Analytic combinatorics of connected graphs

Élie de Panafieu Bell Labs France, Nokia

Séminaire Flajolet, juin 2017

Introduction

Graph with n = 12 vertices, m = 14 edges, excess k = m - n = 2.

Generating function (GF): $w^m \frac{z^n}{n!}$

Goal: asymptotic expansion of the number of connected (n, m)-graphs when $m \approx (1 + \alpha)n$

$$\mathsf{CSG}_{n,m} = D_{n,m} \bigg(\sum_{r=0}^{d-1} c_r n^{-r} + \mathcal{O}(n^{-d}) \bigg).$$

	k fixed	$k ightarrow +\infty$
		Bender Canfield McKay 95
asymptotics	Wright 1980	Pittel Wormald 05
		van der Hofstad Spencer 05
asympt. expansion	Flajolet Salvy Schaeffer 04	present work

I - From connected graphs to degree constraints

GF of graphs

$$SG(z, w) = 1 + \sum_{n \ge 1} (1 + w)^{\binom{n}{2}} \frac{z^n}{n!}.$$

A graph is a set of connected graphs

$$SG(z,w) = e^{CSG(z,w)},$$

so we obtain the following exact formula

$$\mathsf{CSG}(z,w) = \log\left(1 + \sum_{n \ge 1} (1+w)^{\binom{n}{2}} \frac{z^n}{n!}\right).$$

Problem: divergent series. One of the few tools we have is Bender's Theorem (1975).

Bender's Theorem (simplified version)

Convergent series F(z) and divergent series $G(z) = \sum_{k\geq 1} g_k z^k$. If $g_k \to +\infty$ "fast enought" (e.g. factorial), then

$$[z^{n}]F(G(z)) = \sum_{r=0}^{d-1} g_{n-r}[y^{r}]F'(G(y)) + \mathcal{O}(g_{n-d}).$$

Intuition: If F(z), G(z) are the gf of the families F, G, then the objects in $F \circ G$ are typically unbalanced, with one large object from G and the others very small

$$\bigwedge \in F \left| (a, b, c) \in G \right| \underbrace{b}_{(a)} \in FoG$$

GF of connected graphs, without considering the number of edges

$$\mathsf{CSG}(z) = \log\left(1 + \sum_{n \ge 1} 2^{\binom{n}{2}} \frac{z^n}{n!}\right).$$

The hypothesis of Bender's Theorem are satisfied

$$CSG_n = n![z^n] CSG(z) = 2^{\binom{n}{2}}(1 - 2n2^{-n} + o(2^{-n})).$$

Thus almost all graphs with n vertices are connected.

Generalization?

Flajolet, Salvy, Schaeffer 2004 analyzed around w = -1

$$CSG(z, w) = \log\left(1 + \sum_{n \ge 1} (1 + w)^{\binom{n}{2}} \frac{z^n}{n!}\right)$$
 (1)

asymptotic expansion of connected graphs with fixed excess.

Typical (n, m)-graph with $m = \Theta(n)$ are not connected (Erdős Rényi 1960): they contain trees and unicycles.

Thus, Bender's Theorem cannot be applied. Many "magical" cancelations occur in Equation (1).

Solution

Positive graphs: $SG^{>0}$ graphs where all components have positive excess, *i.e.* no trees, no unicycles.

The gf of connected graphs of excess k > 0 is

$$\mathsf{CSG}_k(z) = [y^k] \log \left(1 + \sum_{\ell \ge 1} \mathsf{SG}_\ell^{>0}(z) y^\ell \right),$$

A variant of Bender's Theorem is applicable, if $SG_{\ell}^{>0}(z)$ is known.

$$n![z^n] \operatorname{CSG}_k(z) = n! \sum_{r=0}^{d-1} [z^n] \operatorname{SG}_{k-r}^{>0}(z)[y^r] \left(1 + \sum_{\ell \ge 1} \operatorname{SG}_{\ell}^{>0}(z)y^\ell\right)^{-1} + \mathcal{O}(.).$$

Erdős and Rényi 1960: almost all positive (n, m)-graphs are connected when $m = \Theta(n)$. Property used by Pittel and Wormald 2005. Simplest way to remove the trees: forbid the degrees 0 and 1 (applied by Wright 1980, and Pittel Wormald 2005).

Positive graphs and Cores

Core: graph with min deg ≥ 2 . Graph \rightarrow Core: remove repeatedly the vertices of deg 0 and 1.

A core is a positive core with an additional set of isolated cycles, so

$$\operatorname{Core}_k(z) = \operatorname{Core}_k^{>0}(z)e^{\frac{1}{2}\log(\frac{1}{1-z}) - \frac{z}{2} - \frac{z^2}{4}}$$

A positive graph is a positive core where a rooted tree is attached to each vertex

$${
m SG}_k^{>0}(z)={
m Core}_k^{>0}({\mathcal T}(z))=\sqrt{1-{\mathcal T}(z)}e^{rac{z}{2}+rac{z^2}{4}}\,{
m Core}_k({\mathcal T}(z)).$$

Factor $e^{\frac{z}{2} + \frac{z^2}{4}}$ to avoid loops and double edges.

