Geometric and combinatorial questions

on lattice polytopes

Lionel Pournin, Université Paris 13
based on joint work with
Antoine Deza, McMaster University Rado Rakotonarivo, Université Paris 13 Noriyoshi Sukegawa, Tokyo U. of Science

Outline of the lecture

1) Questions on lattice polytopes that arise from

- Linear optimization,
- Combinatorics,
- Physics.

2) Results on the diameter of lattice polytopes and lattice zonotopes
3) Results on the number of vertices of primitive zonotopes
4) The number of the d-dimensional lattice polytopes contained in $[0, k]^{d}$
5) A graph structure on the set of lattice polytopes

Reasons to study lattice polytopes

The d-dimensional unit cube $[0,1]^{d}$ is already an interesting lattice polytope.

d	\#T	\#T/sym	\#S
2	2	1	2
3	74	6	5
4	92487256	247451	16
5	$?$	$?$	67
6	$?$	$?$	308
7	$?$	$?$	1493
8	$?$	$?$	$?$

\#T: number of triangulations of $[0,1]^{d}$ (A238820/A238821)
\#S: simplexity of $[0,1]^{d}$ (A019503)
De Loera, 1996
P, 2013
Mara, 1976
Cottle, 1982
Hughes, 1993
Hughes-Anderson, 1996

Questions on lattice polytopes: number

The d-dimensional unit cube $[0,1]^{d}$ is already an interesting lattice polytope.

d	\#P	\#P/sym
2	5	2
3	151	12
4	60879	347
5	4292660729	1226525
6	18446743888401503325	?
8	?	?
\#P: number of d-dimensional lattice polytopes in $[0,1]^{d}$ (A105230) \#P/sym: same as \#P, but up to symmetry (A105231)		
Aichholzer, $2000\left(2^{32}-2306567\right)$ P, Rakotonarivo 2019 ($2^{64}-185308048$ 291)		

Theorem: $\lim _{d \rightarrow \infty} \frac{\# P}{2^{2^{d}}}=1$.

Questions on lattice polytopes: vertices

Question: what is the largest number of vertices of a convex lattice polygon contained in the square $[0, k]^{2}$?

Question: what is the largest number of vertices $\phi(d, k)$ of a lattice polytope contained in the hypercube $[0, k]^{d}$?

$$
\phi(2,4)=9
$$

Theorem (Thiele, 1991, Acketa-Žunić 1995): $\lim _{k \rightarrow \infty} \frac{\phi(2, k)}{k^{2 / 3}}=\frac{12}{(2 \pi)^{2 / 3}}$.
Theorem (Bárány-Larman, 1998): the number of vertices of the convex hull of all the lattice points in a d-dimensional ball of diameter k satisfies

$$
c_{1}(d) k^{d \frac{d-1}{d+1}} \leq \# \text { vertices } \leq c_{2}(d) k^{d \frac{d-1}{d+1}}
$$

The diameter of a polygon with v vertices is $\lfloor v / 2\rfloor$. When $d>2$, what about looking at the diameter of lattice polytopes instead?

Questions on lattice polytopes: diameter

Question: what is the largest possible diameter $\delta(d, k)$ of a lattice polytope contained in the hypercube $[0, k]^{d}$?

Linear Optimization: find a point x in \mathbb{R}^{d} such that

$$
A x \leq b,
$$

where $b \in \mathbb{R}^{d}$ and A is a $n \times d$ matrix.

The set P of the points x is a polyhedron and, if bounded, a polytope. Simplex method: the point $x \in P$ we search for is such that $c x$ is maximal for some row vector c. That method finds a path in the edge-graph of P.

The diameter of (the edge-graph of) $P, \delta(P)$, is a lower bound on the number of pivots of the simplex method.

Largest possible diameter

Question: what is the largest possible diameter $\delta(d, k)$ of a lattice polytope contained in the hypercube $[0, k]^{d}$?

Theorem (Naddef, 1989): $\delta(d, 1)=d$.
Theorem (Thiele, 1991, Acketa-Žunić 1995): $\lim _{k \rightarrow \infty} \frac{\delta(2, k)}{k^{2 / 3}}=\frac{6}{(2 \pi)^{2 / 3}}$.
Theorem (Kleinschmid-Onn, 1992): $\delta(d, k) \leq k d$.

Theorem (Del Pia-Michini, 2016): if $k \geq 2$, then $\delta(d, k) \leq k d-\left\lceil\frac{d}{2}\right\rceil$.

Theorem (Deza-P, 2018): if $k \geq 3$, then $\delta(d, k) \leq k d-\left\lceil\frac{2}{3} d\right\rceil-(k-3)$.

