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Abstract

[by the Author] There are two geometries that show remarkable similar-

ities: that of quiver varieties and that of affine flag varieties. By work of

Braverman-Gaitsgory and Gaussent-Littelmann and Kashiwara-Saito and

Kamnitzer-Baumann one sees the crystals, in the sense of Kashiwara, com-

ing from both quivers and flags. In the picture of Leclerc-Geiss-Schroer

one sees how elements of the shuffle algebra come from quiver varieties. In

joint work with A. Ghitza and S. Kannan we are seeing shuffle elements

coming from affine flag varieties. Following my recent joint work Ghitza

and Kannan, I will explain the purely combinatorial approach for seeing

the moment polytopes and the shuffle elements.

1 Introduction

The beginning of my collaboration with Ghitza and Kannan was the confluence
of our different expertises, with the aim of investigating possible relations among
global sections of the flag variety H0(G/B,Lλ), on which Kannan has worked
for a long time, and MV-cycles of type λ.

We will now define these objects, but before this let us first introduce the
related concept of MV polytope. A good picture of such a structure is the
classical diagram for the Bruhat order of the symmetric group over 3 elements1
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This object is not still a polytope in the sense we are interested in (we have
to associate “lengths” to the edges, and, to have a MV polytope, these lengths
have to satisfy certain relations). Furthermore, we haven’t still made clear in
which sense it is a polytope, and not just a polygon, i.e. where is the “interior”.

1Here and in the following, si denotes the transposition of i and i + 1.
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We will come back on this later on, but for the moment just keep this picture
in mind, of “how a MV polytope looks like”.

It is known that MV polytopes have a 1-to-1 relation with column-strict
Young Tableaux, that is, tableaux looking like

1 1 1 2 3
2 2 3
3 4

This relation has been object of my interests for a long time. In particular, I tried
to extend it to other Lie groups and root systems. However, in the following we
will not specially make use of the relation between MV polytopes and column-
strict tableaux. We will instead concentrate on the relation of these polytopes
with three other “objects”: MV cycles Zb, Pre-projective algebra modules Λb,
and quiver Hecke algebra modules Lb. In a sense, an appropriate “shadow”
operation on these objects, consisting in extracting a character, naturally leads
to consider MV polytopes.

While this “shadow” procedure has been long investigated for the last two
cases (in particular, by Kamnitzer and Baumann for pre-projective algebra mod-
ules, and by Lusztig, Kashiwara, Khovanov-Lauda and others for quiver Hecke
algebra modules), the parallel construction for MV cycles was investigated so
far, again by Kamnitzer, only up to a certain extent, and one of our original
contributions to the picture is on this subject.

The character formulas are valued in an algebra of words (possibly, including
a parameter q). A remarkable aspect of the topic at hand is that, not obviously,
they take value in a rather “tiny” subalgebra of the free algebra, the Shuffle
Algebra C[N ], that we go to define in the following section.

The character ch(Lb) is related to the construction of the so-called dual
canonical basis in the shuffle algebra, and is primarily related to quantum
groups. The character ch(Λb) is related to the construction of the dual semi-
canonical basis. Also the character ch(Zb) leads to the construction of a basis,
that we will call dual MV basis.

2 The Shuffle Algebra

Let F be the free associative algebra generated by the letters f1, . . . , fn. Thus,
the generic monomials are nothing but finite words in this alphabet. The shuffle
product ◦ : F ×F → F is defined through its action on pairs of monomials. For
u and v words of length k and ℓ respectively,

u ◦ v :=
∑

σ∈Sk+ℓ/Sk×Sℓ

σ(uv) , (1)

that is, we sum over all reorderings of the symbols u1 · · ·ukv1 · · · vℓ, which pre-
serve the ordering of ui’s among themselves, and of vj ’s among themselves. For
example, ab ◦ cd consists of

(

4
2

)

= 6 summands

ab ◦ cd = abcd+ acbd+ acdb+ cabd+ cadb+ cdab
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that, if u and v contain the same letters, can get combined, e.g.

ab◦ ba = abba+abba+abab+ baba+ baab+ baab = 2(abba+ baab)+abab+ baba .

