elements on average

Yaroslavskiy's Quicksort

```
DUALPivotQuicksortYaroslavskiy ( \(A\), left, right)
```

```
if right - left \(\geqslant 1\)
```

if right - left $\geqslant 1$
$\mathrm{p}:=\mathrm{A}[\mathrm{left}] ; \quad \mathrm{q}:=\mathrm{A}[$ right $]$
$\mathrm{p}:=\mathrm{A}[\mathrm{left}] ; \quad \mathrm{q}:=\mathrm{A}[$ right $]$
if $p>q$ then Swap p and q end if
if $p>q$ then Swap p and q end if
$\ell:=$ left $+1 ; \quad \mathrm{g}:=$ right $-1 ; \quad \mathrm{k}:=\ell$
$\ell:=$ left $+1 ; \quad \mathrm{g}:=$ right $-1 ; \quad \mathrm{k}:=\ell$
while $k \leqslant g$
while $k \leqslant g$
if $A[k]<p$
if $A[k]<p$
Swap $A[k]$ and $A[\ell] ; \quad \ell:=\ell+1$
Swap $A[k]$ and $A[\ell] ; \quad \ell:=\ell+1$
else if $A[k] \geqslant q$
else if $A[k] \geqslant q$
while $A[g]>q$ and $k<g$ do $g:=g-1$ end while
while $A[g]>q$ and $k<g$ do $g:=g-1$ end while
Swap $A[k]$ and $A[g] ; \quad g:=g-1$
Swap $A[k]$ and $A[g] ; \quad g:=g-1$
if $A[k]<p$
if $A[k]<p$
Swap $A[k]$ and $A[\ell] ; \quad \ell:=\ell+1$
Swap $A[k]$ and $A[\ell] ; \quad \ell:=\ell+1$
end if
end if
end if
end if
$\mathrm{k}:=\mathrm{k}+1$
$\mathrm{k}:=\mathrm{k}+1$
end while
end while
$\ell:=\ell-1 ; \quad g:=g+1$
$\ell:=\ell-1 ; \quad g:=g+1$
Swap A [left] and A [l]; Swap A [right] and A [g]
Swap A [left] and A [l]; Swap A [right] and A [g]
DualPivotQuicksortYaroslavskiy (A, left , $\ell-1$)
DualPivotQuicksortYaroslavskiy (A, left , $\ell-1$)
DUALPivotQuicksortYaroslavskiy $(A, \ell+1, g-1)$
DUALPivotQuicksortYaroslavskiy $(A, \ell+1, g-1)$
DUALPivotQuicksortYaroslavskiy $(A, g+1$, right)
DUALPivotQuicksortYaroslavskiy $(A, g+1$, right)
end if

```
end if
```


Yaroslavskiy's Quicksort

```
DUALPIVOTQUICKSORTYAROSLAVSKIY ( \(A\), left, right)
```

```
if right - left \(\geqslant 1\)
```

if right - left $\geqslant 1$
$\mathrm{p}:=A[l e f t] ; \quad \mathrm{q}:=\mathrm{A}[$ right $]$
$\mathrm{p}:=A[l e f t] ; \quad \mathrm{q}:=\mathrm{A}[$ right $]$
if $\mathrm{p}>\mathrm{q}$ then Swap p and q end if
if $\mathrm{p}>\mathrm{q}$ then Swap p and q end if
$\ell:=$ left $+1 ; \quad \mathrm{g}:=$ right $-1 ; \quad \mathrm{k}:=\ell$
$\ell:=$ left $+1 ; \quad \mathrm{g}:=$ right $-1 ; \quad \mathrm{k}:=\ell$
while $k \leqslant g$
while $k \leqslant g$
$C_{k} \quad$ if $A[k]<p$
$C_{k} \quad$ if $A[k]<p$
Swap $A[k]$ and $A[\ell] ; \quad \ell:=\ell+1$
Swap $A[k]$ and $A[\ell] ; \quad \ell:=\ell+1$
$C_{k}^{\prime} \quad$ else if $A[k] \geqslant q$
$C_{k}^{\prime} \quad$ else if $A[k] \geqslant q$
while $A[\mathrm{~g}]>\mathrm{q}$ and $\mathrm{k}<\mathrm{g}$ do $\mathrm{g}:=\mathrm{g}-1$ end while
while $A[\mathrm{~g}]>\mathrm{q}$ and $\mathrm{k}<\mathrm{g}$ do $\mathrm{g}:=\mathrm{g}-1$ end while
Swap $A[k]$ and $A[g] ; \quad g:=g-1$
Swap $A[k]$ and $A[g] ; \quad g:=g-1$
$C_{g}^{\prime} \quad$ if $A[k]<p$
$C_{g}^{\prime} \quad$ if $A[k]<p$
Swap $A[k]$ and $A[\ell] ; \quad \ell:=\ell+1$
Swap $A[k]$ and $A[\ell] ; \quad \ell:=\ell+1$
end if
end if
end if
end if
$\mathrm{k}:=\mathrm{k}+1$
$\mathrm{k}:=\mathrm{k}+1$
end while
end while
$\ell:=\ell-1 ; \quad g:=\mathrm{g}+1$
$\ell:=\ell-1 ; \quad g:=\mathrm{g}+1$
Swap \boldsymbol{A} [left] and $\boldsymbol{A}[\ell]$; Swap \boldsymbol{A} [right] and $\boldsymbol{A}[\mathbf{g}]$
Swap \boldsymbol{A} [left] and $\boldsymbol{A}[\ell]$; Swap \boldsymbol{A} [right] and $\boldsymbol{A}[\mathbf{g}]$
DualPivotQuicksortYaroslavskiy (A, left , $\ell-1$)
DualPivotQuicksortYaroslavskiy (A, left , $\ell-1$)
DualPivotQuicksortYaroslavskiy ($A, \ell+1, \mathrm{~g}-1$)
DualPivotQuicksortYaroslavskiy ($A, \ell+1, \mathrm{~g}-1$)
DualPivotQuicksortYaroslavskiy ($\mathrm{A}, \mathrm{g}+1$, right)
DualPivotQuicksortYaroslavskiy ($\mathrm{A}, \mathrm{g}+1$, right)
end if

```
end if
```