Largest possible diameter

	k									
	1	2	3	4	5	6	7	8	9	10
2	2	3	4	4	5	6	6	7	8	\cdots
3	3	4	6	7	9	10				
4	4	6	8							
5	5	7	10							
\vdots	\vdots	\vdots								
d	d	$\left\lfloor\frac{3}{2} d\right\rfloor$								

\uparrow
All the known values of $\delta(d, k)$

Naddef, 1989
Thiele, 1991, Acketa-Žunić 1995, Deza-Manoussakis-Onn, 2018
Del Pia-Michini, 2016
Deza-P, 2018
Chadder-Deza, 2017
Deza-Deza-Guan-P, 2019
P-Rakotonarivo, 2019

\uparrow
Two of the nine (up to symmetry) lattice polytopes of diameter 6 contained in the cube $[0,3]^{3} \ldots$ among 332335207073.

Largest possible diameter

Theorem (Deza-Manoussakis-Onn, 2018): if $k<2 d$, then

$$
\delta(d, k) \geq\left\lfloor\frac{(k+1) d}{2}\right\rfloor
$$

Conjecture (Deza-Manoussakis-Onn, 2018): this is sharp when $k<2 d$. In general, $\delta(d, k)$ is achieved by a lattice zonotope contained in $[0, k]^{d}$.

Primitive zonotopes (Deza, Manoussakis, Onn, 2018)

Primitive zonotopes (Deza, Manoussakis, Onn, 2018)

The Minkowski sum of the generators of $H_{q}(d, p)$ contained in $\left[0,+\infty\left[^{d}\right.\right.$ is another family of primitive zonotopes, denote by $H_{q}^{+}(d, p)$.
$H_{1}(d, 2)$ is the type B permutohedron:

- $2^{d} d!$ vertices,
- diameter d^{2},
- contained (up to translation) in the hypercube $[0,2 d-1]^{d}$.

Theorem (Deza-Manoussakis-Onn): $\delta(d, k) \geq\left\lfloor\frac{(k+1) d}{2}\right\rfloor$ when $k<2 d$.

Asymptotic diameter

Theorem (Thiele, 1991, Acketa-Žunić 1995): $\lim _{k \rightarrow \infty} \frac{\delta(2, k)}{k^{2 / 3}}=\frac{6}{(2 \pi)^{2 / 3}}$.
But, when $d>2$ and k grows large,

$$
? ? \leq \delta(d, k) \leq k(d-1) \text { (minus a term that does not depend on } k) .
$$

Call $\delta_{Z}(d, k)$ the largest possible diameter of a lattice zonotope in $[0, k]^{d}$.
Theorem (Deza-P-Sukegawa, 2019): For any fixed d,

$$
\lim _{k \rightarrow \infty} \frac{\delta_{Z}(d, k)}{k^{\frac{d}{d+1}}}=\left(\frac{2^{d-1}(d+1)^{d}}{d!\zeta(d)}\right)^{\frac{1}{d+1}}
$$

Corollary (Deza-P-Sukegawa, 2019): For any fixed d,

$$
\delta(d, k) \geq\left(\frac{2^{d-1} k^{d}(d+1)^{d}}{d!\zeta(d)}\right)^{\frac{1}{d+1}}+o\left(k^{\frac{d}{d+1}}\right)
$$

Asymptotic diameter

Theorem (Deza-P-Sukegawa, 2019):

$$
\begin{aligned}
& \lim _{p \rightarrow \infty} \frac{\delta\left(H_{q}(d, p)\right)}{p^{d}}=\frac{\left(2 \Gamma\left(\frac{1}{q}+1\right)\right)^{d}}{2 \Gamma\left(\frac{d}{q}+1\right) \zeta(d)} \\
& \lim _{p \rightarrow \infty} \frac{\delta\left(H_{q}^{+}(d, p)\right)}{p^{d}}=\frac{\Gamma\left(\frac{1}{q}+1\right)^{d}}{\Gamma\left(\frac{d}{q}+1\right) \zeta(d)}
\end{aligned}
$$

$$
\operatorname{vol}\left(B_{q}(d, p)\right)=\frac{\left(2 \Gamma\left(\frac{1}{q}+1\right) p\right)^{d}}{2 \Gamma\left(\frac{d}{q}+1\right)} \text { and } \lim _{p \rightarrow \infty} \frac{\# \mathrm{PP} \text { in } B_{q}(d, p)}{\operatorname{vol}\left(B_{q}(d, p)\right)}=\frac{1}{\zeta(d)}
$$

Theorem (Deza-P-Sukegawa, 2019): Consider an integer p, and the smallest possible integer k such that $H_{1}(d, p)$ is contained in the hypercube $[0, k]^{d}$, up to translation. The largest diameter of a lattice zonotope contained in $[0, k]^{d}$ is uniquely achieved by $H_{1}(d, p)$.

