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Noriyoshi Sukegawa, Tokyo U. of Science



Outline of the lecture

1) Questions on lattice polytopes that arise from

• Linear optimization,

• Combinatorics,

• Physics.

2) Results on the diameter of lattice polytopes and lattice zonotopes

3) Results on the number of vertices of primitive zonotopes

4) The number of the d-dimensional lattice polytopes contained in [0, k]d

5) A graph structure on the set of lattice polytopes



Reasons to study lattice polytopes

The d-dimensional unit cube [0, 1]d is already an
interesting lattice polytope.

d #T #T/sym #S

2 2 1 2
3 74 6 5
4 92 487 256 247 451 16
5 ? ? 67
6 ? ? 308
7 ? ? 1 493
8 ? ? ?

#T: number of triangulations of [0, 1]d (A238820/A238821)

#S: simplexity of [0, 1]d (A019503)

De Loera, 1996
P, 2013
Mara, 1976
Cottle, 1982
Hughes, 1993
Hughes-Anderson, 1996



Questions on lattice polytopes: number

The d-dimensional unit cube [0, 1]d is already an
interesting lattice polytope.

d #P #P/sym

2 5 2
3 151 12
4 60 879 347
5 4 292 660 729 1 226 525
6 18 446 743 888 401 503 325 ?
8 ? ?

#P: number of d-dimensional lattice polytopes in [0, 1]d (A105230)
#P/sym: same as #P, but up to symmetry (A105231)

Aichholzer, 2000 (232 − 2 306 567)
P, Rakotonarivo 2019 (264 − 185 308 048 291)

Theorem: lim
d→∞

#P

22d
= 1.



Questions on lattice polytopes: vertices

Question: what is the largest number of vertices of a con-
vex lattice polygon contained in the square [0, k]2?

Question: what is the largest number of vertices φ(d , k)
of a lattice polytope contained in the hypercube [0, k]d?

φ(2, 4) = 9

Theorem (Thiele, 1991, Acketa-Žunić 1995): lim
k→∞

φ(2, k)

k2/3
=

12

(2π)2/3
.

Theorem (Bárány-Larman, 1998): the number of vertices of the convex hull
of all the lattice points in a d-dimensional ball of diameter k satisfies

c1(d)kd
d−1
d+1 ≤ #vertices ≤ c2(d)kd

d−1
d+1

The diameter of a polygon with v vertices is bv/2c. When d > 2, what
about looking at the diameter of lattice polytopes instead?



Questions on lattice polytopes: diameter

Question: what is the largest possible diameter δ(d , k) of a lattice polytope
contained in the hypercube [0, k]d?

Linear Optimization: find a point x in Rd such that

Ax ≤ b,

where b ∈ Rd and A is a n×d matrix.

The set P of the points x is a polyhedron and, if bounded, a polytope.

Simplex method: the point x ∈ P we search for is such that cx is maximal
for some row vector c . That method finds a path in the edge-graph of P.

The diameter of (the edge-graph of) P, δ(P), is a lower bound on the
number of pivots of the simplex method.



Largest possible diameter

Question: what is the largest possible diameter δ(d , k) of a lattice polytope
contained in the hypercube [0, k]d?

Theorem (Naddef, 1989): δ(d , 1) = d .

Theorem (Thiele, 1991, Acketa-Žunić 1995): lim
k→∞

δ(2, k)

k2/3
=

6

(2π)2/3
.

Theorem (Kleinschmid-Onn, 1992): δ(d , k) ≤ kd .

Theorem (Del Pia-Michini, 2016): if k ≥ 2, then δ(d , k) ≤ kd −
⌈
d

2

⌉
.

Theorem (Deza-P, 2018): if k ≥ 3, then δ(d , k) ≤ kd −
⌈

2

3
d

⌉
− (k − 3).