Analysis of Yaroslavskiy's Algorithm

- In this talk:
- only number of comparisons (swaps similar)
- only leading term asymptotics all exact results in paper
- C_{n} expected \#comparisons to sort random permutation of $\{1, \ldots, n\}$
- C_{n} satisfies recurrence relation

$$
C_{n}=c_{n}+\frac{2}{n(n-1)} \sum_{1 \leqslant p<q \leqslant n}\left(C_{p-1}+C_{q-p-1}+C_{n-q}\right),
$$

with c_{n} expected \#comparisons in first partitioning step

- recurrence solvable by standard methods
linear $c_{n} \sim a \cdot n$ yields $C_{n} \sim \frac{6}{5} a \cdot n \ln n$.
- \sim need to compute c_{n}

Analysis of Yaroslavskiy's Algorithm

- first comparison for all elements (at C_{k} or C_{g}) $\sim \sim \mathrm{n}$ comparisons
- second comparison for some elements at $\mathrm{C}_{\mathrm{k}}^{\prime}$ resp. $\mathrm{C}_{\mathrm{g}}^{\prime}$... but how often are $\mathrm{C}_{\mathrm{k}}^{\prime}$ resp. $\mathrm{C}_{\mathrm{g}}^{\prime}$ reached?
- $\quad \mathrm{C}_{\mathrm{k}}^{\prime}$: all non- small elements reached by pointer k. $\mathrm{C}_{\mathrm{g}}^{\prime}$: all non- large elements reached by pointer g .
- second comparison for medium elements not avoidable $\sim \sim \frac{1}{3} n$ comparisons in expectation
- \sim it remains to count:
large elements reached by k and small elements reached by g.

Analysis of Yaroslavskiy's Algorithm

- Second comparisons for small and large elements? Depends on location!
- $\mathrm{C}_{\mathrm{k}}^{\prime} \sim \mathrm{l} @ \mathcal{K}$: number of large elements at positions \mathcal{K}. $\mathrm{C}_{\mathrm{g}}^{\prime} \sim \mathbf{s} @ \mathcal{G}:$ number of small elements at positions \mathcal{G}.
- Recall invariant:

$\sim \mathrm{k}$ and g cross at (rank of) q

- for given p and $\mathrm{q}, \mathrm{l} @ \mathcal{K}$ hypergeometrically distributed $\sim \mathbb{E}[l @ \mathcal{K} \mid \mathrm{p}, \mathrm{q}]=(\mathrm{n}-\mathrm{q}) \frac{\mathrm{q}-2}{\mathrm{n}-2}$

Analysis of Yaroslavskiy's Algorithm

- law of total expectation:

$$
\mathbb{E}[l @ \mathcal{K}]=\sum_{1 \leqslant p<q \leqslant n} \operatorname{Pr}[\text { pivots }(p, q)] \cdot(n-q) \frac{q-2}{n-2} \sim \frac{1}{6} n
$$

