Analytic combinatorics of connected graphs

Élie de Panafieu
Bell Labs France, Nokia

Séminaire Flajolet, juin 2017

Graph with $n=12$ vertices, $m=14$ edges, excess $k=m-n=2$.
Generating function (GF): $w^{m} \frac{z^{n}}{n!}$
Goal: asymptotic expansion of the number of connected (n, m)-graphs when $m \approx(1+\alpha) n$

$$
\operatorname{CSG}_{n, m}=D_{n, m}\left(\sum_{r=0}^{d-1} c_{r} n^{-r}+\mathcal{O}\left(n^{-d}\right)\right) .
$$

	k fixed	$k \rightarrow+\infty$
asymptotics	Wright 1980	Bender Canfield McKay 95 Pittel Wormald 05 van der Hofstad Spencer 05
asympt. expansion	Flajolet Salvy Schaeffer 04	present work

I - From connected graphs to degree constraints

GF of graphs

$$
\mathrm{SG}(z, w)=1+\sum_{n \geq 1}(1+w)^{\binom{n}{2}} \frac{z^{n}}{n!} .
$$

A graph is a set of connected graphs

$$
\operatorname{SG}(z, w)=e^{\operatorname{CSG}(z, w)}
$$

so we obtain the following exact formula

$$
\operatorname{CSG}(z, w)=\log \left(1+\sum_{n \geq 1}(1+w)\binom{n}{2} \frac{z^{n}}{n!}\right) .
$$

Problem: divergent series. One of the few tools we have is Bender's Theorem (1975).

Convergent series $F(z)$ and divergent series $G(z)=\sum_{k \geq 1} g_{k} z^{k}$. If $g_{k} \rightarrow+\infty$ "fast enought" (e.g. factorial), then

$$
\left[z^{n}\right] F(G(z))=\sum_{r=0}^{d-1} g_{n-r}\left[y^{r}\right] F^{\prime}(G(y))+\mathcal{O}\left(g_{n-d}\right) .
$$

Intuition: If $F(z), G(z)$ are the $g f$ of the families F, G, then the objects in $F \circ G$ are typically unbalanced, with one large object from G and the others very small

Classic application

GF of connected graphs, without considering the number of edges

$$
\operatorname{CSG}(z)=\log \left(1+\sum_{n \geq 1} 2\binom{n}{2} \frac{z^{n}}{n!}\right)
$$

The hypothesis of Bender's Theorem are satisfied

$$
\operatorname{CSG}_{n}=n!\left[z^{n}\right] \operatorname{CSG}(z)=2\binom{n}{2}\left(1-2 n 2^{-n}+o\left(2^{-n}\right)\right)
$$

Thus almost all graphs with n vertices are connected.

Generalization?

Flajolet, Salvy, Schaeffer 2004 analyzed around $w=-1$

$$
\begin{equation*}
\operatorname{CSG}(z, w)=\log \left(1+\sum_{n \geq 1}(1+w)^{\binom{n}{2}} \frac{z^{n}}{n!}\right) \tag{1}
\end{equation*}
$$

asymptotic expansion of connected graphs with fixed excess.

Typical (n, m)-graph with $m=\Theta(n)$ are not connected (Erdős Rényi 1960): they contain trees and unicycles.

Thus, Bender's Theorem cannot be applied. Many "magical" cancelations occur in Equation (1).

