Geometric and combinatorial questions on lattice polytopes

Outline of the lecture

1) Questions on lattice polytopes that arise from

- Linear optimization,
- Combinatorics,
- Physics.

2) Results on the diameter of lattice polytopes and lattice zonotopes

3) Results on the number of vertices of primitive zonotopes

4) The number of the *d*-dimensional lattice polytopes contained in $[0, k]^d$

5) A graph structure on the set of lattice polytopes

Reasons to study lattice polytopes

The *d*-dimensional unit cube $[0, 1]^d$ is already an interesting lattice polytope.

d	#T	#T/sym	#S	
2	2	1	2	
3	74	6	5	
4	92 487 256	247 451	16	
5	?	?	67	
6	?	?	308	
7	?	?	1 493	
8	?	?	?	
$\#T_1$ number of triangulations of [0, 1] ^d (A220020 (A220021)				

#T: number of triangulations of $[0, 1]^d$ (A238820/A238821) #S: simplexity of $[0, 1]^d$ (A019503)

De Loera, 1996 P, 2013 Mara, 1976 Cottle, 1982 Hughes, 1993 Hughes-Anderson, 1996

Questions on lattice polytopes: number

The *d*-dimensional unit cube $[0, 1]^d$ is already an interesting lattice polytope.

#P/sym: same as #P, but up to symmetry (A105231)

Aichholzer, 2000 $(2^{32} - 2\ 306\ 567)$ P, Rakotonarivo 2019 $(2^{64} - 185\ 308\ 048\ 291)$

Theorem:
$$\lim_{d\to\infty} \frac{\#P}{2^{2^d}} = 1.$$

Questions on lattice polytopes: vertices

Question: what is the largest number of vertices of a convex lattice polygon contained in the square $[0, k]^2$?

Question: what is the largest number of vertices $\phi(d, k)$ of a lattice polytope contained in the hypercube $[0, k]^d$?

 $\phi(2,4) = 9$

Theorem (Thiele, 1991, Acketa-Žunić 1995):
$$\lim_{k \to \infty} \frac{\phi(2,k)}{k^{2/3}} = \frac{12}{(2\pi)^{2/3}}.$$

Theorem (Bárány-Larman, 1998): the number of vertices of the convex hull of all the lattice points in a d-dimensional ball of diameter k satisfies

$$c_1(d)k^{drac{d-1}{d+1}} \leq \#$$
vertices $\leq c_2(d)k^{drac{d-1}{d+1}}$

The diameter of a polygon with v vertices is $\lfloor v/2 \rfloor$. When d > 2, what about looking at the diameter of lattice polytopes instead?

Questions on lattice polytopes: diameter

Question: what is the largest possible diameter $\delta(d, k)$ of a lattice polytope contained in the hypercube $[0, k]^d$?

Linear Optimization: find a point x in \mathbb{R}^d such that

 $Ax \leq b$,

where $b \in \mathbb{R}^d$ and A is a $n \times d$ matrix.

The set P of the points x is a polyhedron and, if bounded, a polytope.

Simplex method: the point $x \in P$ we search for is such that cx is maximal for some row vector c. That method finds a path in the edge-graph of P.

The diameter of (the edge-graph of) P, $\delta(P)$, is a lower bound on the number of pivots of the simplex method.

Largest possible diameter

Question: what is the largest possible diameter $\delta(d, k)$ of a lattice polytope contained in the hypercube $[0, k]^d$?

Theorem (Naddef, 1989): $\delta(d, 1) = d$.

Theorem (Thiele, 1991, Acketa-Žunić 1995): $\lim_{k \to \infty} \frac{\delta(2,k)}{k^{2/3}} = \frac{6}{(2\pi)^{2/3}}.$

Theorem (Kleinschmid-Onn, 1992): $\delta(d, k) \leq kd$.

Theorem (Del Pia-Michini, 2016): if $k \ge 2$, then $\delta(d, k) \le kd - \left|\frac{d}{2}\right|$.

Theorem (Deza-P, 2018): if $k \ge 3$, then $\delta(d, k) \le kd - \left\lceil \frac{2}{3}d \right\rceil - (k-3)$.

Largest possible diameter

All the known values of $\delta(d, k)$

Naddef, 1989 $\delta(d, 1) = d$ Thiele, 1991, Acketa-Žunić 1995, Deza-Manoussakis-Onn, 2018Del Pia-Michini, 2016 $\delta(d, 2) = \lfloor 3d/2 \rfloor$ Deza-P, 2018 $\delta(4, 3) = 8$ Chadder-Deza, 2017 $\delta(3, 4) = 7, \ \delta(3, 5) = 9$ Deza-Deza-Guan-P, 2019 $\delta(3, 6) = \delta(5, 3) = 10$ P-Rakotonarivo, 2019 $\delta(3, 6) = \delta(5, 3) = 10$

Two of the nine (up to symmetry) lattice polytopes of diameter 6 contained in the cube $[0, 3]^3$... among 332 335 207 073.