Largest possible diameter

k
1 2 3 4 5 6 7 8 9 10

d

2 2 3 4 4 5 6 6 7 8 · · ·
3 3 4 6 7 9 10
4 4 6 8
5 5 7 10
...

...
...

d d
⌊

3
2d
⌋

↑
All the known values of δ(d , k)

Naddef, 1989 δ(d , 1) = d
Thiele, 1991, Acketa-Žunić 1995, Deza-Manoussakis-Onn, 2018
Del Pia-Michini, 2016 δ(d , 2) = b3d/2c
Deza-P, 2018 δ(4, 3) = 8
Chadder-Deza, 2017 δ(3, 4) = 7, δ(3, 5) = 9
Deza-Deza-Guan-P, 2019 δ(3, 6) = δ(5, 3) = 10
P-Rakotonarivo, 2019

↑
Two of the nine (up
to symmetry) lattice
polytopes of diame-
ter 6 contained in the
cube [0, 3]3... among
332 335 207 073.



Largest possible diameter

k
1 2 3 4 5 6 7 8 9 10

d

2 2 3 4 4 5 6 6 7 8 · · ·
3 3 4 6 7 9 10
4 4 6 8
5 5 7 10
...

...
...

d d
⌊

3
2d
⌋

Theorem (Deza-Manoussakis-Onn, 2018): if k < 2d , then

δ(d , k) ≥
⌊

(k + 1)d

2

⌋
Conjecture (Deza-Manoussakis-Onn, 2018): this is sharp when k < 2d . In
general, δ(d , k) is achieved by a lattice zonotope contained in [0, k]d .



Primitive zonotopes (Deza, Manoussakis, Onn, 2018)

Primitive point

Non-primitive point

0

The ball Bq(d ; p)

² of dimension d ,

² radius p,

² for the q-norm.

0

Bq(d ; p)

Hq(d ; p)

, whose first
primitive points in

non-zero coordinate

is positive.

generators of

Hq(d ; p)

+ + +

=

contained, up to
translation in [0; k]d



Primitive zonotopes (Deza, Manoussakis, Onn, 2018)

The Minkowski sum of the generators
of Hq(d , p) contained in [0,+∞[d is
another family of primitive zonotopes,
denote by H+

q (d , p).

H1(d , 2) is the type B permutohedron:

• 2dd! vertices,

• diameter d2,

• contained (up to translation) in
the hypercube [0, 2d − 1]d .

Theorem (Deza-Manoussakis-Onn): δ(d , k) ≥
⌊

(k + 1)d

2

⌋
when k < 2d .



Asymptotic diameter

Theorem (Thiele, 1991, Acketa-Žunić 1995): lim
k→∞

δ(2, k)

k2/3
=

6

(2π)2/3
.

But, when d > 2 and k grows large,

?? ≤ δ(d , k) ≤ k(d − 1) (minus a term that does not depend on k).

Call δZ (d , k) the largest possible diameter of a lattice zonotope in [0, k]d .

Theorem (Deza-P-Sukegawa, 2019): For any fixed d ,

lim
k→∞

δZ (d , k)

k
d

d+1

=

(
2d−1(d + 1)d

d!ζ(d)

) 1
d+1

Corollary (Deza-P-Sukegawa, 2019): For any fixed d ,

δ(d , k) ≥
(

2d−1kd(d + 1)d

d!ζ(d)

) 1
d+1

+ o(k
d

d+1 ).



Asymptotic diameter

Theorem (Deza-P-Sukegawa, 2019):

lim
p→∞

δ(Hq(d , p))

pd
=

(
2Γ
(

1
q + 1

))d
2Γ
(
d
q + 1

)
ζ(d)

lim
p→∞

δ
(
H+
q (d , p)

)
pd

=
Γ
(

1
q + 1

)d
Γ
(
d
q + 1

)
ζ(d)

vol(Bq(d , p)) =

(
2Γ
(

1
q + 1

)
p
)d

2Γ
(
d
q + 1

) and lim
p→∞

#PP in Bq(d , p)

vol(Bq(d , p))
=

1

ζ(d)
.

