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Graph with n = 12 vertices, m = 14 edges, excess k = m − n = 2.

Generating function (GF): wm zn

n!

Goal: asymptotic expansion of the number of connected
(n,m)-graphs when m ≈ (1 + α)n

CSGn,m = Dn,m

( d−1∑
r=0

crn
−r +O(n−d)

)
.
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I - From connected graphs to degree constraints

GF of graphs

SG(z ,w) = 1 +
∑
n≥1

(1 + w)(n2)
zn

n!
.

A graph is a set of connected graphs

SG(z ,w) = eCSG(z,w),

so we obtain the following exact formula

CSG(z ,w) = log

(
1 +

∑
n≥1

(1 + w)(n2)
zn

n!

)
.

Problem: divergent series. One of the few tools we have is
Bender’s Theorem (1975).



Bender’s Theorem (simplified version)

Convergent series F (z) and divergent series G (z) =
∑

k≥1 gkz
k .

If gk → +∞ “fast enought” (e.g. factorial), then

[zn]F (G (z)) =
d−1∑
r=0

gn−r [y r ]F ′(G (y)) +O(gn−d).

Intuition: If F (z), G (z) are the gf of the families F , G , then the
objects in F ◦ G are typically unbalanced, with one large object
from G and the others very small



Classic application

GF of connected graphs, without considering the number of edges

CSG(z) = log

(
1 +

∑
n≥1

2(n2)
zn

n!

)
.

The hypothesis of Bender’s Theorem are satisfied

CSGn = n![zn] CSG(z) = 2(n2)(1− 2n2−n + o(2−n)).

Thus almost all graphs with n vertices are connected.



Generalization?

Flajolet, Salvy, Schaeffer 2004 analyzed around w = −1

CSG(z ,w) = log

(
1 +

∑
n≥1

(1 + w)(n2)
zn

n!

)
(1)

asymptotic expansion of connected graphs with fixed excess.

Typical (n,m)-graph with m = Θ(n) are not connected (Erdős
Rényi 1960): they contain trees and unicycles.

Thus, Bender’s Theorem cannot be applied. Many “magical”
cancelations occur in Equation (1).



Solution

Positive graphs: SG>0 graphs where all components have positive
excess, i.e. no trees, no unicycles.
The gf of connected graphs of excess k > 0 is

CSGk(z) = [yk ] log

(
1 +

∑
`≥1

SG>0
` (z)y `

)
,

A variant of Bender’s Theorem is applicable, if SG>0
` (z) is known.

n![zn] CSGk(z) = n!
d−1∑
r=0

[zn] SG>0
k−r (z)[y r ]

(
1+
∑
`≥1

SG>0
` (z)y `

)−1
+O(.).

Erdős and Rényi 1960: almost all positive (n,m)-graphs are
connected when m = Θ(n).
Property used by Pittel and Wormald 2005.
Simplest way to remove the trees: forbid the degrees 0 and 1
(applied by Wright 1980, and Pittel Wormald 2005).



Positive graphs and Cores

Core: graph with min deg ≥ 2.
Graph → Core: remove repeatedly the vertices of deg 0 and 1.

A core is a positive core with an additional set of isolated cycles, so

Corek(z) = Core>0
k (z)e

1
2
log( 1

1−z
)− z

2
− z2

4 .

A positive graph is a positive core where a rooted tree is attached
to each vertex

SG>0
k (z) = Core>0

k (T (z)) =
√

1− T (z)e
z
2
+ z2

4 Corek(T (z)).

Factor e
z
2
+ z2

4 to avoid loops and double edges.



Positive graphs and kernels

Kernel: multigraph with min deg ≥ 3.
Core → kernel: merge the edges sharing a vertex of deg 2.

If we allow loops and multiple edges, this construction can be
reversed, going from kernels to positive multigraphs.

MG>0
k (z) =

Kernelk

(
T (z)

1−T (z)

)
(1− T (z))k

.

A similar formula exists for positive simple graphs, by keeping track
of the loops and multiple edges in the kernel.

Kernelk(z) is a polynomial of deg 2k

2m =
∑
v∈G

deg(v) ≥ 3n, n ≤ 2k , m ≤ 3k .



