
Stack-sorting:
A polynomial decision algorithm

Adeline Pierrot

LRI, Université Paris Sud

Séminaire de combinatoire Philippe Flajolet, october 2014

Joint work with Dominique Rossin, during my PHD at LIAFA

Outline

1. Introduction to stack sorting

2. Pushall sorting (tri par sas)

3. General sorting

Permutations and patterns

Permutation of size n : Order on [1..n]
Example : σ = 3 1 2 8 5 4 7 9 6

Pattern : extracted sub-structure (cf subword)
Example : 1 3 2 4 4 3 1 2 8 5 4 7 9 6 since 2 5 4 9 ≡ 1 3 2 4.

i

σi

Permutations and patterns

Permutation of size n : Order on [1..n]
Example : σ = 3 1 2 8 5 4 7 9 6

Pattern : extracted sub-structure (cf subword)
Example : 1 3 2 4 4 3 1 2 8 5 4 7 9 6 since 2 5 4 9 ≡ 1 3 2 4.

σi

Permutations and patterns

Permutation of size n : Order on [1..n]
Example : σ = 3 1 2 8 5 4 7 9 6

Pattern : extracted sub-structure (cf subword)
Example : 1 3 2 4 4 3 1 2 8 5 4 7 9 6 since 2 5 4 9 ≡ 1 3 2 4.

σi

Remark: σ, π as input, deciding whether π 4 σ is NP-complete.

Permutation Classes

Class of permutations: set downward closed for 4
Equivalently: σ ∈ C and π 4 σ ⇒ π ∈ C

Av(B): the class of perm. avoiding all the patterns in the set B.

Prop.: Every class C is characterized by its basis:

C = Av(B) for B = {σ /∈ C|∀π 4 σ with π 6= σ, π ∈ C}

Basis may be finite or infinite.

Permutation Classes

Class of permutations: set downward closed for 4
Equivalently: σ ∈ C and π 4 σ ⇒ π ∈ C

Av(B): the class of perm. avoiding all the patterns in the set B.

Prop.: Every class C is characterized by its basis:

C = Av(B) for B = {σ /∈ C|∀π 4 σ with π 6= σ, π ∈ C}

Basis may be finite or infinite.

Permutation Classes

Class of permutations: set downward closed for 4
Equivalently: σ ∈ C and π 4 σ ⇒ π ∈ C

Av(B): the class of perm. avoiding all the patterns in the set B.

Prop.: Every class C is characterized by its basis:

C = Av(B) for B = {σ /∈ C|∀π 4 σ with π 6= σ, π ∈ C}

Basis may be finite or infinite.

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4132

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4132

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

132

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

132

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4
1

32

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4
1

32

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1 32

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1 32

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1
3

2

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1
3

2

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1
3
2

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1
3
2

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1
3

2

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1
3

2

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1 32

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

4

1 32

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

41 32

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2413

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2413

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2

413

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2

413

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2
4

13

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2
4

13

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2
4
1 3

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2
4
1 3

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2
4

1 3

Stack sorting

Stack: last-in first-out device
introduced by Knuth (1968).

Definition: σ is sortable if ∃ a
sequence of moves m ∈ {ρ, µ}∗ s.t.
the output m(σ) is the identity.

ρµ
σ1 . . . σnoutput

Example:

44 11 33 22

4132 is sortable

2

2

4
4

11 3

2413 is not sortable

Sorting with one stack: a linear algorithm

Question: How to decide if σ is
sortable?

Find m ∈ {ρ, µ}∗ s.t. the output
m(σ) is the identity
|σ| = n ⇒ |m(σ)|ρ = |m(σ)|µ = n.

ρµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, µ}2n

→ exponential algorithm.

Key: At most one way to sort a permutation:
Do move µ if and only if the top of the stack is the next element
to be output.

→ A linear algorithm to test whether a permutation is sortable.

Sorting with one stack: a linear algorithm

Question: How to decide if σ is
sortable?

Find m ∈ {ρ, µ}∗ s.t. the output
m(σ) is the identity
|σ| = n ⇒ |m(σ)|ρ = |m(σ)|µ = n.

ρµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, µ}2n

→ exponential algorithm.

Key: At most one way to sort a permutation:
Do move µ if and only if the top of the stack is the next element
to be output.

→ A linear algorithm to test whether a permutation is sortable.

Sorting with one stack: a linear algorithm

Question: How to decide if σ is
sortable?

Find m ∈ {ρ, µ}∗ s.t. the output
m(σ) is the identity
|σ| = n ⇒ |m(σ)|ρ = |m(σ)|µ = n.

ρµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, µ}2n

→ exponential algorithm.