Positive graphs: $\mathrm{SG}^{>0}$ graphs where all components have positive excess, i.e. no trees, no unicycles.
The gf of connected graphs of excess $k>0$ is

$$
\operatorname{CSG}_{k}(z)=\left[y^{k}\right] \log \left(1+\sum_{\ell \geq 1} \mathrm{SG}_{\ell}^{>0}(z) y^{\ell}\right)
$$

A variant of Bender's Theorem is applicable, if $\mathrm{SG}_{\ell}^{>0}(z)$ is known.
$n!\left[z^{n}\right] \operatorname{CSG}_{k}(z)=n!\sum_{r=0}^{d-1}\left[z^{n}\right] \operatorname{SG}_{k-r}^{>0}(z)\left[y^{r}\right]\left(1+\sum_{\ell \geq 1} \mathrm{SG}_{\ell}^{>0}(z) y^{\ell}\right)^{-1}+\mathcal{O}().$.
Erdős and Rényi 1960: almost all positive (n, m)-graphs are connected when $m=\Theta(n)$.
Property used by Pittel and Wormald 2005.
Simplest way to remove the trees: forbid the degrees 0 and 1 (applied by Wright 1980, and Pittel Wormald 2005).

Core: graph with min $\operatorname{deg} \geq 2$.
Graph \rightarrow Core: remove repeatedly the vertices of deg 0 and 1 .

A core is a positive core with an additional set of isolated cycles, so

$$
\operatorname{Core}_{k}(z)=\text { Core }_{k}^{>0}(z) e^{\frac{1}{2} \log \left(\frac{1}{1-2}\right)-\frac{z}{2}-\frac{z^{2}}{4}} \text {. }
$$

A positive graph is a positive core where a rooted tree is attached to each vertex

$$
\operatorname{SG}_{k}^{>0}(z)=\operatorname{Core}_{k}^{>0}(T(z))=\sqrt{1-T(z)} e^{\frac{z}{2}+\frac{z^{2}}{4}} \operatorname{Core}_{k}(T(z)) .
$$

Factor $e^{\frac{z}{2}+\frac{z^{2}}{4}}$ to avoid loops and double edges.

Kernel: multigraph with $\min \operatorname{deg} \geq 3$.
Core \rightarrow kernel: merge the edges sharing a vertex of deg 2 .
If we allow loops and multiple edges, this construction can be reversed, going from kernels to positive multigraphs.

$$
\mathrm{MG}_{k}^{>0}(z)=\frac{\text { Kernel }_{k}\left(\frac{T(z)}{1-T(z)}\right)}{(1-T(z))^{k}} .
$$

A similar formula exists for positive simple graphs, by keeping track of the loops and multiple edges in the kernel.
$\operatorname{Kernel}_{k}(z)$ is a polynomial of deg $2 k$

$$
2 m=\sum_{v \in G} \operatorname{deg}(v) \geq 3 n, \quad n \leq 2 k, \quad m \leq 3 k
$$

Which formula is best?

Asymptotics for fixed k

$$
\mathrm{SG}_{k}^{>0}(z)=\frac{Q_{k}(T(z))}{(1-T(z))^{3 k}} .
$$

Asymptotics for large k

$$
\mathrm{SG}_{k}^{>0}(z)=\sqrt{1-T(z)} e^{\frac{z}{2}+\frac{z^{2}}{4}} \operatorname{Core}_{k}(T(z))
$$

Both used in the asymptotic analysis of
$n!\left[z^{n}\right] \operatorname{CSG}_{k}(z)=n!\sum_{r=0}^{d-1}\left[z^{n}\right] \operatorname{SG}_{k-r}^{>0}(z)\left[y^{r}\right]\left(1+\sum_{\ell \geq 1} \operatorname{SG}_{\ell}^{>0}(z) y^{\ell}\right)^{-1}+\mathcal{O}().$.
when $k=\alpha n+\mathcal{O}\left(n^{-d}\right)$.

Degree constraints are easier to handle on multigraphs than simple graphs: loops and multiple edges appear naturally.

Configuration model: Bollobás 1980, Wormald 1978.

This motivates us to work first on multigraphs. EdP Lander Analco16.