Largest possible diameter

Theorem (Deza-Manoussakis-Onn, 2018): if k < 2d, then

$$\delta(d,k) \ge \left\lfloor \frac{(k+1)d}{2}
ight
floor$$

Conjecture (Deza-Manoussakis-Onn, 2018): this is sharp when k < 2d. In general, $\delta(d, k)$ is achieved by a lattice zonotope contained in $[0, k]^d$.

Primitive zonotopes (Deza, Manoussakis, Onn, 2018)

Primitive zonotopes (Deza, Manoussakis, Onn, 2018)

The Minkowski sum of the generators of $H_q(d, p)$ contained in $[0, +\infty[^d]$ is another family of primitive zonotopes, denote by $H_q^+(d, p)$.

 $H_1(d, 2)$ is the type *B* permutohedron:

- $2^d d!$ vertices,
- diameter d²,
- contained (up to translation) in the hypercube $[0, 2d 1]^d$.

Theorem (Deza-Manoussakis-Onn): $\delta(d,k) \ge \left| \frac{(k+1)d}{2} \right|$

when
$$k < 2d$$
.

Asymptotic diameter

Theorem (Thiele, 1991, Acketa-Žunić 1995):
$$\lim_{k \to \infty} \frac{\delta(2,k)}{k^{2/3}} = \frac{6}{(2\pi)^{2/3}}$$
.

But, when d > 2 and k grows large,

?? $\leq \delta(d, k) \leq k(d-1)$ (minus a term that does not depend on k).

Call $\delta_Z(d, k)$ the largest possible diameter of a lattice zonotope in $[0, k]^d$.

Theorem (Deza-P-Sukegawa, 2019): For any fixed d, $\lim_{k \to \infty} \frac{\delta_Z(d,k)}{k^{\frac{d}{d+1}}} = \left(\frac{2^{d-1}(d+1)^d}{d!\zeta(d)}\right)^{\frac{1}{d+1}}$

Corollary (Deza-P-Sukegawa, 2019): For any fixed d, $\delta(d,k) \ge \left(\frac{2^{d-1}k^d(d+1)^d}{d!\zeta(d)}\right)^{\frac{1}{d+1}} + o(k^{\frac{d}{d+1}}).$

Asymptotic diameter

Theorem (Deza-P-Sukegawa, 2019): Consider an integer p, and the smallest possible integer k such that $H_1(d, p)$ is contained in the hypercube $[0, k]^d$, up to translation. The largest diameter of a lattice zonotope contained in $[0, k]^d$ is uniquely achieved by $H_1(d, p)$.

Lattice polytopes in theoretical physics

Theoretical physicists are interested in the number a(d) of

a(d) is the number of regions in the arrangement formed

by the $2^d - 1$ hyperplanes normal to 0, 1-vectors.

generalized retarded functions.

Theorem (Billera et al., 2012):		a(d)
d-1	1	2
$\prod \ (2'+1) \leq a(d) < 2^d$.	2	6
<i>i</i> =0	3	32
However, by duality, $a^+(d)=f_0(H^+_\infty(d,1))$		370
		11 292
Theorem (Deza-P-Rakotonarivo, 2019): if $d > 3$,		1 066 044
d-2	7	347 326 352
$6\prod_{i=1}^{n} (2^{i+1} + i) \le a(d) \le 2(d+4)2^{(d-1)(d-2)}$		419 172 756 930
$\prod_{i=1}^{n} (1 - 1)^{-1} = 1 = 1$	9	?

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^d \leq f_0(H_\infty(d, 1)) < O(3^{d(d-1)}).$

Theorem (Deza-P-Rakotonarivo, 2019):

$$\prod_{i=0}^{d-1} (3^i + 1) \le f_0(H_\infty(d, 1)) < 2(3^{d-1} + 1)^{d-1}.$$

As
$$f_0(P+Q) \ge f_0(Q)$$
,

$$\frac{f_0(H_\infty(d,1))}{f_0(H_\infty(d-1,1))} \geq 3^{d-1}+1.$$

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^d \leq f_0(H_\infty(d, 1)) < O(3^{d(d-1)}).$

Theorem (Deza-P-Rakotonarivo, 2019):
$$\prod_{i=0}^{d-1} (3^i + 1) \le f_0(H_\infty(d, 1)) < 2(3^{d-1} + 1)^{d-1}.$$