Which formula is best?

Asymptotics for fixed k

SG>0
k (z) =

Qk(T (z))

(1− T (z))3k
.

Asymptotics for large k

SG>0
k (z) =

√
1− T (z)e

z
2
+ z2

4 Corek(T (z)).

Both used in the asymptotic analysis of

n![zn] CSGk(z) = n!
d−1∑
r=0

[zn] SG>0
k−r (z)[y r ]

(
1+
∑
`≥1

SG>0
` (z)y `

)−1
+O(.).

when k = αn +O(n−d).



II - Multigraphs

Degree constraints are easier to handle on multigraphs than simple
graphs: loops and multiple edges appear naturally.

Configuration model: Bollobás 1980, Wormald 1978.

This motivates us to work first on multigraphs.
EdP Lander Analco16.



Multicores

Multigraphs: loops and multiple edges allowed, labelled oriented
edges. Replacing edges with half-edges, a multicore becomes a set
of sets of size ≥ 2
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MCore(z ,w) =
∑
m≥0

(2m)![x2m]ez(e
x−1−x) wm

2mm!
.

Change of variable m→ k + n, closed form of the sum over n

MCore(z ,w) =
∑
k≥0

[x2k ]
∑
n≥0

(2(k + n))!

2k+n(k + n)!

(zw(ex − 1− x)/x2)n

n!
wk



Multicores

Multigraphs: loops and multiple edges allowed, labelled oriented
edges. Replacing edges with half-edges, a multicore becomes a set
of sets of size ≥ 2
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MCore(z ,w) =
∑
m≥0

(2m)![x2m]ez(e
x−1−x) wm

2mm!
.

Change of variable m→ k + n, closed form of the sum over n

MCore(z ,w) =
∑
k≥0

[x2k ]
(2k)!

2kk!

wk(
1− zw ex−1−x

x2/2

)k+1/2



Multicores

Multigraphs: loops and multiple edges allowed, labelled oriented
edges. Replacing edges with half-edges, a multicore becomes a set
of sets of size ≥ 2
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MCore(z ,w) =
∑
m≥0

(2m)![x2m]ez(e
x−1−x) wm

2mm!
.

Change of variable m→ k + n, closed form of the sum over n

MCorek(z) = [yk ] MCore(z/y , y) =
(2k)!

2kk!
[x2k ]

1(
1− z ex−1−x

x2/2

)k+1/2



Connected multigraphs

The gf of positive multigraphs of excess k is

MG>0
k (z) = (2k − 1)!![x2k ]

√
1− T (z)B(z , x)k+1/2,

where B(z , x) =
(
1− T (z) e

x−1−x
x2/2

)−1
.

Bender’s Theorem when k = αn +O(n−d)

CMGn,n+k ∼ n!2n+k(n+k)!
d−1∑
r=0

(2(k−r)−1)!![znx2k ]Ar (z , x)B(z , x)k

where

Ar (z , x) =
√

(1− T (z))B(z , x)[y r ]
(

1 +
∑

`≥1 MG>0
` (z)y `

)−1
Saddle-point method (Pemantle Wilson 2013) to conclude.



III- Connected simple graphs

From multigraphs to simple graphs: MG? denote the
multigraphs without loops and double edges

CSGn,m = 2mm! CMG?
n,m

inclusion-exclusion principle to remove the loops and double
edges (Collet, EdP, Gardy, Gittenberger, Ravelomanana
Eurocomb17).



Patchworks

Patchwork: set of loops and double edges (not necessarily disjoint)

, ,{ }
P(z ,w , u) =

∑
patchwork P

unb loops & double edges wm(P)

2m(P)m(P)!

zn(P)

n(P)!

A patchwork of excess k is a set of isolated loops and double
edges, and a finite nb of more complex patterns

Pk(z , u) := [yk ]P(z/y , y , u) = euz/2+u2z2/4P>0
k (z)



Simple Cores

MCore(z ,w , u) is the gf of multicores where u marks the loops and
double edges, so MCore(z ,w , 0) = Core(z ,w).

