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Graph with n = 12 vertices, m = 14 edges, excess k = m — n = 2.

mz"

Generating function (GF): w

Goal: asymptotic expansion of the number of connected
(n, m)-graphs when m ~ (1 + a)n

CSGpm = nm(Zc, "+ 0( —d)>
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| - From connected graphs to degree constraints

GF of graphs
n
SG(z,w) =1+ > (1 +w)&) =
=1 n!
A graph is a set of connected graphs

SG(Z, W) — eCSG(z,W)7
so we obtain the following exact formula
n Zn
CSG(z,w) = log <1 + n;(l + w)(z)n!>.

Problem: divergent series. One of the few tools we have is
Bender's Theorem (1975).



Bender’s Theorem (simplified version)

Convergent series F(z) and divergent series G(z) = )+, gz~
If gk — 400 “fast enought”’ (e.g. factorial), then

[z"]F(G Zgn [WTF(G(y)) + O(gn-a)-

Intuition: If F(z), G(z) are the gf of the families F, G, then the
objects in F o G are typically unbalanced, with one large object
from G and the others very small
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Classic application

GF of connected graphs, without considering the number of edges

CSG(z) = log <1 +3 2(5)27).

n>1

The hypothesis of Bender's Theorem are satisfied
CSG, = n![Zn] CSG(Z) = 2(,21)(]_ —2m27 " + O(2—n))‘

Thus almost all graphs with n vertices are connected.



Generalization?

Flajolet, Salvy, Schaeffer 2004 analyzed around w = —1

CSG(z, w) = log (1 +y @+ w)(Z)i';) (1)

n>1

asymptotic expansion of connected graphs with fixed excess.

Typical (n, m)-graph with m = ©(n) are not connected (Erdés
Rényi 1960): they contain trees and unicycles.

Thus, Bender's Theorem cannot be applied. Many “magical”
cancelations occur in Equation (1).



Solution

Positive graphs: SG>° graphs where all components have positive
excess, I.e. no trees, no unicycles.
The gf of connected graphs of excess k > 0 is

CSGy(z) = [y*]log <1 +> SG;O(z)yf>,

>1

A variant of Bender's Theorem is applicable, if SG?O(Z) is known.

d—1 -1
n![z"] CSGk(z) = n! Z[z”] SG° (2)y'] <1+Z SG;O(z)ye> +0(.).
r=0 £>1

Erdos and Rényi 1960: almost all positive (n, m)-graphs are
connected when m = ©(n).

Property used by Pittel and Wormald 2005.

Simplest way to remove the trees: forbid the degrees 0 and 1
(applied by Wright 1980, and Pittel Wormald 2005).



Positive graphs and Cores

Core: graph with min deg > 2.
Graph — Core: remove repeatedly the vertices of deg 0 and 1.

A core is a positive core with an additional set of isolated cycles, so

2
Corex(z) = Corefo(z)e% loa( 1)~ % ,

A positive graph is a positive core where a rooted tree is attached
to each vertex

N

zZ

SG%(z) = Corel%(T(2)) = /1 — T(2)e:* 7 Corex(T(2)).

z, 2° .
Factor e2™ % to avoid loops and double edges.



Positive graphs and kernels

Kernel: multigraph with min deg > 3.
Core — kernel: merge the edges sharing a vertex of deg 2.

If we allow loops and multiple edges, this construction can be
reversed, going from kernels to positive multigraphs.

Kernel <17LTZ()Z))

MG = —T )"

A similar formula exists for positive simple graphs, by keeping track
of the loops and multiple edges in the kernel.

Kerneli(z) is a polynomial of deg 2k

2m = Z deg(v) > 3n, n < 2k, m < 3k.
veG



Which formula is best?

Asymptotics for fixed k

Qu(T(2))

) = T T

Asymptotics for large k
z Z2
SG;0%(2) = /1 — T(z)e2"7 Corex(T(2)).

Both used in the asymptotic analysis of

-1
n![z"] CSGk(z) = n'Z[z"]SG [yr]<1+ZSG£>O(z)y€> +0(.).

>1

when k = an+ O(n~9).



[l - Multigraphs

Degree constraints are easier to handle on multigraphs than simple
graphs: loops and multiple edges appear naturally.

Configuration model: Bollobas 1980, Wormald 1978.

VIV

This motivates us to work first on multigraphs.
EdP Lander Analcol6.