As
$$f_0(P+Q) \ge f_0(Q)$$
,

$$\frac{f_0(H_\infty(d,1))}{f_0(H_\infty(d-1,1))} \geq 3^{d-1}+1.$$

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^d \leq f_0(H_\infty(d, 1)) < O(3^{d(d-1)}).$

Theorem (Deza-P-Rakotonarivo, 2019):
$$\prod_{i=0}^{d-1} (3^i + 1) \le f_0(H_\infty(d, 1)) < 2(3^{d-1} + 1)^{d-1}.$$

As
$$f_0(P+Q) \ge f_0(Q)$$
,

$$\frac{f_0(H_\infty(d,1))}{f_0(H_\infty(d-1,1))} \geq 3^{d-1} + 1.$$

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^d \leq f_0(H_\infty(d, 1)) < O(3^{d(d-1)}).$

Theorem (Deza-P-Rakotonarivo, 2019):
$$\prod_{i=0}^{d-1} (3^i + 1) \le f_0(H_\infty(d, 1)) < 2(3^{d-1} + 1)^{d-1}.$$

As
$$f_0(P+Q) \ge f_0(Q)$$
,

$$\frac{f_0(H_\infty(d,1))}{f_0(H_\infty(d-1,1))} \geq 3^{d-1} + 1.$$

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^d \leq f_0(H_\infty(d, 1)) < O(3^{d(d-1)}).$

Theorem (Deza-P-Rakotonarivo, 2019):
$$\prod_{i=0}^{d-1} (3^i + 1) \le f_0(H_\infty(d, 1)) < 2(3^{d-1} + 1)^{d-1}.$$

As
$$f_0(P+Q) \ge f_0(Q)$$
,

$$\frac{f_0(H_\infty(d,1))}{f_0(H_\infty(d-1,1))} \geq 3^{d-1} + 1.$$

The number of vertices of $H_{\infty}(d, p)$ turns up in combinatorial optimization: it is the worst-case complexity of multicriteria matroid optimization

Theorem (Melamed-Onn, 2014): $d!2^d \leq f_0(H_\infty(d, 1)) < O(3^{d(d-1)}).$

Theorem (Deza-P-Rakotonarivo, 2019):
$$\prod_{i=0}^{d-1} (3^i + 1) \le f_0(H_\infty(d, 1)) < 2(3^{d-1} + 1)^{d-1}.$$

As
$$f_0(P+Q) \ge f_0(Q)$$
,

$$\frac{f_0(H_\infty(d,1))}{f_0(H_\infty(d-1,1))} \geq 3^{d-1} + 1.$$

A graph on lattice polytopes

Say a lattice pentagon P and a lattice hexagon H can be transformed into one another by a move when all the vertices of P are vertices of H.

Question: can any lattice pentagon or hexagon be transformed into any other lattice pentagon or hexagon by such moves?

Theorem (David-P-Rakotonarivo, 2018): yes!

If one restricts to the pentagons and hexagons contained in a convex polyhedral region, then the answer is no, even for a "large" (unbounded) region like $\mathbb{R} \times [0, +\infty[$.

A graph on lattice polytopes

General case: two lattice polytopes P and Q can be transformed into one another by an elementary move when they both have the same dimension and their vertex sets differ by exactly one vertex.

General question: can any *d*-dimensional lattice polytope be transformed into any other by a sequence of moves? In other words, is the graph $\Lambda(d)$ whose vertices are the *d*-dimensional lattice polytopes and whose edges are the elementary moves connected?

What was false for pentagons and hexagons (connectedness inside a box) is true for polytopes of any fixed dimension d whith d + 1 and d + 2 vertices. In particular it is true for triangles and quadrilaterals!

Theorem (David-P-Rakotonarivo, 2018): for any positive k, the subgraph induced in $\Lambda(d)$ by the simplices and the polytopes with d + 2 vertices contained in the hypercube $[0, k]^d$ is connected

Corollary (David-P-Rakotonarivo, 2018): $\Lambda(d)$ is connected.

A graph on lattice polytopes

In fact, the subgraph induced in $\Lambda(2)$ by the polygons with n and (n + 1) vertices is always disconnected, except when n = 3 or n = 5.

Theorem (David-P-Rakotonarivo, 2018): for any $d \ge 4$, there exist lattice polytopes P whose number n of vertices can be arbitrarily large such that P cannot be transformed into any lattice polytope with n + 1 vertices.

Question: When d = 3, are there such polytopes with *n* arbitrarily large?

Question: What are the values of $d \ge 3$ and n such that the subgraph induced in $\Lambda(d)$ by the polytopes with n and n + 1 vertices is connected?