- Similarly: $\mathbb{E}[s @ \mathcal{G}] \sim \frac{1}{12} n$.
- Summing up contributions:

$$
\begin{array}{rlrl}
\mathrm{c}_{\mathrm{n}} & \sim & \mathrm{n} & \\
& +\frac{1}{3} \mathrm{n} & & \text { medium eomparisons } \\
& +\frac{1}{6} \mathrm{n} & & \text { large elements } \\
& +\frac{1}{12} \mathrm{n} & & \text { small elements at } \mathrm{C}_{\mathrm{k}}^{\prime} \\
& =\frac{19}{12} \mathrm{n} &
\end{array}
$$

Lower Bound on Comparisons

- How clever can dual pivot paritioning be?
- For lower bound, assume
- random permutation model
- pivots are selected uniformly
- an oracle tells us, whether more small or more large elements occur
$-\sim 1$ comparison for frequent extreme elements
2 comparisons for middle and rare extreme elements

$$
\begin{aligned}
& (n-2)+\frac{2}{n(n-1)} \sum_{1 \leqslant p<q \leqslant n}((q-p-1)+\min \{p-1, n-q\}) \\
\sim & \frac{3}{2} n=\frac{18}{12} n
\end{aligned}
$$

- Even with unrealistic oracle, not much better than Yaroslavskiy

Gathering Results

- Comparisons:
- Yaroslavskiy needs $\sim \frac{6}{5} \cdot \frac{19}{12} n \ln n=1.9 n \ln n$ on average.
- Classic Quicksort needs $\sim 2 n \ln n$ comparisons!

Interestingly, the same partitioning yields a Quickselect algorithm needing a larger number of comparisons on average!

Gathering Results

- Comparisons:
- Yaroslavskiy needs $\sim \frac{6}{5} \cdot \frac{19}{12} n \ln n=1.9 n \ln n$ on average.
- Classic Quicksort needs $\sim 2 n \ln n$ comparisons!

Interestingly, the same partitioning yields a Quickselect algorithm needing a larger number of comparisons on average!

- Swaps:
- $\sim 0.6 \mathrm{n} \ln \mathrm{n}$ swaps for Yaroslavskiy's algorithm vs.
- $\sim 0 . \overline{3} n \ln n$ swaps for classic Quicksort

Engineering Quicksort

Analogous to classic Quicksort

- switch to InsertionSort for subproblems of size $\leqslant w$,
- choose pivots from random sample of input
- median for classic Quicksort
- tertiles for dual pivot Quicksort

Engineering Quicksort

Analogous to classic Quicksort

- switch to InsertionSort for subproblems of size $\leqslant w$,
- choose pivots from random sample of input
- median for classic Quicksort
- tertiles for dual pivot Quicksort?
- or asymmetric order statistics?
- Here: sample of constant size k
- choose pivots, such that t_{1} elements $<p$,
t_{2} elements between p and q,

$$
\mathrm{t}_{3}=\mathrm{k}-2-\mathrm{t}_{1}-\mathrm{t}_{2} \text { larger }>\mathrm{q}
$$

- Allows to "push" pivot towards desired order statistic of list

Control Flow Graph of Partitioning Loop

Control Flow Graph of Partitioning Loop

Cycle 1

$A[k]:$ small A $[\mathrm{g}]:-$
$\Delta(g-k): 1$

Bytecode
Instructions: 24

Control Flow Graph of Partitioning Loop

Cycle 2

$A[k]:$ medium A[g]: -
$\Delta(\mathrm{g}-\mathrm{k}): 1$
Bytecode
Instructions: 15

Control Flow Graph of Partitioning Loop

Cycle 3
$A[k]$: large
A[g]: |large
$\Delta(g-k): 1$
Bytecode
Instructions: 10

Control Flow Graph of Partitioning Loop

Cycle 4
$A[k]$: large
A[g]: small
$\Delta(g-k): 2$

Bytecode
Instructions: 44

Control Flow Graph of Partitioning Loop

Cycle 5
$A[k]$: large
$A[g]:$ medium
$\Delta(\mathrm{g}-\mathrm{k}): 2$

Bytecode
Instructions: 36

Asymmetry

- Algorithm is asymmetric:
- cycles have different cost
- ~ would rather execute cheap ones often
- cycles chosen by classes small, medium or large
- probability for classes depends on pivot values
\sim Maybe we can "influence pivot values accordingly"?