Key: At most one way to sort a permutation:
Do move µ if and only if the top of the stack is the next element
to be output.

→ A linear algorithm to test whether a permutation is sortable.

Sorting with one stack: a linear algorithm

Question: How to decide if σ is
sortable?

Find m ∈ {ρ, µ}∗ s.t. the output
m(σ) is the identity
|σ| = n ⇒ |m(σ)|ρ = |m(σ)|µ = n.

ρµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, µ}2n

→ exponential algorithm.

Key: At most one way to sort a permutation:
Do move µ if and only if the top of the stack is the next element
to be output.

→ A linear algorithm to test whether a permutation is sortable.

Sorting with one stack: a linear algorithm

Question: How to decide if σ is
sortable?

Find m ∈ {ρ, µ}∗ s.t. the output
m(σ) is the identity
|σ| = n ⇒ |m(σ)|ρ = |m(σ)|µ = n.

ρµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, µ}2n

→ exponential algorithm.

Key: At most one way to sort a permutation:
Do move µ if and only if the top of the stack is the next element
to be output.

→ A linear algorithm to test whether a permutation is sortable.

Sorting with one stack: a mathematical characterization

Question: How many sortable permutations of size n?

σ sortable ⇔ σ avoids 231

The set of permutations sortable with one stack: Av(231)
enumerated by Catalan numbers: cn = 1

n+1

(n
2n

)
≈ 4n << n! ≈ nn

Generalized by Tarjan, Pratt...

Sorting with one stack: a mathematical characterization

Question: How many sortable permutations of size n?

σ sortable ⇔ σ avoids 231

The set of permutations sortable with one stack: Av(231)
enumerated by Catalan numbers: cn = 1

n+1

(n
2n

)
≈ 4n << n! ≈ nn

Generalized by Tarjan, Pratt...

Sorting with one stack: a mathematical characterization

Question: How many sortable permutations of size n?

σ sortable ⇔ σ avoids 231

σ1 . . . σn

The set of permutations sortable with one stack: Av(231)
enumerated by Catalan numbers: cn = 1

n+1

(n
2n

)
≈ 4n << n! ≈ nn

Generalized by Tarjan, Pratt...

Sorting with one stack: a mathematical characterization

Question: How many sortable permutations of size n?

σ sortable ⇔ σ avoids 231

...2 ...3 ...1 ...

The set of permutations sortable with one stack: Av(231)
enumerated by Catalan numbers: cn = 1

n+1

(n
2n

)
≈ 4n << n! ≈ nn

Generalized by Tarjan, Pratt...

Sorting with one stack: a mathematical characterization

Question: How many sortable permutations of size n?

σ sortable ⇔ σ avoids 231

...2 ...3 ...1 ...

...
2
...
3

...1 ...

The set of permutations sortable with one stack: Av(231)
enumerated by Catalan numbers: cn = 1

n+1

(n
2n

)
≈ 4n << n! ≈ nn

Generalized by Tarjan, Pratt...

Sorting with one stack: a mathematical characterization

Question: How many sortable permutations of size n?

σ sortable ⇔ σ avoids 231

...2 ...3 ...1 ...

...
2
...
3

...1 ...

The set of permutations sortable with one stack: Av(231)
enumerated by Catalan numbers: cn = 1

n+1

(n
2n

)
≈ 4n << n! ≈ nn

Generalized by Tarjan, Pratt...

Sorting with one stack: a mathematical characterization

Question: How many sortable permutations of size n?

σ sortable ⇔ σ avoids 231

...2 ...3 ...1 ...

...
2
...
3

...1 ...

The set of permutations sortable with one stack: Av(231)
enumerated by Catalan numbers: cn = 1

n+1

(n
2n

)
≈ 4n << n! ≈ nn

Generalized by Tarjan, Pratt...

Natural questions for sorting devices

• Decision: what is the complexity of the problem consisting of
deciding whether a given permutation is sortable or not?

• Characterization: can one characterize permutations that are
sortable?

• Counting: how many sortable permutations of size n?

Sorting with two stacks in serie

Definition: σ is sortable if ∃ m
∈ {ρ, λ, µ}∗ s.t. the output m(σ)
is the identity (Knuth 1973).

Question: σ a given permutation, is
σ sortable with two stacks? HV

ρλµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, λ, µ}3n

s.t. |m(σ)|ρ = |m(σ)|λ = |m(σ)|µ = n

→ exponential algorithm (33n tests).

Is there a polynomial algorithm?

Conjectured NP-complete in the litterature
[Atkinson, Murphy, Ruskuc (2002)], [Bona (2003)], [Albert, Atkinson, Linton (2010)]

Sorting with two stacks in serie

Definition: σ is sortable if ∃ m
∈ {ρ, λ, µ}∗ s.t. the output m(σ)
is the identity (Knuth 1973).