Theorem (Deza-P-Sukegawa, 2019): Consider an integer p, and the smallest
possible integer k such that H1(d , p) is contained in the hypercube [0, k]d ,
up to translation. The largest diameter of a lattice zonotope contained in
[0, k]d is uniquely achieved by H1(d , p).



Lattice polytopes in theoretical physics

Theoretical physicists are interested in the number a(d) of
generalized retarded functions.

a(d) is the number of regions in the arrangement formed
by the 2d − 1 hyperplanes normal to 0, 1-vectors.

(1,0)

(0,1)

(1,1)

Theorem (Billera et al., 2012):
d−1∏
i=0

(
2i + 1

)
≤ a(d) < 2d

2
.

However, by duality, a+(d) = f0(H+
∞(d , 1))

Theorem (Deza-P-Rakotonarivo, 2019): if d ≥ 3,

6
d−2∏
i=1

(
2i+1 + i

)
≤ a(d) ≤ 2(d + 4)2(d−1)(d−2).

d a(d)

1 2
2 6
3 32
4 370
5 11 292
6 1 066 044
7 347 326 352
8 419 172 756 930
9 ?



What about H∞(d , 1)?

The number of vertices of H∞(d , p) turns up in combinatorial optimization:
it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): d!2d ≤ f0(H∞(d , 1)) < O(3d(d−1)).

Theorem (Deza-P-Rakotonarivo, 2019):
d−1∏
i=0

(
3i + 1

)
≤ f0(H∞(d , 1)) < 2(3d−1 + 1)d−1.

H∞(d , 1)∩M = H∞(d − 1, 1) +P for
some polytope P. There are 3d−1 + 1
possible heights for M.

As f0(P + Q) ≥ f0(Q),

f0(H∞(d , 1))

f0(H∞(d − 1, 1))
≥ 3d−1 + 1.
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A graph on lattice polytopes

Say a lattice pentagon P and a lattice hexagon H can be transformed into
one another by a move when all the vertices of P are vertices of H.

Question: can any lattice pentagon or hexagon be transformed into any
other lattice pentagon or hexagon by such moves?

Theorem (David-P-Rakotonarivo, 2018): yes!

If one restricts to the pentagons and hexagons contained in
a convex polyhedral region, then the answer is no, even for a
“large” (unbounded) region like R×[0,+∞[.



A graph on lattice polytopes

General case: two lattice polytopes P and Q can be transformed into one
another by an elementary move when they both have the same dimension
and their vertex sets differ by exactly one vertex.

General question: can any d-dimensional lattice polytope be transformed
into any other by a sequence of moves? In other words, is the graph Λ(d)
whose vertices are the d-dimensional lattice polytopes and whose edges are
the elementary moves connected?

What was false for pentagons and hexagons (connectedness inside a box)
is true for polytopes of any fixed dimension d whith d + 1 and d + 2
vertices. In particular it is true for triangles and quadrilaterals!

Theorem (David-P-Rakotonarivo, 2018): for any positive k , the subgraph
induced in Λ(d) by the simplices and the polytopes with d + 2 vertices
contained in the hypercube [0, k]d is connected

Corollary (David-P-Rakotonarivo, 2018): Λ(d) is connected.



A graph on lattice polytopes

In fact, the subgraph induced in Λ(2) by the polygons with n and (n + 1)
vertices is always disconnected, except when n = 3 or n = 5.

Theorem (David-P-Rakotonarivo, 2018): for any d ≥ 4, there exist lattice
polytopes P whose number n of vertices can be arbitrarily large such that P
cannot be transformed into any lattice polytope with n + 1 vertices.

Question: When d = 3, are there such polytopes with n arbitrarily large?

Question: What are the values of d ≥ 3 and n such that the subgraph
induced in Λ(d) by the polytopes with n and n + 1 vertices is connected?