Pivot Sampling

- Well-known optimization for classic Quicksort: median-of-three \sim pivot closer to median of whole list
- In JRE7 Quicksort implementation: natural extension for 2 pivots:

tertiles-of-five

\sim pivots closer to tertiles of whole list

Pivot Sampling

- Well-known optimization for classic Quicksort: median-of-three \sim pivot closer to median of whole list
- In JRE7 Quicksort implementation: natural extension for 2 pivots:

tertiles-of-five

\sim pivots closer to tertiles of whole list

Pivot Sampling

- Well-known optimization for classic Quicksort: median-of-three \sim pivot closer to median of whole list
- In JRE7 Quicksort implementation: natural extension for 2 pivots:

tertiles-of-five

\sim pivots closer to tertiles of whole list

Pivot Sampling

- Well-known optimization for classic Quicksort: median-of-three \sim pivot closer to median of whole list
- In JRE7 Quicksort implementation: natural extension for 2 pivots:

tertiles-of-five

\sim pivots closer to tertiles of whole list
- 9 other possibilities to pick p and q out of 5 elements:

Optimizing Pivot Sampling

Which are "good" pivot selection schemes?
Is the symmetric choice $\square \square \square \square$ best possible?

- Need objective function to optimize
- Typical approaches to judge efficiency:

A Count number of basic operations. (Here: number of executed Java Bytecode instructions.)
(B) Measure total running time.

Optimizing Pivot Sampling

Relative performance of pivot sampling compared to tertiles-of-five:

${ }^{1}$ Average number of executed bytecodes on almost sorted lists of length 10^{5}.
${ }^{2}$ Average running time on random permutations of length 10^{6}.

Pivot Sampling

Figure : The five sample elements in Oracle's Java 7 implementation of Yaroslavskiy's dual-pivot Quicksort are chosen such that their distances are approximately as given above.

Figure : Location of the sample in our implementation of generalized pivot sampling, here with exemplary parameters $\mathbf{t}=(3,2,4)$. Only the non-shaded region is subject to partitioning with Yaroslavskiy's method.

Pivot Sampling

Figure : First row: State of the array just after partitioning the ordinary elements. The letters indicate whether the element at this location is smaller (s), between (m) or larger (l) than the two pivots P and Q . Sample elements are shaded.
Second row: State of the array after pivots and sample parts have been moved to their partition. The "rubber bands" indicate moved regions of the array.

Pivot Sampling

Randomness preservation:

- As the sample was sorted, the left and middle subarrays have sorted prefixes of length t_{1} and t_{2} followed by a random permutation of the remaining elements. Similarly, the right subarray has a sorted suffix of t_{3} elements. Hence, except for the trivial case $t=0$, these subarrays are not randomly ordered!

Pivot Sampling

Randomness preservation:

- As the sample was sorted, the left and middle subarrays have sorted prefixes of length t_{1} and t_{2} followed by a random permutation of the remaining elements. Similarly, the right subarray has a sorted suffix of t_{3} elements. Hence, except for the trivial case $t=0$, these subarrays are not randomly ordered!
- Vital observation: sorted part always lies completely inside the sample range for the next partitioning phase \sim non-randomness only affects sorting of the sample, it does not affect partitioning.

Pivot Sampling

Furthermore:

- For our special case of a fully sorted prefix or suffix of length $s \geqslant 1$ and a fully random rest, we can simply use InsertionSort where the first s iterations of the outer loop are skipped. Our InsertionSort implementations then simply accept s as an additional parameter.
- We precisely quantify the savings resulting from skipping the first s iterations: Apart from per-call overhead, we save exactly what it would have costed us to sort this prefix/suffix with InsertionSort.

Analysis

- We assume the i. i. d. uniform model, i.e. the array is initially filled with n i.i.d. uniformly in $(0,1)$ distributed random variables $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$.
- Then, we choose the first k_{l} and last k_{r} elements as the sample $\mathrm{V}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{k}_{\mathrm{l}}}, \mathrm{U}_{\mathrm{n}-\mathrm{k}_{\mathrm{r}}+1}, \ldots, \mathrm{U}_{\mathrm{n}}\right)$, from which the pivots $\mathrm{P}:=\mathrm{V}_{\left(\mathrm{t}_{1}+1\right)}$ and $\mathrm{Q}:=\mathrm{V}_{\left(\mathrm{t}_{1}+\mathrm{t}_{2}+2\right)}$ are selected.
- For D the spacings induced by P and Q on the unit interval $[0,1]$:

$$
\mathrm{D}:=\left(\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}\right):=(\mathrm{P}, \mathrm{Q}-\mathrm{P}, 1-\mathrm{Q}) .
$$

By definition of our pivot sampling method, $\left(D_{1}, D_{2}, D_{3}\right)$ are the spacings induced by two order statistics $V_{\left(t_{1}+1\right)}$ and $V_{\left(t_{1}+t_{2}+2\right)}$ of k i.i.d. uniform random variables V_{1}, \ldots, V_{n}, so $D=\left(D_{1}, D_{2}, D_{3}\right)$ is Dirichlet $\operatorname{Dir}\left(t_{1}+1, t_{2}+1, t_{3}+1\right)$ distributed.