Question: σ a given permutation, is
σ sortable with two stacks? HV

ρλµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, λ, µ}3n

s.t. |m(σ)|ρ = |m(σ)|λ = |m(σ)|µ = n

→ exponential algorithm (33n tests).

Is there a polynomial algorithm?

Conjectured NP-complete in the litterature
[Atkinson, Murphy, Ruskuc (2002)], [Bona (2003)], [Albert, Atkinson, Linton (2010)]

Sorting with two stacks in serie

Definition: σ is sortable if ∃ m
∈ {ρ, λ, µ}∗ s.t. the output m(σ)
is the identity (Knuth 1973).

Question: σ a given permutation, is
σ sortable with two stacks? HV

ρλµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, λ, µ}3n

s.t. |m(σ)|ρ = |m(σ)|λ = |m(σ)|µ = n

→ exponential algorithm (33n tests).

Is there a polynomial algorithm?

Conjectured NP-complete in the litterature
[Atkinson, Murphy, Ruskuc (2002)], [Bona (2003)], [Albert, Atkinson, Linton (2010)]

Sorting with two stacks in serie

Definition: σ is sortable if ∃ m
∈ {ρ, λ, µ}∗ s.t. the output m(σ)
is the identity (Knuth 1973).

Question: σ a given permutation, is
σ sortable with two stacks? HV

ρλµ
σ1 . . . σnoutput

Naive algorithm: Check if m(σ) is the identity ∀ m ∈ {ρ, λ, µ}3n

s.t. |m(σ)|ρ = |m(σ)|λ = |m(σ)|µ = n

→ exponential algorithm (33n tests).

Is there a polynomial algorithm?

Conjectured NP-complete in the litterature
[Atkinson, Murphy, Ruskuc (2002)], [Bona (2003)], [Albert, Atkinson, Linton (2010)]

A canonical way to sort?

• Non unique way to sort.

Example: moves µ and ρ commute.

• Canonical sorting?

HV

ρλµ
σ1 . . . σn

µ ⇔ top of V is the next element to be output.

Some permutations still have an exponential number of sortings:
n (n − 1) . . . 1 can be sorted in 2(n−1) differents ways.

No way to choose between move λ and move ρ

Several weaker variants have been studied:
Greedy algorithm (West 93), Increasing stacks (Murphy 02)...

A canonical way to sort?

• Non unique way to sort.

Example: moves µ and ρ commute.

• Canonical sorting?

HV

ρλµ
σ1 . . . σn

µ ⇔ top of V is the next element to be output.

Some permutations still have an exponential number of sortings:
n (n − 1) . . . 1 can be sorted in 2(n−1) differents ways.

No way to choose between move λ and move ρ

Several weaker variants have been studied:
Greedy algorithm (West 93), Increasing stacks (Murphy 02)...

A canonical way to sort?

• Non unique way to sort.

Example: moves µ and ρ commute.

• Canonical sorting? HV

ρλµ
σ1 . . . σn

µ ⇔ top of V is the next element to be output.

Some permutations still have an exponential number of sortings:
n (n − 1) . . . 1 can be sorted in 2(n−1) differents ways.

No way to choose between move λ and move ρ

Several weaker variants have been studied:
Greedy algorithm (West 93), Increasing stacks (Murphy 02)...

A canonical way to sort?

• Non unique way to sort.

Example: moves µ and ρ commute.

• Canonical sorting? HV

ρλµ
σ1 . . . σn

µ ⇔ top of V is the next element to be output.

Some permutations still have an exponential number of sortings:
n (n − 1) . . . 1 can be sorted in 2(n−1) differents ways.

No way to choose between move λ and move ρ

Several weaker variants have been studied:
Greedy algorithm (West 93), Increasing stacks (Murphy 02)...

A canonical way to sort?

• Non unique way to sort.

Example: moves µ and ρ commute.

• Canonical sorting? HV

ρλµ
σ1 . . . σn

µ ⇔ top of V is the next element to be output.

Some permutations still have an exponential number of sortings:
n (n − 1) . . . 1 can be sorted in 2(n−1) differents ways.

No way to choose between move λ and move ρ

Several weaker variants have been studied:
Greedy algorithm (West 93), Increasing stacks (Murphy 02)...

A canonical way to sort?

• Non unique way to sort.

Example: moves µ and ρ commute.

• Canonical sorting? HV

ρλµ
σ1 . . . σn

µ ⇔ top of V is the next element to be output.