The shuffle algebra C[N ] is the ◦-subalgebra generated by f1, . . . , fN . Note
that it is indeed a non-trivial subalgebra, as not all words can be generated, but
only certain combinations.

In our perspective, the generators f1, . . . , fN will corresponds to the co-roots
α∨

i in the root system of a Lie Algebra. You can consider the example of An

root systems, by taking αi ≡ α∨

i = ei − ei+1, where ei are vectors of a canonical
basis of R

n+1. The Weyl group is the symmetric group, in which transpositions
si and the reversal operator w0 (the “bottom” element in the Bruhat lattice),
are faithfully represented as

si =





















1
1 0

. . .

i-th row 0 1
0 1 0

. . .





















; w0 =



















1
0 1

. .
.

1
1 0

1



















.

The MV polytope corresponding to ch(Lb) is the convex hull of a collection
of terms, corresponding to the set of possible paths. For example, if we have
generators α∨

1 and α∨

2 , the character is ch(Lb) = f1f2 ◦ f2f1 = abba + abba +
abab+ baba+ baab+ baab.

[I don’t get the construction in the generic case. And by the way,
f1f2 is not in the shuffle algebra!]

The polytope b is then constructed by taking the convex hull of these six
terms, where the two generators are represented as south-west and south-east
arrows, and words are represented through concatenation of the elementary
steps. In particular, from the terms above we obtain a sort of “filled hexagon”,
that [in which sense?] corresponds to the hexagonal diagram shown at the
beginning.

3 Quiver Hecke Algebra Modules

The Khovanov-Lauda-Rouquier, or quiver Hecke algebra Rd has generators

{eu}u words of length d , y1, . . . , yd, ψ1, . . . , ψd .

The words u of length d will be taken as basis vectors |u〉 of a linear space,
and the generators eu are one-dimensional projectors, in particular they satisfy
∑

u eu = 1 and euev = δuveu. Generators yj are the analogous of Murphy
elements in the symmetric group, in particular they commute among themselves,
while the ψj ’s are the analogous of simple transpositions. There are several other
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relations in the definition of the algebra, but let me skip a precise definition
here. What I want to stress is the fact that Rd is Z-graded. This should sound
surprising, as it is notoriously hard to give a grading structure to the comparison
counterpart, the symmetric group.

More precisely, for M a graded Rd-module,

M =
⊕

i∈Z

M [i] =
⊕

u

⊕

i∈Z

euM [i] , (2)

the character is
ch(M) =

∑

i

∑

u

dim(euM [i]) qi |u〉 , (3)

i.e. a linear combination of words, which is an element of the q-shuffle algebra
(an appropriate q-deformation of the shuffle algebra, with q = 1 corresponding
to the case defined above).

A result contained in a paper by Kleshchev and myself is the classification
of the homogeneous simple Rd-modules.

One must consider Dynkin diagrams, such, e.g., E6

s s s s s
s

and interpret them as adjacency structures, for the construction of “heaps” (in
the case of simply-laced diagrams, while in the non–simply-laced cases a more
complicated ‘folding’ procedure is involved).

For example, for A4 we could have the heap
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The module associated to this heap has dimension 5, which corresponds to the
5 possible ‘histories’ in the heap construction, conveniently encoded through
(rotated) standard Young Tableaux
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Then, the character ch(Lb) associated to the module is a linear combination of
words associated to these diagrams, where, in the word, the i-th letter is fj if,
in the diagram, the entry i is in the j-th diagonal. In our example,

ch(Lb) = f3f2f4f1f3 + f3f2f4f3f1 + f3f4f2f1f3 + f3f4f2f3f1 + f3f2f1f4f3 .
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Thus, this construction for the character of quiver modules is related to standard
Young tableaux. As we will motivate in the following, quiver Hecke algebra
modules are related to MV polytopes, that in turns are related to column-strict
tableaux. Although apparently similar objects, these two families of tableaux
quite seldomly get mixed in natural combinatorial constructions, and the subject
at hand is a remarkable exception to this feature.