Analysis

P and Q (equivalently spacings D) \leadsto probability for an ordinary element U to be small, medium or large, respectively:

- $\mathrm{U} \in(0, \mathrm{P}) \sim$ small (with probability D_{1});
- $\mathrm{U} \in(\mathrm{P}, \mathrm{Q}) \sim$ medium (with probability D_{2};
- $\mathrm{U} \in(\mathrm{Q}, 1) \sim$ large (with probability D_{3};

Also note that the event of equal keys has probability 0 .
Partition sizes: result of $n-k$ independent repetitions of this experiment, so $\mathrm{I}=\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right)$ (number of small, medium resp. large elements) is multinomially $\operatorname{Mult}\left(n-k ; D_{1}, D_{2}, D_{3}\right)$ distributed.

Note that the subproblem sizes $\mathbf{J}=\left(\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}\right)$ including the sampled-out elements are completely determined by \mathbf{I} via $\mathbf{J}=\mathbf{I}+\mathbf{t}$.

Analysis

By this process, the first partitioning phase only determines

- values (of pivots);
- ranks (of pivots);
- subproblem size.

About none of the other elements is known more than into which subproblem it belongs \leadsto repeat this same process with the same distribution for subproblems on their respective subinterval of $(0,1)$.

Analysis

Denoting by T_{n} the costs of the first partitioning step, we obtain the following distributional recurrence for the family $\left(C_{n}\right)_{n \in \mathbb{N}}$ of random variables:

$$
C_{n} \stackrel{D}{=} \begin{cases}T_{n}+C_{J_{1}}+C_{J_{2}}^{\prime}+C_{J_{3}}^{\prime \prime}, & \text { for } n>w ; \tag{1}\\ W_{n}, & \text { for } n \leqslant w .\end{cases}
$$

Here W_{n} denotes the cost of InsertionSorting a random permutation of size $n,\left(C_{j}^{\prime}\right)_{j \in \mathbb{N}}$ and $\left(C_{j}^{\prime \prime}\right)_{j \in \mathbb{N}}$ are independent copies of $\left(C_{j}\right)_{j \in \mathbb{N}}$ (identically distributed, totally independent, independent of T_{n}).

Analysis

Caution: Before recursion not 100\% accurate: The savings for InsertionSort on already sorted parts of the sample are not considered!

However,

- for most interesting cost measures, the resulting savings only depend on the length s of this sorted part, not on the length of the whole array;
- denoting these savings by E_{s}, we pay $E_{t_{1}}$ less for calls to left subarrays, $E_{t_{2}}$ less for middle calls and $E_{t_{3}}$ less for right subarrays;
- discounting the future savings $E_{t}:=E_{t_{1}}+E_{t_{2}}+E_{t_{3}}$ of all three recursive calls directly in the current call, we can the total costs in the form given above, with a reduced toll function $\tilde{\mathrm{T}}_{n}$.

Analysis

Taking expectations on both sides in (1), we find a recurrence relation for the expected costs $\mathbb{E}\left[\mathrm{C}_{n}\right]$:

$$
\mathbb{E}\left[C_{n}\right]= \begin{cases}\mathbb{E}\left[T_{n}\right]+\sum_{\substack{j \\ j=\left(j_{1}, j_{2}, j_{3}\right) \\ j_{1}+j_{2}+j_{3}=n-2}} \mathbb{P}(\mathbf{J}=\mathbf{j})\left(\mathbb{E}\left[C_{j_{1}}\right]+\mathbb{E}\left[C_{j_{2}}\right]+\mathbb{E}\left[C_{j_{3}}\right]\right), & \text { for } n>w ; \tag{2}\\ \mathbb{E}\left[W_{n}\right], & \text { for } n \leqslant w\end{cases}
$$

The distribution of \mathbf{J} has been given above; using well-known fact on multinomial distribution we obtain:

$$
\mathbb{P}(\mathbf{J}=\mathbf{j})=\frac{\binom{j_{1}}{\mathrm{t}_{1}}\binom{\mathrm{j}_{2}}{\mathrm{t}_{2}}\binom{j_{3}}{\mathrm{t}_{3}}}{\binom{\mathrm{n}}{\mathrm{k}}} .
$$