Lattice polytopes in theoretical physics

Theoretical physicists are interested in the number $a(d)$ of generalized retarded functions.
$a(d)$ is the number of regions in the arrangement formed by the $2^{d}-1$ hyperplanes normal to 0,1 -vectors.

Theorem (Billera et al., 2012):

$$
\prod_{i=0}^{d-1}\left(2^{i}+1\right) \leq a(d)<2^{d^{2}} .
$$

However, by duality, $a^{+}(d)=f_{0}\left(H_{\infty}^{+}(d, 1)\right)$
Theorem (Deza-P-Rakotonarivo, 2019): if $d \geq 3$,

$$
6 \prod_{i=1}^{d-2}\left(2^{i+1}+i\right) \leq a(d) \leq 2(d+4) 2^{(d-1)(d-2)}
$$

d	$a(d)$
1	2
2	6
3	32
4	370
5	11292
6	1066044
7	347326352
8	419172756930
9	$?$

What about $H_{\infty}(d, 1)$?

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^{d} \leq f_{0}\left(H_{\infty}(d, 1)\right)<O\left(3^{d(d-1)}\right)$.
Theorem (Deza-P-Rakotonarivo, 2019):

$$
\prod_{i=0}^{d-1}\left(3^{i}+1\right) \leq f_{0}\left(H_{\infty}(d, 1)\right)<2\left(3^{d-1}+1\right)^{d-1}
$$

$H_{\infty}(d, 1) \cap M=H_{\infty}(d-1,1)+P$ for some polytope P. There are $3^{d-1}+1$ possible heights for M.

$$
\begin{aligned}
& \text { As } f_{0}(P+Q) \geq f_{0}(Q) \\
& \qquad \frac{f_{0}\left(H_{\infty}(d, 1)\right)}{f_{0}\left(H_{\infty}(d-1,1)\right)} \geq 3^{d-1}+1
\end{aligned}
$$

What about $H_{\infty}(d, 1)$?

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^{d} \leq f_{0}\left(H_{\infty}(d, 1)\right)<O\left(3^{d(d-1)}\right)$.
Theorem (Deza-P-Rakotonarivo, 2019):

$$
\prod_{i=0}^{d-1}\left(3^{i}+1\right) \leq f_{0}\left(H_{\infty}(d, 1)\right)<2\left(3^{d-1}+1\right)^{d-1}
$$

$H_{\infty}(d, 1) \cap M=H_{\infty}(d-1,1)+P$ for some polytope P. There are $3^{d-1}+1$ possible heights for M.

$$
\begin{aligned}
& \text { As } f_{0}(P+Q) \geq f_{0}(Q), \\
& \qquad \frac{f_{0}\left(H_{\infty}(d, 1)\right)}{f_{0}\left(H_{\infty}(d-1,1)\right)} \geq 3^{d-1}+1
\end{aligned}
$$

What about $H_{\infty}(d, 1)$?

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^{d} \leq f_{0}\left(H_{\infty}(d, 1)\right)<O\left(3^{d(d-1)}\right)$.
Theorem (Deza-P-Rakotonarivo, 2019):

$$
\prod_{i=0}^{d-1}\left(3^{i}+1\right) \leq f_{0}\left(H_{\infty}(d, 1)\right)<2\left(3^{d-1}+1\right)^{d-1}
$$

$H_{\infty}(d, 1) \cap M=H_{\infty}(d-1,1)+P$ for some polytope P. There are $3^{d-1}+1$ possible heights for M.

$$
\begin{aligned}
& \text { As } f_{0}(P+Q) \geq f_{0}(Q), \\
& \qquad \frac{f_{0}\left(H_{\infty}(d, 1)\right)}{f_{0}\left(H_{\infty}(d-1,1)\right)} \geq 3^{d-1}+1
\end{aligned}
$$

What about $H_{\infty}(d, 1)$?