Multigraphs: loops and multiple edges allowed, labelled oriented edges. Replacing edges with half-edges, a multicore becomes a set of sets of size ≥ 2

$$
\operatorname{MCore}(z, w)=\sum_{m \geq 0}(2 m)!\left[x^{2 m}\right] e^{z\left(e^{x}-1-x\right)} \frac{w^{m}}{2^{m} m!}
$$

Change of variable $m \rightarrow k+n$, closed form of the sum over n
$\operatorname{MCore}(z, w)=\sum_{k \geq 0}\left[x^{2 k}\right] \sum_{n \geq 0} \frac{(2(k+n))!}{2^{k+n}(k+n)!} \frac{\left(z w\left(e^{x}-1-x\right) / x^{2}\right)^{n}}{n!} w^{k}$

Multigraphs: loops and multiple edges allowed, labelled oriented edges. Replacing edges with half-edges, a multicore becomes a set of sets of size ≥ 2

$$
\operatorname{MCore}(z, w)=\sum_{m \geq 0}(2 m)!\left[x^{2 m}\right] e^{z\left(e^{x}-1-x\right)} \frac{w^{m}}{2^{m} m!}
$$

Change of variable $m \rightarrow k+n$, closed form of the sum over n
$\operatorname{MCore}(z, w)=\sum_{k \geq 0}\left[x^{2 k}\right] \frac{(2 k)!}{2^{k} k!} \frac{w^{k}}{\left(1-z w \frac{e^{x}-1-x}{x^{2} / 2}\right)^{k+1 / 2}}$

Multigraphs: loops and multiple edges allowed, labelled oriented edges. Replacing edges with half-edges, a multicore becomes a set of sets of size ≥ 2

$$
\operatorname{MCore}(z, w)=\sum_{m \geq 0}(2 m)!\left[x^{2 m}\right] e^{z\left(e^{x}-1-x\right)} \frac{w^{m}}{2^{m} m!}
$$

Change of variable $m \rightarrow k+n$, closed form of the sum over n
$\operatorname{MCore}_{k}(z)=\left[y^{k}\right] \operatorname{MCore}(z / y, y)=\frac{(2 k)!}{2^{k} k!}\left[x^{2 k}\right] \frac{1}{\left(1-z \frac{e^{x}-1-x}{x^{2} / 2}\right)^{k+1 / 2}}$

Connected multigraphs

The gf of positive multigraphs of excess k is

$$
\operatorname{MG}_{k}^{>0}(z)=(2 k-1)!!\left[x^{2 k}\right] \sqrt{1-T(z)} B(z, x)^{k+1 / 2},
$$

where $B(z, x)=\left(1-T(z) \frac{e^{x}-1-x}{x^{2} / 2}\right)^{-1}$.
Bender's Theorem when $k=\alpha n+\mathcal{O}\left(n^{-d}\right)$
$\mathrm{CMG}_{n, n+k} \sim n!2^{n+k}(n+k)!\sum_{r=0}^{d-1}(2(k-r)-1)!!\left[z^{n} x^{2 k}\right] A_{r}(z, x) B(z, x)^{k}$
where
$A_{r}(z, x)=\sqrt{(1-T(z)) B(z, x)}\left[y^{r}\right]\left(1+\sum_{\ell \geq 1} \mathrm{MG}_{\ell}^{>0}(z) y^{\ell}\right)^{-1}$
Saddle-point method (Pemantle Wilson 2013) to conclude.

III- Connected simple graphs

From multigraphs to simple graphs: MG^{\star} denote the multigraphs without loops and double edges

$$
\mathrm{CSG}_{n, m}=2^{m} m!\mathrm{CMG}_{n, m}^{\star}
$$

inclusion-exclusion principle to remove the loops and double edges (Collet, EdP, Gardy, Gittenberger, Ravelomanana Eurocomb17).

Patchwork: set of loops and double edges (not necessarily disjoint)

$$
\{1,2 \cdot 3,2 \cdot 3
$$

A patchwork of excess k is a set of isolated loops and double edges, and a finite nb of more complex patterns

$$
P_{k}(z, u):=\left[y^{k}\right] P(z / y, y, u)=e^{u z / 2+u^{2} z^{2} / 4} P_{k}^{>0}(z)
$$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z,w,0)=Core(z,w).