Solving the recurrence

Theorem (Martínez and Roura 2001)

Let F_{n} be recursively defined by

$$
F_{n}= \begin{cases}b_{n}, & \text { for } 0 \leqslant n<N \tag{3}\\ t_{n}+\sum_{j=0}^{n-1} w_{n, j} F_{j}, & \text { for } n \geqslant N\end{cases}
$$

where the toll function satisfies $t_{n} \sim K n^{\alpha} \log ^{\beta} n$ as $n \rightarrow \infty$ for constants $K, \alpha \geqslant 0$ and $\beta>-1$. Assume there exists a function $w:[0,1] \rightarrow \mathbb{R}$, such that

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left|w_{n, j}-\int_{j / n}^{(j+1) / n} w(z) d z\right|=O\left(n^{-d}\right) \tag{4}
\end{equation*}
$$

for a constant $\mathrm{d}>0$. With $\mathrm{H}:=1-\int_{0}^{1} z^{\alpha} w(z) \mathrm{d} z$, we have the following cases:
(1) If $\mathrm{H}>0$, then $\mathrm{F}_{\mathrm{n}} \sim \frac{\mathrm{t}_{\mathrm{n}}}{\mathrm{H}}$.
(2) If $\mathrm{H}=0$, then $\mathrm{F}_{\mathrm{n}} \sim \frac{\mathrm{t}_{\mathrm{n}} \ln n}{\tilde{H}}$ with $\tilde{\mathrm{H}}=-(\beta+1) \int_{0}^{1} z^{\alpha} \ln z w(z) \mathrm{d} z$.
(3) If $\mathrm{H}<0$, then $\mathrm{F}_{\mathrm{n}} \sim \Theta\left(\mathrm{n}^{\mathrm{c}}\right)$ for the unique $\mathrm{c} \in \mathbb{R}$ with $\int_{0}^{1} z^{\mathrm{c}} w(z) \mathrm{d} z=1$.

Solving the recurrence

Recurrence in the form of (2): We start again with the probabilistic equation above and condition the terms $\mathrm{C}_{\mathrm{J}_{1}}, \mathrm{C}_{\mathrm{J}_{2}}$ and $\mathrm{C}_{\mathrm{J}_{3}}$ on J . For $n>w$, this gives

$$
C_{n}=T_{n}+\sum_{l=1}^{3} \sum_{j=0}^{n-2} \mathbb{1}_{\left\{J_{l}=j\right\}} C_{j}
$$

Taking expectations on both sides and exploiting independence yields

$$
\begin{aligned}
\mathbb{E} C_{n} & =\mathbb{E} T_{n}+\sum_{l=1}^{3} \sum_{j=0}^{n-2} \mathbb{E}\left[\mathbb{1}_{\left\{J_{\imath}=j\right\}}\right] \mathbb{E}\left[C_{j}\right] \\
& =\mathbb{E} T_{n}+\sum_{j=0}^{n-2}\left(\mathbb{P}\left(J_{1}=\mathfrak{j}\right)+\mathbb{P}\left(J_{2}=\mathfrak{j}\right)+\mathbb{P}\left(J_{3}=\mathfrak{j}\right)\right) \mathbb{E} C_{j}
\end{aligned}
$$

which is a recurrence in CMT style with weights

$$
w_{n, j}=\mathbb{P}\left(J_{1}=\mathfrak{j}\right)+\mathbb{P}\left(J_{2}=\mathfrak{j}\right)+\mathbb{P}\left(J_{3}=\mathfrak{j}\right)
$$

Solving the recurrence

Note that

- the probabilities $\mathbb{P}\left(J_{l}=\mathfrak{j}\right)$ implicitly depend on n;
- $\mathbb{P}\left(J_{l}=\mathfrak{j}\right)=\mathbb{P}\left(I_{l}=\mathfrak{j}-t_{l}\right)$ for $l=1,2,3$, can be computed using that the marginal distribution of I_{l} is $\operatorname{Bin}\left(n-k, D_{l}\right)$,
- yielding $\mathbb{P}\left(I_{l}=i\right)=\binom{N}{i} \frac{\left(t_{l}+1\right)^{\bar{i}}\left(k-t_{l}\right)^{\overline{N-i}}}{(k+1)^{\bar{N}}}$.