Some permutations still have an exponential number of sortings:
n (n − 1) . . . 1 can be sorted in 2(n−1) differents ways.

No way to choose between move λ and move ρ

Several weaker variants have been studied:
Greedy algorithm (West 93), Increasing stacks (Murphy 02)...

A canonical way to sort?

• Non unique way to sort.

Example: moves µ and ρ commute.

• Canonical sorting? HV

ρλµ
σ1 . . . σn

µ ⇔ top of V is the next element to be output.

Some permutations still have an exponential number of sortings:
n (n − 1) . . . 1 can be sorted in 2(n−1) differents ways.

No way to choose between move λ and move ρ

Several weaker variants have been studied:
Greedy algorithm (West 93), Increasing stacks (Murphy 02)...

A permutation class

Let π ≺ σ (pattern)

sorting procedure for σ → sorting procedure for π

↪→ σ sortable and π ≺ σ ⇒ π sortable

↪→ sortable permutations form a class Av(B)

But B infinite and not characterised

length sortable unsortable basis

n ≤ 6 n! 0 0

7 5018 22 22

8 39374 946 51

9 336870 26010 146

10 3066695 562105 604

A permutation class

Let π ≺ σ (pattern)

sorting procedure for σ → sorting procedure for π

↪→ σ sortable and π ≺ σ ⇒ π sortable

↪→ sortable permutations form a class Av(B)

But B infinite and not characterised

length sortable unsortable basis

n ≤ 6 n! 0 0

7 5018 22 22

8 39374 946 51

9 336870 26010 146

10 3066695 562105 604

A permutation class

Let π ≺ σ (pattern)

sorting procedure for σ → sorting procedure for π

↪→ σ sortable and π ≺ σ ⇒ π sortable

↪→ sortable permutations form a class Av(B)

But B infinite and not characterised

length sortable unsortable basis

n ≤ 6 n! 0 0

7 5018 22 22

8 39374 946 51

9 336870 26010 146

10 3066695 562105 604

Decomposition

• σ = ⊕[π1, . . . , πn]

is sortable ⇔ ∀i , πi is sortable.

π1

π2

πn

π1. . .πn
xxx

s(π1). . .s(πn)

• σ = 	[π1, . . . , πn] is sortable ⇒ ∀i , πi is sortable.

π1

π2

πn

π1. . .πn
xxx

s(πn). . .s(π1)

Converse not true: πi has to admit a special sorting in 2 steps:

σ = 	[π1, . . . , πn] is sortable ⇔ ∀i < n, πi is pushall sortable and
πn is sortable.

Decomposition

• σ = ⊕[π1, . . . , πn] is sortable ⇔ ∀i , πi is sortable.

π1

π2

πn π1. . .πn
xxx

s(π1). . .s(πn)

• σ = 	[π1, . . . , πn] is sortable ⇒ ∀i , πi is sortable.

π1

π2

πn

π1. . .πn
xxx

s(πn). . .s(π1)

Converse not true: πi has to admit a special sorting in 2 steps:

σ = 	[π1, . . . , πn] is sortable ⇔ ∀i < n, πi is pushall sortable and
πn is sortable.

Decomposition

• σ = ⊕[π1, . . . , πn] is sortable ⇔ ∀i , πi is sortable.

π1

π2

πn π1. . .πn
xxx

s(π1). . .s(πn)

• σ = 	[π1, . . . , πn] is sortable ⇒ ∀i , πi is sortable.

π1

π2

πn

π1. . .πn
xxx

s(πn). . .s(π1)

Converse not true: πi has to admit a special sorting in 2 steps:

σ = 	[π1, . . . , πn] is sortable ⇔ ∀i < n, πi is pushall sortable and
πn is sortable.

Decomposition

• σ = ⊕[π1, . . . , πn] is sortable ⇔ ∀i , πi is sortable.

π1

π2

πn π1. . .πn
xxx

s(π1). . .s(πn)

• σ = 	[π1, . . . , πn] is sortable ⇒ ∀i , πi is sortable.

π1

π2

πn

π1. . .πn
xxx

s(πn). . .s(π1)

Converse not true: πi has to admit a special sorting in 2 steps:

σ = 	[π1, . . . , πn] is sortable ⇔ ∀i < n, πi is pushall sortable and
πn is sortable.

Decomposition

• σ = ⊕[π1, . . . , πn] is sortable ⇔ ∀i , πi is sortable.

π1

π2

πn π1. . .πn
xxx

s(π1). . .s(πn)

• σ = 	[π1, . . . , πn] is sortable ⇒ ∀i , πi is sortable.