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^{d} \leq f_{0}\left(H_{\infty}(d, 1)\right)<O\left(3^{d(d-1)}\right)$.
Theorem (Deza-P-Rakotonarivo, 2019):

$$
\prod_{i=0}^{d-1}\left(3^{i}+1\right) \leq f_{0}\left(H_{\infty}(d, 1)\right)<2\left(3^{d-1}+1\right)^{d-1}
$$

$H_{\infty}(d, 1) \cap M=H_{\infty}(d-1,1)+P$ for some polytope P. There are $3^{d-1}+1$ possible heights for M.

$$
\begin{aligned}
& \text { As } f_{0}(P+Q) \geq f_{0}(Q) \\
& \qquad \frac{f_{0}\left(H_{\infty}(d, 1)\right)}{f_{0}\left(H_{\infty}(d-1,1)\right)} \geq 3^{d-1}+1 .
\end{aligned}
$$

What about $H_{\infty}(d, 1)$?

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^{d} \leq f_{0}\left(H_{\infty}(d, 1)\right)<O\left(3^{d(d-1)}\right)$.
Theorem (Deza-P-Rakotonarivo, 2019):

$$
\prod_{i=0}^{d-1}\left(3^{i}+1\right) \leq f_{0}\left(H_{\infty}(d, 1)\right)<2\left(3^{d-1}+1\right)^{d-1}
$$

$$
H_{\infty}(d, 1) \cap M=H_{\infty}(d-1,1)+P \text { for }
$$ some polytope P. There are $3^{d-1}+1$ possible heights for M.

$$
\begin{aligned}
& \text { As } f_{0}(P+Q) \geq f_{0}(Q), \\
& \qquad \frac{f_{0}\left(H_{\infty}(d, 1)\right)}{f_{0}\left(H_{\infty}(d-1,1)\right)} \geq 3^{d-1}+1 .
\end{aligned}
$$

What about $H_{\infty}(d, 1)$?

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^{d} \leq f_{0}\left(H_{\infty}(d, 1)\right)<O\left(3^{d(d-1)}\right)$.
Theorem (Deza-P-Rakotonarivo, 2019):

$$
\prod_{i=0}^{d-1}\left(3^{i}+1\right) \leq f_{0}\left(H_{\infty}(d, 1)\right)<2\left(3^{d-1}+1\right)^{d-1}
$$

$H_{\infty}(d, 1) \cap M=H_{\infty}(d-1,1)+P$ for some polytope P. There are $3^{d-1}+1$ possible heights for M.

$$
\begin{aligned}
& \text { As } f_{0}(P+Q) \geq f_{0}(Q) \\
& \qquad \frac{f_{0}\left(H_{\infty}(d, 1)\right)}{f_{0}\left(H_{\infty}(d-1,1)\right)} \geq 3^{d-1}+1
\end{aligned}
$$

A graph on lattice polytopes

Say a lattice pentagon P and a lattice hexagon H can be transformed into one another by a move when all the vertices of P are vertices of H.

Question: can any lattice pentagon or hexagon be transformed into any other lattice pentagon or hexagon by such moves?

Theorem (David-P-Rakotonarivo, 2018): yes!
If one restricts to the pentagons and hexagons contained in a convex polyhedral region, then the answer is no, even for a "large" (unbounded) region like $\mathbb{R} \times[0,+\infty[$.

A graph on lattice polytopes

General case: two lattice polytopes P and Q can be transformed into one another by an elementary move when they both have the same dimension and their vertex sets differ by exactly one vertex.

General question: can any d-dimensional lattice polytope be transformed into any other by a sequence of moves? In other words, is the graph $\Lambda(d)$ whose vertices are the d-dimensional lattice polytopes and whose edges are the elementary moves connected?

What was false for pentagons and hexagons (connectedness inside a box) is true for polytopes of any fixed dimension d whith $d+1$ and $d+2$ vertices. In particular it is true for triangles and quadrilaterals!

Theorem (David-P-Rakotonarivo, 2018): for any positive k, the subgraph induced in $\Lambda(d)$ by the simplices and the polytopes with $d+2$ vertices contained in the hypercube $[0, k]^{d}$ is connected

Corollary (David-P-Rakotonarivo, 2018): $\Lambda(d)$ is connected.

A graph on lattice polytopes

In fact, the subgraph induced in $\Lambda(2)$ by the polygons with n and $(n+1)$ vertices is always disconnected, except when $n=3$ or $n=5$.

Theorem (David-P-Rakotonarivo, 2018): for any $d \geq 4$, there exist lattice polytopes P whose number n of vertices can be arbitrarily large such that P cannot be transformed into any lattice polytope with $n+1$ vertices.

Question: When $d=3$, are there such polytopes with n arbitrarily large?
Question: What are the values of $d \geq 3$ and n such that the subgraph induced in $\Lambda(d)$ by the polytopes with n and $n+1$ vertices is connected?