Solving the recurrence

Note that

- the probabilities $\mathbb{P}\left(J_{l}=\mathfrak{j}\right)$ implicitly depend on n;
- $\mathbb{P}\left(J_{l}=\mathfrak{j}\right)=\mathbb{P}\left(I_{l}=\mathfrak{j}-t_{l}\right)$ for $l=1,2,3$, can be computed using that the marginal distribution of I_{l} is $\operatorname{Bin}\left(n-k, D_{l}\right)$,
- yielding $\mathbb{P}\left(I_{l}=\mathfrak{i}\right)=\binom{N}{i} \frac{\left(t_{l}+1\right)^{\bar{i}}\left(k-t_{l}\right)^{\overline{N-i}}}{(k+1)^{\bar{N}}}$.

Shape function according to (3): With

$$
w(z)=\sum_{l=1}^{3}\left(k-t_{l}\right)\binom{k}{t_{l}} z^{t_{l}}(1-z)^{k-t_{l}-1}
$$

we find $\sum_{j=0}^{n-1}\left|w_{n, j}-\int_{j / n}^{(j+1) / \mathfrak{n}}(z) \mathrm{d} z\right|=\mathrm{O}\left(n^{-1}\right)$ and CMT applies (case 2) with $\alpha=1, \beta=0$ and $K=a$.

Solving the recurrence

This way we find:

Theorem

Let $\mathbb{E}\left[C_{n}\right]$ be a sequence of numbers satisfying recurrence (2) for some constant $w \geqslant k$ and let the toll function $\mathbb{E}\left[T_{n}\right]$ be of the form $\mathbb{E}\left[T_{n}\right]=a n+O(1)$ for a constant a. Then

$$
\mathbb{E}\left[C_{n}\right]=\boldsymbol{a} \cdot g\left(k, t_{1}, t_{2}, t_{3}\right) \cdot n \ln n+O(n)
$$

where g is given by

$$
g\left(k, t_{1}, t_{2}, t_{3}\right)=\left(-\sum_{i=1}^{3} \frac{t_{i}+1}{k+1}\left(\mathcal{H}_{t_{i}+1}-\mathcal{H}_{k+1}\right)\right)^{-1}
$$

\Rightarrow results for number of comparisons, swaps and executed Java bytecodes (leading term independent of w).

Optimal Pivot Ranks

Challenge: Hard to separate optimal pivot ranks from optimal sample size.

Resort: Consider family of algorithms with $\left(k^{(j)}\right)_{\mathfrak{j} \in \mathbb{N}}$, and $\left(t_{i}^{(j)}\right)_{\mathfrak{j} \in \mathbb{N}}$ for $i=1,2,3$ a sequences of non-negative integers which fulfill $\mathrm{k}^{(j)}=\mathrm{t}_{j}^{(j)}+\mathrm{t}_{2}^{(\mathrm{j})}+\mathrm{t}_{3}^{(\mathrm{j})}$ for every $\mathrm{j} \in \mathbb{N}$. Moreover, assume $\mathrm{k}^{(\mathrm{j})} \rightarrow \infty$ and $t_{i}^{(j)} / k^{(j)} \rightarrow \tau_{i}$ with $\tau_{i} \in[0,1]$ for $i=1,2,3$ as $j \rightarrow \infty$. Note that by definition we have $\tau_{1}+\tau_{2}+\tau_{3}=1$.

Optimal Pivot Ranks

Challenge: Hard to separate optimal pivot ranks from optimal sample size.

Resort: Consider family of algorithms with $\left(k^{(j)}\right)_{j \in \mathbb{N}}$, and $\left(t_{i}^{(j)}\right)_{j \in \mathbb{N}}$ for $i=1,2,3$ a sequences of non-negative integers which fulfill $\mathrm{k}^{(\mathfrak{j})}=\mathrm{t}^{(\mathfrak{j})}+\mathrm{t}_{2}^{(\mathfrak{j})}+\mathrm{t}_{3}^{(\mathfrak{j})}$ for every $\mathfrak{j} \in \mathbb{N}$. Moreover, assume $\mathrm{k}^{(\mathfrak{j})} \rightarrow \infty$ and $t_{i}^{(j)} / k^{(j)} \rightarrow \tau_{i}$ with $\tau_{i} \in[0,1]$ for $i=1,2,3$ as $j \rightarrow \infty$. Note that by definition we have $\tau_{1}+\tau_{2}+\tau_{3}=1$.

For each $j \in \mathbb{N}$, we can apply our findings for the expected number of comparisons, swaps and bytecodes respectively using parameters $\mathrm{k}^{(\mathfrak{j})}$ and $\mathbf{t}^{(j)} \sim$ limiting behaviour of costs.