π1

π2

πn

π1. . .πn
xxx

s(πn). . .s(π1)

Converse not true: πi has to admit a special sorting in 2 steps:

σ = 	[π1, . . . , πn] is sortable ⇔ ∀i < n, πi is pushall sortable and
πn is sortable.

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

2 4 1 3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

2

4 1 3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

2
4

1 3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

24

1 3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

24
1

3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

24
1
3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

24
1
3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

24
1
3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

24
13

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

24

1
3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

24

1

3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

2

4

1

3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

2

4

1

3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

2

4

1 3

Pushall sorting

HV

ρλµ
σ1 . . . σnsortie

A sorting in 2 parts : first one ∈ {ρ, λ}∗, second one ∈ {λ, µ}∗

Example : 2 4 1 3 is pushall sortable:

2 41 3

Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
→ 24

3 1

→ 2
1

4
3

→

24
3
1

→ 24
31

→ 4
3
2

1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔ configuration ⇔ valid coloring

→ Test in linear time whether a coloring is valid.
2n colorings to test → reduce this number.

Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
→ 24

3 1

→ 2
1

4
3

→

24
3
1

→ 24
31

→ 4
3
2

1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔ configuration ⇔ valid coloring

→ Test in linear time whether a coloring is valid.
2n colorings to test → reduce this number.

Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
→ 24

3 1

→ 2
1

4
3

→

24
3
1

→ 24
31

→ 4
3
2

1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔

total configuration

⇔ valid coloring

→ Test in linear time whether a coloring is valid.
2n colorings to test → reduce this number.

Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
→ 24

3 1

→ 2
1

4
3

→

24
3
1

→ 24
31

→ 4
3
2

1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔ valid configuration

⇔ valid coloring

→ Test in linear time whether a coloring is valid.
2n colorings to test → reduce this number.

Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
→ 24

3 1

→ 2
1

4
3

→

24
3
1

→ 24
31

→ 4
3
2

1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔ valid configuration

⇔ valid coloring

→ Test in linear time whether a coloring is valid.
2n colorings to test → reduce this number.

Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
→ 24

3 1

→ 2
1

4
3

→

24
3
1

→ 24
31

→ 4
3
2

1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔ valid configuration ⇔ valid coloring

→ Test in linear time whether a coloring is valid.
2n colorings to test → reduce this number.

Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
→ 24

3 1

→ 2
1

4
3

→

24
3
1

→ 24
31

→ 4
3
2

1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔ valid configuration ⇔ valid coloring

→ Test in linear time whether a coloring is valid.

2n colorings to test → reduce this number.

Encoding a pushall sorting

2 4 3 1 → 2 4 3 1
→ 2

4 3 1
→ 24 3 1

→ 2
3

4 1
→ 24

3 1

→ 2
1

4
3

→

24
3
1

→ 24
31

→ 4
3
2

1
→ 4

31 2
→ 41 2 3

→ 1 2 3 4

m

2 4 3 1 (1 stack-sorting) → 2
1

4
3

→ (1 stack-sorting) 1 2 3 4

m
2 4 3 1

Pushall sorting process ⇔ valid configuration ⇔ valid coloring

→ Test in linear time whether a coloring is valid.
2n colorings to test → reduce this number.

Valid coloring: characterization

Valid coloring: coloring of σ with two colors G and R s.t.

• no pattern 132 in R

• no pattern 213 in G

• no point of R lying vertically between a pattern 12 of G

• no point of G lying horizontally between a pattern 12 of R

⇒ coloring with forbidden patterns 132, 213, 1X2 and 2/13

Proof: R = right stack and G = left stack ⇒ bijection between
these colorings and valid stack-configurations.

Valid coloring: characterization

Valid coloring: coloring of σ with two colors G and R s.t.

• no pattern 132 in R

• no pattern 213 in G

• no point of R lying vertically between a pattern 12 of G

• no point of G lying horizontally between a pattern 12 of R

⇒ coloring with forbidden patterns 132, 213, 1X2 and 2/13

Proof: R = right stack and G = left stack ⇒ bijection between
these colorings and valid stack-configurations.

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

132

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

1
3
2

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

213

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

2
1
3

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

3
1
2

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

1X2

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

X2

1

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

X2

1

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

2

1 X

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

1 X
2

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

1 X
2

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

21 3

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

123

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

1 32

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Proof

Sortable stack-configuration ⇔ avoids
2
1 ,

2
3
1 and 2

3
1

Recall: Forbidden colored patterns = 132, 213, 1X2 and 2/13.
Correspondence between stack-patterns and colored patterns.

• If the coloring comes from a sorting process, then it avoids the
colored patterns:

1
3

2

• If the coloring avoids the colored patterns, then we obtain a
sorting process (no choice to put the elements of R in the
right stack and thoses of G in the left stack in the right order).