Multicores

Multigraphs: loops and multiple edges allowed, labelled oriented
edges. Replacing edges with half-edges, a multicore becomes a set
of sets of size > 2

3 21
/*\ 7\,
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MCOre(z, W) = Z(2m)![x2m]ez(ex_1_X)L

2mml”
m>0

Change of variable m — k + n, closed form of the sum over n

MCore(z, w) Z[ 2% Z 2(k + n) (zw(eX —1—x)/x?)" Lk

2k+” k —l— n) n!
k>0 n>0
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Multicores

Multigraphs: loops and multiple edges allowed, labelled oriented
edges. Replacing edges with half-edges, a multicore becomes a set
of sets of size > 2

3 21
/*\ 7\,
1\—>—/2 TS 2

MCOre(z, W) = Z(2m)![x2m]ez(ex_1_X)L

2mml”
m>0

Change of variable m — k + n, closed form of the sum over n

MCorey(z) = [y*] MCore(z/y, y) = (2kk)' [x*4] ele,x k+1/2
(1-z577%)



Connected multigraphs

The gf of positive multigraphs of excess k is

MG30(z) = (2k — D)I[xX\/1 = T(2)B(z, x)*+1/2,

where B(z,x) = (1 — T(2) eXX}}gx)_l.

Bender's Theorem when k = an + O(n~9)

Q
—

CMG, pik ~ n2" K (k)Y ~(2(k—r)—1)11[z"x?K] A, (2, x) B(z, x)*

\
Il
o

where

Ad(z.x) = T~ T@)BE '] (1+ Xy MG 22)y)

Saddle-point method (Pemantle Wilson 2013) to conclude.




[1l- Connected simple graphs

From multigraphs to simple graphs: MG* denote the
multigraphs without loops and double edges

CSGpm = 2" m! CMG,

inclusion-exclusion principle to remove the loops and double
edges (Collet, EdP, Gardy, Gittenberger, Ravelomanana
Eurocomb17).



Patchworks

Patchwork: set of loops and double edges (not necessarily disjoint)

1 1

4 °1,2e 2 °3,2e 2 o3 4 o] 2e 2 3
3 3
P(Z W u) _ Z unb loops & double edges Wm(P) Zn(P)

patchwork P 2m(P)m(P)! n(P)I

A patchwork of excess k is a set of isolated loops and double
edges, and a finite nb of more complex patterns

Pi(z,u) == [y¥1P(z/y, y, u) = e*/>+422/4p>0( )



Simple Cores

MCore(z, w, u) is the gf of multicores where u marks the loops and
double edges, so MCore(z, w,0) = Core(z, w).

Inclusion-exclusion: compute MCore(z, w, u + 1), gf of multicores
where each loop and double edge is either marked or left unmarked
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MCore(z, w,u+ 1) = Z(2m)![x |P(ze*, w, u)e (e )W

m>0
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Simple Cores

MCore(z, w, u) is the gf of multicores where u marks the loops and
double edges, so MCore(z, w,0) = Core(z, w).
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Conclusion

Some related work:

Wright 1980: asymptotic of connected graphs with fixed
excess

Bender Canfield McKay 1995: k — +oo (differential
recurrence on the gf of connected kernels)

Flajolet Savly Schaeffer 2004: asymptotic expansion, fixed
excess (Airy connection)

Pittel Wormald 2005: simpler proof for the asymptotic when
k — 400 (cores)

Spencer, van der Hofstad 2005: asymptotic when k — +o0
(random walks)

present work: asymptotic expansion when k — +oo.



Conclusion

But more important than the precision: new techniques

e multigraphs instead of simple graphs, improving the model of
Flajolet, Janson, Knuth, tuczak, Pittel,

» graphs with degree constraints (with Ramos),

» graphs with marked subgraphs (with Collet, Gardy,
Gittenberger, Ravelomanana).



Conclusion

Future work:
» structure of random graphs containing a giant component,

» hypergraphs (constraints on the degrees and sizes of the
hyperedges, connected hypergraph .. .)

* inhomogeneous graphs (stochastic block model).

Thank youl!



Bonus: variant of Bender's Theorem

If F(z) has a positive radius of convergence, and

z,y) =Y Gyz)y*

>1

with
Gi(¢) < CE'T(¢+ B),

then

d—1 %

2"y IF(G(z.¥)) = [2"] ) Gk—r(2)YIF'(G =, ))JrC’)(tE Mk—d+/

r=0