Positive graphs and kernels

Kernel: multigraph with min deg \geq 3. Core \rightarrow kernel: merge the edges sharing a vertex of deg 2.

If we allow loops and multiple edges, this construction can be reversed, going from kernels to positive multigraphs.

$$\mathsf{MG}_k^{>0}(z) = rac{\mathsf{Kernel}_k\left(rac{\mathcal{T}(z)}{1-\mathcal{T}(z)}
ight)}{(1-\mathcal{T}(z))^k}.$$

A similar formula exists for positive simple graphs, by keeping track of the loops and multiple edges in the kernel.

Kernel_k(z) is a polynomial of deg 2k

$$2m = \sum_{v \in G} \deg(v) \ge 3n, \qquad n \le 2k, \qquad m \le 3k.$$

Which formula is best?

Asymptotics for fixed k

$${\sf SG}_k^{>0}(z)=rac{Q_k({\cal T}(z))}{(1-{\cal T}(z))^{3k}}.$$

Asymptotics for large k

$$\mathsf{SG}_k^{>0}(z) = \sqrt{1 - \mathcal{T}(z)} e^{rac{z}{2} + rac{z^2}{4}} \operatorname{Core}_k(\mathcal{T}(z)).$$

Both used in the asymptotic analysis of

$$n![z^n] \operatorname{CSG}_k(z) = n! \sum_{r=0}^{d-1} [z^n] \operatorname{SG}_{k-r}^{>0}(z)[y^r] \left(1 + \sum_{\ell \ge 1} \operatorname{SG}_{\ell}^{>0}(z)y^\ell\right)^{-1} + \mathcal{O}(.).$$

when $k = \alpha n + \mathcal{O}(n^{-d})$.

II - Multigraphs

Degree constraints are easier to handle on multigraphs than simple graphs: loops and multiple edges appear naturally.

Configuration model: Bollobás 1980, Wormald 1978.

This motivates us to work first on multigraphs. EdP Lander Analco16.

Multicores

Multigraphs: loops and multiple edges allowed, labelled oriented edges. Replacing edges with half-edges, a multicore becomes a set of sets of size ≥ 2

$$\mathsf{MCore}(z,w) = \sum_{m \ge 0} (2m)! [x^{2m}] e^{z(e^x - 1 - x)} \frac{w^m}{2^m m!}.$$

Change of variable $m \rightarrow k + n$, closed form of the sum over n

$$\mathsf{MCore}(z,w) = \sum_{k\geq 0} [x^{2k}] \sum_{n\geq 0} \frac{(2(k+n))!}{2^{k+n}(k+n)!} \frac{(zw(e^x-1-x)/x^2)^n}{n!} w^k$$

Multicores

Multigraphs: loops and multiple edges allowed, labelled oriented edges. Replacing edges with half-edges, a multicore becomes a set of sets of size ≥ 2

$$\mathsf{MCore}(z,w) = \sum_{m \ge 0} (2m)! [x^{2m}] e^{z(e^x - 1 - x)} \frac{w^m}{2^m m!}.$$

Change of variable $m \rightarrow k + n$, closed form of the sum over n

$$\mathsf{MCore}(z,w) = \sum_{k \ge 0} [x^{2k}] \frac{(2k)!}{2^k k!} \frac{w^k}{\left(1 - zw \frac{e^x - 1 - x}{x^2/2}\right)^{k+1/2}}$$

Multicores

Multigraphs: loops and multiple edges allowed, labelled oriented edges. Replacing edges with half-edges, a multicore becomes a set of sets of size ≥ 2

$$\mathsf{MCore}(z,w) = \sum_{m \ge 0} (2m)! [x^{2m}] e^{z(e^x - 1 - x)} \frac{w^m}{2^m m!}.$$

Change of variable $m \rightarrow k + n$, closed form of the sum over n

$$\mathsf{MCore}_{k}(z) = [y^{k}] \,\mathsf{MCore}(z/y, y) = \frac{(2k)!}{2^{k}k!} [x^{2k}] \frac{1}{\left(1 - z\frac{e^{x} - 1 - x}{x^{2}/2}\right)^{k+1/2}}$$

Connected multigraphs

The gf of positive multigraphs of excess k is $MG_k^{>0}(z) = (2k-1)!![x^{2k}]\sqrt{1-T(z)}B(z,x)^{k+1/2},$ where $B(z,x) = (1 - T(z)\frac{e^x - 1 - x}{x^2/2})^{-1}.$

Bender's Theorem when $k = \alpha n + \mathcal{O}(n^{-d})$

$$\mathsf{CMG}_{n,n+k} \sim n! 2^{n+k} (n+k)! \sum_{r=0}^{d-1} (2(k-r)-1)!! [z^n x^{2k}] A_r(z,x) B(z,x)^k$$

where

$$A_r(z,x) = \sqrt{(1-T(z))B(z,x)}[y^r] \left(1 + \sum_{\ell \ge 1} \mathsf{MG}_\ell^{>0}(z)y^\ell\right)^{-1}$$

Saddle-point method (Pemantle Wilson 2013) to conclude.