Decomposition

Forbidden colored patterns:

Col(σ) = the set of valid colorings of σ

]Col(n (n−1) . . . 1) = 2n

	[π1, . . . , πk] =
π1

π2

πk

Example : 	[1, . . . , 1] = n (n−1) . . . 1

Theorem
σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)

Decomposition

Forbidden colored patterns:

Col(σ) = the set of valid colorings of σ

]Col(n (n−1) . . . 1) = 2n

	[π1, . . . , πk] =
π1

π2

πk

Example : 	[1, . . . , 1] = n (n−1) . . . 1

Theorem
σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)

Restrict the number of bicolorings to test

Add hypothesis
to ensure a polynomial number of bicolorings to test.

• Assume σ is 	-indecomposable.
Otherwise σ = 	[π1 . . . πn] with πi 	-indecomposable
σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)
So replace σ by the πi .

• Separate distinct cases:
Each pattern 12 is unicolor
There are patterns 12 but no pattern 12
There are patterns 12 but no pattern 12
There are patterns 12 and patterns 12.

Restrict the number of bicolorings to test

Add hypothesis
to ensure a polynomial number of bicolorings to test.

• Assume σ is 	-indecomposable.
Otherwise σ = 	[π1 . . . πn] with πi 	-indecomposable
σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)
So replace σ by the πi .

• Separate distinct cases:
Each pattern 12 is unicolor
There are patterns 12 but no pattern 12
There are patterns 12 but no pattern 12
There are patterns 12 and patterns 12.

Restrict the number of bicolorings to test

Add hypothesis
to ensure a polynomial number of bicolorings to test.

• Assume σ is 	-indecomposable.
Otherwise σ = 	[π1 . . . πn] with πi 	-indecomposable
σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)
So replace σ by the πi .

• Separate distinct cases:
Each pattern 12 is unicolor
There are patterns 12 but no pattern 12
There are patterns 12 but no pattern 12
There are patterns 12 and patterns 12.

Forbidden colored patterns ⇒ implication rules

∅

(i) ∅(ii)

(iii) (iv)

∅
(v)

∅

(vi)

(vii) (viii)

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

σi

σj

Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

∅

σi

σj

Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

∅

σi

σj

A
Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

∅

σi

σj

σk
Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

∅

σi

σj

σk
Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color,

then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

∅

σi

σj

σk
Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color,

then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

∅

σi

σj

σk
Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

First case: Each pattern 12 is unicolor

Proposition: σ 	-indecomposable and C a right coloring of σ
where each pattern 12 is unicolor ⇒ C is unicolor.

Proof : Left-to-right minima of σ are unicolor.

∅

σi

σj

σk
Let σi and σj consecutive left-to-right minima of σ.

Zone A is non-empty as σ is 	-indecomposable.

Let σk in this zone and c its color, then σi and σj
also have color c.

Consequence: We just have to check the 2 unicolor colorings
(all points in R or all points in G).

Other cases

• There are patterns 12 but no pattern 12: Position of the
down-rightmost pattern 12 determines all colors:

∅

∅ ∅
∅ σj

σi

Moreover, knowing the position of σi is sufficient to recover
σj and determine all colors.

• Similar results for the other cases.

Other cases

• There are patterns 12 but no pattern 12: Position of the
down-rightmost pattern 12 determines all colors:

∅

∅ ∅
∅ σj

σi

Moreover, knowing the position of σi is sufficient to recover
σj and determine all colors.

• Similar results for the other cases.

Other cases

• There are patterns 12 but no pattern 12: Position of the
down-rightmost pattern 12 determines all colors:

∅

∅ ∅
∅ σj

σi

Moreover, knowing the position of σi is sufficient to recover
σj and determine all colors.

• Similar results for the other cases.

8 kinds of colorings for σ 	-indecomposable

Theorem : c valid coloring of σ ⇒ ∃m, p s.t. c = Cm(p).

C1 C2

j

i
a

b

C3

i

j a

b

1

2 ∗
C4

i

j

k

`

C5

i

j

k

`

C6

i

j

k

`

C7

i

j

k

`

A

B

∗

C8

Quadratic algorithm

Algorithm :

Input: σ 	-indecomposable.
Output: All valid colorings of σ:

For i from 1 to 8
For p from 1 to n = |σ|

Test if Ci (p) is a valid coloring of σ

Complexity :

Test if a coloring is valid = linear

σ 	-indecomposable ⇒ |Col(σ)| ≤ 8|σ| computed in O(|σ|2)

σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)

→ Col(σ) described by
(
Col(π1), . . . ,Col(πk)

)
→ computed in quadratic time: 8|π1|2 + · · ·+ 8|πk |2 ≤ 8|σ|2.