Inclusion-exclusion: compute MCore(z,w,u+1), gf of multicores where each loop and double edge is either marked or left unmarked

$$
P(z, w, u) e^{z}
$$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z,w,0)=Core(z,w).

Inclusion-exclusion: compute MCore(z,w,u+1), gf of multicores where each loop and double edge is either marked or left unmarked

$$
P\left(z e^{x}, w, u\right) e^{z\left(e^{x}-1-x\right)}
$$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so $\operatorname{MCore}(z, w, 0)=\operatorname{Core}(z, w)$.

Inclusion-exclusion: compute MCore(z,w,u+1), gf of multicores where each loop and double edge is either marked or left unmarked

$$
(2 m)!\left[x^{2 m}\right] P\left(z e^{x}, w, u\right) e^{z\left(e^{x}-1-x\right)} \frac{w^{m}}{2^{m} m!}
$$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z,w,0)=Core(z,w).

Inclusion-exclusion: compute MCore(z,w,u+1), gf of multicores where each loop and double edge is either marked or left unmarked

$\operatorname{MCore}(z, w, u+1)=\sum_{m \geq 0}(2 m)!\left[x^{2 m}\right] P\left(z e^{x}, w, u\right) e^{z\left(e^{x}-1-x\right)} \frac{w^{m}}{2^{m} m!}$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z,w,0)=Core(z,w).

Inclusion-exclusion: compute MCore(z,w,u+1), gf of multicores where each loop and double edge is either marked or left unmarked

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z,w,0)=Core(z,w).

Inclusion-exclusion: compute $\operatorname{MCore}(z, w, u+1)$, gf of multicores where each loop and double edge is either marked or left unmarked

$$
\operatorname{Core}_{k}(z)=\sum_{\ell=0}^{k} \frac{(2(k-\ell))!}{2^{k-\ell}(k-\ell)!}\left[x^{2(k-\ell)}\right] \frac{P_{\ell}(z,-1)}{\left(1-z \frac{e^{x}-1-x}{x^{2} / 2}\right)^{k-\ell+1 / 2}} .
$$

Conclusion

Some related work:

- Wright 1980: asymptotic of connected graphs with fixed excess
- Bender Canfield McKay 1995: $k \rightarrow+\infty$ (differential recurrence on the gf of connected kernels)
- Flajolet Savly Schaeffer 2004: asymptotic expansion, fixed excess (Airy connection)
- Pittel Wormald 2005: simpler proof for the asymptotic when $k \rightarrow+\infty$ (cores)
- Spencer, van der Hofstad 2005: asymptotic when $k \rightarrow+\infty$ (random walks)
- present work: asymptotic expansion when $k \rightarrow+\infty$.

Conclusion

But more important than the precision: new techniques

- multigraphs instead of simple graphs, improving the model of Flajolet, Janson, Knuth, Łuczak, Pittel,
- graphs with degree constraints (with Ramos),
- graphs with marked subgraphs (with Collet, Gardy, Gittenberger, Ravelomanana).

Future work:

- structure of random graphs containing a giant component,
- hypergraphs (constraints on the degrees and sizes of the hyperedges, connected hypergraph ...)
- inhomogeneous graphs (stochastic block model).

Thank you!

If $F(z)$ has a positive radius of convergence, and

$$
G(z, y)=\sum_{\ell \geq 1} G_{\ell}(z) y^{\ell}
$$

with

$$
G_{\ell}(\zeta) \leq C E^{\ell} \Gamma(\ell+\beta)
$$

then

$$
\left[z^{n} y^{k}\right] F(G(z, y))=\left[z^{n}\right] \sum_{r=0}^{d-1} G_{k-r}(z)\left[y^{r}\right] F^{\prime}(G(z, y))+\mathcal{O}\left(\frac{E^{k}}{\zeta^{n}} \Gamma(k-d+\beta\right.
$$