From multigraphs to simple graphs: MG* denote the multigraphs without loops and double edges

 $CSG_{n,m} = 2^m m! CMG_{n,m}^{\star}$

inclusion-exclusion principle to remove the loops and double edges (Collet, EdP, Gardy, Gittenberger, Ravelomanana Eurocomb17).

Patchworks

Patchwork: set of loops and double edges (not necessarily disjoint)

$$P(z, w, u) = \sum_{\text{patchwork } P} u^{\text{nb loops & double edges}} \frac{w^{m(P)}}{2^{m(P)}m(P)!} \frac{z^{n(P)}}{n(P)!}$$

A patchwork of excess k is a set of isolated loops and double edges, and a finite nb of more complex patterns

$$P_k(z, u) := [y^k] P(z/y, y, u) = e^{uz/2 + u^2 z^2/4} P_k^{>0}(z)$$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z, w, 0) = Core(z, w).

Inclusion-exclusion: compute MCore(z, w, u + 1), gf of multicores where each loop and double edge is either marked or left unmarked

 $P(z , w, u)e^{z}$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z, w, 0) = Core(z, w).

Inclusion-exclusion: compute MCore(z, w, u + 1), gf of multicores where each loop and double edge is either marked or left unmarked

 $P(ze^x, w, u)e^{z(e^x-1-x)}$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z, w, 0) = Core(z, w).

Inclusion-exclusion: compute MCore(z, w, u + 1), gf of multicores where each loop and double edge is either marked or left unmarked

 $(2m)![x^{2m}]P(ze^{x}, w, u)e^{z(e^{x}-1-x)}\frac{w^{m}}{2^{m}m!}$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z, w, 0) = Core(z, w).

Inclusion-exclusion: compute MCore(z, w, u + 1), gf of multicores where each loop and double edge is either marked or left unmarked

 $|\mathsf{MCore}(z, w, u+1) = \sum_{m \ge 0} (2m)! [x^{2m}] P(ze^x, w, u) e^{z(e^x - 1 - x)} \frac{w^m}{2^m m!}$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z, w, 0) = Core(z, w).

Inclusion-exclusion: compute MCore(z, w, u + 1), gf of multicores where each loop and double edge is either marked or left unmarked

Core
$$(z, w) = \sum_{m \ge 0} (2m)! [x^{2m}] P(ze^x, w, -1) e^{z(e^x - 1 - x)} \frac{w^m}{2^m m!}$$

MCore(z, w, u) is the gf of multicores where u marks the loops and double edges, so MCore(z, w, 0) = Core(z, w).

Inclusion-exclusion: compute MCore(z, w, u + 1), gf of multicores where each loop and double edge is either marked or left unmarked

$$\mathsf{Core}_k(z) = \sum_{\ell=0}^{\kappa} \frac{(2(k-\ell))!}{2^{k-\ell}(k-\ell)!} [x^{2(k-\ell)}] \frac{P_\ell(z,-1)}{\left(1-z\frac{e^x-1-x}{x^2/2}\right)^{k-\ell+1/2}}.$$

Conclusion

Some related work:

- Wright 1980: asymptotic of connected graphs with fixed excess
- Bender Canfield McKay 1995: k → +∞ (differential recurrence on the gf of connected kernels)
- Flajolet Savly Schaeffer 2004: asymptotic expansion, fixed excess (Airy connection)
- Pittel Wormald 2005: simpler proof for the asymptotic when $k \to +\infty$ (cores)
- Spencer, van der Hofstad 2005: asymptotic when $k \to +\infty$ (random walks)
- present work: asymptotic **expansion** when $k \to +\infty$.

But more important than the precision: new techniques

- multigraphs instead of simple graphs, improving the model of Flajolet, Janson, Knuth, Łuczak, Pittel,
- graphs with degree constraints (with Ramos),
- graphs with marked subgraphs (with Collet, Gardy, Gittenberger, Ravelomanana).

Conclusion

Future work:

- structure of random graphs containing a giant component,
- hypergraphs (constraints on the degrees and sizes of the hyperedges, connected hypergraph ...)
- inhomogeneous graphs (stochastic block model).

Thank you!

Bonus: variant of Bender's Theorem

If F(z) has a positive radius of convergence, and

$$G(z,y) = \sum_{\ell \geq 1} G_\ell(z) y^\ell$$

with

 $\overline{G_{\ell}(\zeta)} \leq \overline{CE^{\ell}\Gamma(\ell+\beta)},$

then

$$[z^n y^k]F(G(z,y)) = [z^n]\sum_{r=0}^{d-1} G_{k-r}(z)[y^r]F'(G(z,y)) + \mathcal{O}\left(\frac{E^k}{\zeta^n}\Gamma(k-d+\beta)\right)$$