Quadratic algorithm

Algorithm :

Input: σ 	-indecomposable.
Output: All valid colorings of σ:

For i from 1 to 8
For p from 1 to n = |σ|

Test if Ci (p) is a valid coloring of σ

Complexity :

Test if a coloring is valid = linear

σ 	-indecomposable ⇒ |Col(σ)| ≤ 8|σ| computed in O(|σ|2)

σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)

→ Col(σ) described by
(
Col(π1), . . . ,Col(πk)

)
→ computed in quadratic time: 8|π1|2 + · · ·+ 8|πk |2 ≤ 8|σ|2.

Quadratic algorithm

Algorithm :

Input: σ 	-indecomposable.
Output: All valid colorings of σ:

For i from 1 to 8
For p from 1 to n = |σ|

Test if Ci (p) is a valid coloring of σ

Complexity :

Test if a coloring is valid = linear

σ 	-indecomposable ⇒ |Col(σ)| ≤ 8|σ| computed in O(|σ|2)

σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)

→ Col(σ) described by
(
Col(π1), . . . ,Col(πk)

)
→ computed in quadratic time: 8|π1|2 + · · ·+ 8|πk |2 ≤ 8|σ|2.

Quadratic algorithm

Algorithm :

Input: σ 	-indecomposable.
Output: All valid colorings of σ:

For i from 1 to 8
For p from 1 to n = |σ|

Test if Ci (p) is a valid coloring of σ

Complexity :

Test if a coloring is valid = linear

σ 	-indecomposable ⇒ |Col(σ)| ≤ 8|σ| computed in O(|σ|2)

σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)

→ Col(σ) described by
(
Col(π1), . . . ,Col(πk)

)

→ computed in quadratic time: 8|π1|2 + · · ·+ 8|πk |2 ≤ 8|σ|2.

Quadratic algorithm

Algorithm :

Input: σ 	-indecomposable.
Output: All valid colorings of σ:

For i from 1 to 8
For p from 1 to n = |σ|

Test if Ci (p) is a valid coloring of σ

Complexity :

Test if a coloring is valid = linear

σ 	-indecomposable ⇒ |Col(σ)| ≤ 8|σ| computed in O(|σ|2)

σ = 	[π1, . . . , πk]⇒ Col(σ) ≈ Col(π1)× · · · × Col(πk)

→ Col(σ) described by
(
Col(π1), . . . ,Col(πk)

)
→ computed in quadratic time: 8|π1|2 + · · ·+ 8|πk |2 ≤ 8|σ|2.

Outline

1. Introduction to stack sorting

2. Pushall sorting (tri par sas)

3. General sorting

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks = total for σ(i)

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks = total for σ(i)

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks = total for σ(i)

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks = total for σ(i)

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks = total for σ(i)

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear.

Exponentiel number of tests?

From pushall sorting to general sorting

σki = right-left minima of σ

Configuration when σki enters the stacks = total for σ(i)

σk1

σki

σki+1

σk`

∅

σ(i) = {σj | j < ki et σj > σki}

σ sortable ⇒ σ(i) push-all sortable ∀i

The push-all sortings of the σ(i)

must be compatibles

Recursive algorithm

Compatibility test = linear. Exponentiel number of tests?

Reduce the number of tests

σki

σki+1

σ(i)

σ(i+1)

Col(σ(i)) ≈
Col(B

(i)
1)× · · · × Col(B

(i)
k)

It is enough to test compatibility on
B(i) and D(i+1)

→ linear number of tests

Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph

Reduce the number of tests

σki

σki+1

B(i)

σ(i)

σ(i+1)

Col(σ(i)) ≈
Col(B

(i)
1)× · · · × Col(B

(i)
k)

It is enough to test compatibility on
B(i) and D(i+1)

→ linear number of tests

Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph

Reduce the number of tests

σki

σki+1

D(i+1)

σ(i)

σ(i+1)

Col(σ(i)) ≈
Col(B

(i)
1)× · · · × Col(B

(i)
k)

It is enough to test compatibility on
B(i) and D(i+1)

→ linear number of tests

Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph

Reduce the number of tests

σki

σki+1

D(i+1)

B(i)

σ(i)

σ(i+1)

Col(σ(i)) ≈
Col(B

(i)
1)× · · · × Col(B

(i)
k)

It is enough to test compatibility on
B(i) and D(i+1)

→ linear number of tests

Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph

Reduce the number of tests

σki

σki+1

D(i+1)

B(i)

σ(i)

σ(i+1)

Col(σ(i)) ≈
Col(B

(i)
1)× · · · × Col(B

(i)
k)