Optimal Pivot Ranks

We find that the overall number of comparisons, swaps resp. bytecodes converge to

$$
\frac{a_{C}^{*}}{-\sum_{i=1}^{3} \tau_{i} \ln \left(\tau_{i}\right)}, \quad \frac{a_{S}^{*}}{-\sum_{i=1}^{3} \tau_{i} \ln \left(\tau_{i}\right)} \text { resp. } \frac{a_{B C}^{*}}{-\sum_{i=1}^{3} \tau_{i} \ln \left(\tau_{i}\right)} .
$$

with

$$
\begin{aligned}
& a_{C}^{(j)} \rightarrow a_{C}^{*}:=1+\tau_{1}+\tau_{2}+\left(\tau_{1}+\tau_{2}\right)\left(\tau_{3}-\tau_{1}\right) \\
& a_{S}^{(j)} \rightarrow a_{S}^{*}:=\tau_{1}+\left(\tau_{1}+\tau_{2}\right) \tau_{3} \\
& a_{B C}^{(j)} \rightarrow a_{B C}^{*}:=10+13 \tau_{1}+5 \tau_{2}+11\left(\tau_{1}+\tau_{2}\right) \tau_{3}+\tau_{1}\left(\tau_{1}+\tau_{2}\right)
\end{aligned}
$$

the "constants" showing up in before theorem.

Optimal Pivot Ranks

Optimal choices: The number of comparisons is minimized for

$$
\tau_{\mathrm{C}}^{*} \approx(0.428846,0.268774,0.302380) .
$$

For this choice, the expected number of comparisons used is asymptotically $1.4931 \mathrm{n} \ln n$.

Optimal Pivot Ranks

Optimal choices: The number of comparisons is minimized for

$$
\tau_{\mathrm{C}}^{*} \approx(0.428846,0.268774,0.302380)
$$

For this choice, the expected number of comparisons used is asymptotically $1.4931 \mathrm{n} \ln \mathrm{n}$. The minimal asymptotic number of executed bytecodes of roughly 16.3833 n In n is obtained for

$$
\tau_{B C}^{*} \approx(0.206772,0.348562,0.444666)
$$

For swaps no minimum is attained in the open simplex; the corresponding coefficient approaches 0 as τ_{1} and τ_{2} simultaneously go to 0 .

Optimal Pivot Ranks

Optimal choices: The number of comparisons is minimized for

$$
\tau_{\mathrm{C}}^{*} \approx(0.428846,0.268774,0.302380)
$$

For this choice, the expected number of comparisons used is asymptotically $1.4931 \mathrm{n} \ln \mathrm{n}$. The minimal asymptotic number of executed bytecodes of roughly $16.3833 \mathrm{n} \ln \mathrm{n}$ is obtained for

$$
\tau_{B C}^{*} \approx(0.206772,0.348562,0.444666)
$$

For swaps no minimum is attained in the open simplex; the corresponding coefficient approaches 0 as τ_{1} and τ_{2} simultaneously go to 0 .

Note that

- the optimal choices heavily differ depending on the employed cost measure;
- the minima differ significantly from the symmetric choice $\tau=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

Optimal Pivot Ranks

Figure : The leading term coefficient of the expected number of bytecodes used by generalized Yaroslavskiy for different sample sizes k (x-axis). Blue points show the optimal order statistics, purple points given the cost when choosing the tertiles of the sample.

Outlook and Conclusion

- We also have results for $k=5$ and corresponding lower order terms
- dealing with comparison (also in InsertionSort and SampleSort), swaps and write accesses;
- there w come into play.

Outlook and Conclusion

- We also have results for $k=5$ and corresponding lower order terms
- dealing with comparison (also in InsertionSort and SampleSort), swaps and write accesses;
- there w come into play.

Thus, Java 7th quicksort is a perfect textbook example to demonstrate

- how well methods from AofA are developed;
- the depth of results obtainable (precise expectations, distributions, covariances, ...) by those methods;
- how AofA can guide engineering of an algorithm (pivot sampling, switch to insertionsort, ...).

Outlook and Conclusion

- We also have results for $k=5$ and corresponding lower order terms
- dealing with comparison (also in InsertionSort and SampleSort), swaps and write accesses;
- there w come into play.

Thus, Java 7th quicksort is a perfect textbook example to demonstrate

- how well methods from AofA are developed;
- the depth of results obtainable (precise expectations, distributions, covariances, ...) by those methods;
- how AofA can guide engineering of an algorithm (pivot sampling, switch to insertionsort, ...).

However, our sophisticated machinery fails to explain the practical efficiency of Yaroslavskiy's algorithms (presumably) because of a lacking access to

- branch mispredictions and
- cache misses.

Outlook and Conclusion

Thank you very much for your attention!