Inclusion-exclusion: compute MCore(z ,w , u + 1), gf of multicores
where each loop and double edge is either marked or left unmarked

MCore(z ,w , u + 1) =
∑
m≥0

(2m)![x2m]

P(z

ex

,w , u )ez

(ex−1−x) wm

2mm!

.



Simple Cores

MCore(z ,w , u) is the gf of multicores where u marks the loops and
double edges, so MCore(z ,w , 0) = Core(z ,w).

Inclusion-exclusion: compute MCore(z ,w , u + 1), gf of multicores
where each loop and double edge is either marked or left unmarked

MCore(z ,w , u + 1) =
∑
m≥0

(2m)![x2m]

P(zex ,w , u )ez(e
x−1−x)

wm

2mm!

.



Simple Cores

MCore(z ,w , u) is the gf of multicores where u marks the loops and
double edges, so MCore(z ,w , 0) = Core(z ,w).

Inclusion-exclusion: compute MCore(z ,w , u + 1), gf of multicores
where each loop and double edge is either marked or left unmarked

MCore(z ,w , u + 1) =
∑
m≥0

(2m)![x2m]P(zex ,w , u )ez(e
x−1−x) wm

2mm!
.



Simple Cores

MCore(z ,w , u) is the gf of multicores where u marks the loops and
double edges, so MCore(z ,w , 0) = Core(z ,w).

Inclusion-exclusion: compute MCore(z ,w , u + 1), gf of multicores
where each loop and double edge is either marked or left unmarked

MCore(z ,w , u + 1) =
∑
m≥0

(2m)![x2m]P(zex ,w , u )ez(e
x−1−x) wm

2mm!
.



Simple Cores

MCore(z ,w , u) is the gf of multicores where u marks the loops and
double edges, so MCore(z ,w , 0) = Core(z ,w).

Inclusion-exclusion: compute MCore(z ,w , u + 1), gf of multicores
where each loop and double edge is either marked or left unmarked

Core(z ,w) =
∑
m≥0

(2m)![x2m]P(zex ,w ,−1)ez(e
x−1−x) wm

2mm!
.



Simple Cores

MCore(z ,w , u) is the gf of multicores where u marks the loops and
double edges, so MCore(z ,w , 0) = Core(z ,w).

Inclusion-exclusion: compute MCore(z ,w , u + 1), gf of multicores
where each loop and double edge is either marked or left unmarked

Corek(z) =
k∑

`=0

(2(k − `))!

2k−`(k − `)!
[x2(k−`)]

P`(z ,−1)(
1− z ex−1−x

x2/2

)k−`+1/2
.



Conclusion

Some related work:

Wright 1980: asymptotic of connected graphs with fixed
excess

Bender Canfield McKay 1995: k → +∞ (differential
recurrence on the gf of connected kernels)

Flajolet Savly Schaeffer 2004: asymptotic expansion, fixed
excess (Airy connection)

Pittel Wormald 2005: simpler proof for the asymptotic when
k → +∞ (cores)

Spencer, van der Hofstad 2005: asymptotic when k → +∞
(random walks)

present work: asymptotic expansion when k → +∞.



Conclusion

But more important than the precision: new techniques

multigraphs instead of simple graphs, improving the model of
Flajolet, Janson, Knuth,  Luczak, Pittel,

graphs with degree constraints (with Ramos),

graphs with marked subgraphs (with Collet, Gardy,
Gittenberger, Ravelomanana).



Conclusion

Future work:

structure of random graphs containing a giant component,

hypergraphs (constraints on the degrees and sizes of the
hyperedges, connected hypergraph . . . )

inhomogeneous graphs (stochastic block model).

Thank you!



Bonus: variant of Bender’s Theorem

If F (z) has a positive radius of convergence, and

G (z , y) =
∑
`≥1

G`(z)y `

with
G`(ζ) ≤ CE `Γ(`+ β),

then

[znyk ]F (G (z , y)) = [zn]
d−1∑
r=0

Gk−r (z)[y r ]F ′(G (z , y))+O
(
E k

ζn
Γ(k − d + β)

)
.