It is enough to test compatibility on
B(i) and D(i+1)

→ linear number of tests

Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph

Reduce the number of tests

σki

σki+1

D(i+1)

B(i)

σ(i)

σ(i+1)

Col(σ(i)) ≈
Col(B

(i)
1)× · · · × Col(B

(i)
k)

It is enough to test compatibility on
B(i) and D(i+1)

→ linear number of tests

Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph

Reduce the number of tests

σki

σki+1

C (i+1)

D(i+1)

B(i)

σ(i)

σ(i+1)

Col(σ(i)) ≈
Col(B

(i)
1)× · · · × Col(B

(i)
k)

It is enough to test compatibility on
B(i) and D(i+1)

→ linear number of tests

Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph

Reduce the number of tests

σki

σki+1

C (i+1)

D(i+1)

B(i)

σ(i)

σ(i+1)

Col(σ(i)) ≈
Col(B

(i)
1)× · · · × Col(B

(i)
k)

It is enough to test compatibility on
B(i) and D(i+1)

→ linear number of tests

Configurations of C (i+1) linked to
those of D(i+1)

→ sorting graph

Sorting graph for σ(i)

σ(i) = 	[B1,B2, . . .Bs]

Stack configurations of B3

Stack configurations of B2

Stack configurations of B1

Links between compatibles stack configurations

→ a path gives a valid stack configuration of σ(i) which is a part
of a sorting procedure of σ1 . . . σki .

Algorithm

σ = . . . σk1 . . . σk2 . . . σk` (σki = right-to-left minima of σ)

At step i , the algorithm returns false if σ1 . . . σki is not 2-stack
sortable.

Otherwise it computes the sorting graph of σ(i) describing all the
possible stack configurations when σki enters the stacks in a
sorting procedure of σ verifying some conditions.

Sorting graph of σ(i) computed from the one of σ(i−1) by checking
compatibility between configurations.

Conclusion

Polynomial decision algorithm for 2 stacks in series

• New notion: push-all sorting

• Characterization through bicolorings with excluded patterns

• Optimal quadratic algorithm to compute all push-all sortings

• Decomposition along right-left minima

• One gets all sortings satisfying a property P.

Perspectives

• Simplify the algorithm?

• Characterize the permutations sortable with 2 stacks in series?
Enumeration?

• Enumerate the push-all sortable permutations?

• Complexity of the decision algorithm for k stacks in series:

• Generalize to more than 2 stacks?
• For fixed k , is the problem still polynomial? Is there a

threshold?

Thank you for your attention

Perspectives

• Simplify the algorithm?

• Characterize the permutations sortable with 2 stacks in series?
Enumeration?

• Enumerate the push-all sortable permutations?

• Complexity of the decision algorithm for k stacks in series:

• Generalize to more than 2 stacks?
• For fixed k , is the problem still polynomial? Is there a

threshold?

Thank you for your attention

Perspectives

• Simplify the algorithm?

• Characterize the permutations sortable with 2 stacks in series?
Enumeration?

• Enumerate the push-all sortable permutations?

• Complexity of the decision algorithm for k stacks in series:

• Generalize to more than 2 stacks?
• For fixed k , is the problem still polynomial? Is there a

threshold?

Thank you for your attention

Perspectives

• Simplify the algorithm?

• Characterize the permutations sortable with 2 stacks in series?
Enumeration?

• Enumerate the push-all sortable permutations?

• Complexity of the decision algorithm for k stacks in series:

• Generalize to more than 2 stacks?
• For fixed k, is the problem still polynomial? Is there a

threshold?

Thank you for your attention

Perspectives

• Simplify the algorithm?

• Characterize the permutations sortable with 2 stacks in series?
Enumeration?

• Enumerate the push-all sortable permutations?

• Complexity of the decision algorithm for k stacks in series:

• Generalize to more than 2 stacks?

• For fixed k, is the problem still polynomial? Is there a
threshold?

Thank you for your attention

Perspectives

• Simplify the algorithm?

• Characterize the permutations sortable with 2 stacks in series?
Enumeration?

• Enumerate the push-all sortable permutations?

• Complexity of the decision algorithm for k stacks in series:

• Generalize to more than 2 stacks?
• For fixed k , is the problem still polynomial? Is there a

threshold?

Thank you for your attention

Perspectives

• Simplify the algorithm?

• Characterize the permutations sortable with 2 stacks in series?
Enumeration?

• Enumerate the push-all sortable permutations?

• Complexity of the decision algorithm for k stacks in series:

• Generalize to more than 2 stacks?
• For fixed k , is the problem still polynomial? Is there a

threshold?

Thank you for your attention