4 MV polytopes

A MV polytope b is defined as the convex hull of its vertices. The vertices are
in bijection with the elements of a Weyl group W0, V = {µw}w∈W0

. Recall the
S3 example we gave at the beginning
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�+

Q
Qs

µs1
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Q
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�+

µs1s2s1

Consider a minimal-length path from the top (1) to the bottom (w0) of the
lattice, w0 = si1si1 · · · siN

. The i-perimeter, or Lusztig parametrization of b is
the datum of a set of integer lengths along this path,

peri(b) = (ℓ1, ℓ2, . . . , ℓN ) (4)

with, disregarding for a moment the rest of the diagram,

µ1

ℓ1−−−→ µsi1

ℓ2−−−→ µsi1
si2

−−−→ · · ·
ℓN−−−→ µw0=si1

si2
···siN

The set of lengths on any other path (that we could call “j-perimeter”) is
then determined completely, through a construction of “local deformations”
whose elementary moves are Coxeter moves Ri+1 i i+1

i i+1 i (i and i + 1 are names

for adjacent sites on the Dynkin diagram, allusive to the An case) and Rj i
i j for

i, j not adjacent on the Dynkin diagram, corresponding to the relations in the
algebra sisi+1si = si+1sisi+1 and sisj = sjsi for i and j not adjacent. The
local transformations are

Rj i
i j(ℓα, ℓα+1) = (ℓα+1, ℓα) ; (5)

Ri+1 i i+1
i i+1 i (ℓα, ℓα+1, ℓα+2) =

(

ℓα + ℓα+1 − ℓ̂, ℓ̂, ℓα + ℓα+1 − ℓ̂
)

ℓ̂ = min(ℓα, ℓα+2) .
(6)

It is a nice exercise to check that indeed also the second operation is an invo-
lution. In our example, taking as i-path the right-most one and as perimeter
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(ℓ1, . . . , ℓ3) = (4, 3, 2), we obtain for the only other path the sequence (3, 2, 5):
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We are now ready to define completely a MV polytope: it is a polytope, whose
vertices are constructed from a Weyl group in the way described above, together
with a set of lengths satisfying the relations above.

We can give alternate generators f̃i, called crystal operators, that have a
simple increment action on the i-perimeter. If sia

is used at the a− th step of
the i-path construction of w0, and b has parametrization (ℓ1, ℓ2, . . . , ℓN ), then
the new polytope f̃ia

b has i-perimeter

peri(f̃ia
b) = (ℓ1, ℓ2, . . . , ℓa−1, ℓa + 1, ℓa+1, . . . , ℓN ) . (7)

Thus, defining the polytope b+ composed of a single node and no intervals
(corresponding to the trivial group containing only the identity), any polytope
b can be constructed through an appropriate sequence of crystal operators

b = f̃c1

i1
f̃c2

i2
· · · f̃cN

iN
b+ (8)

[I don’t get this... if the operator increases all the lengths of the steps
using the same transposition, how do you get different lengths, e.g.,
for the first and third step in our example? what is the sequence of
f̃ that grows our example of S3 with (4, 3, 2) starting from b+ ?]

5 MV cycles

Call C((t)) the set of Laurent formal power series with complex coefficients,

C((t)) = {a−ct
−c + a−c+1t

−c+1 + . . .}ai∈C,−c∈Z . (9)

We will then consider a group G of matrices with coefficients in this field. For
simplicity just assume that G = GLn+1

(

C((t))
)

, but our construction would
work also for generic Kac-Moody Algebras. Within G, consider the subgroup
of lower-triangular matrices with 1’s on the diagonal,

U− =
{







1 0
. . .

∗ 1







}

⊆ G
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with generators

yi(at
j) =





















1
. . . 0

1 0
i-th row atj 1

0
. . .

1





















Furthermore, use the shortcut K for our field C((t)) 2

Define the diagonal matrices tλ∨ := diag(tλi), with λi ∈ Z.
Clearly, G/K is the loop Grassmannian, and Cartan or Iwasara decomposi-

tions are essential tools to have control over it. The first choice corresponds to
describe G as

G =
⊔

λ∨

Ktλ∨K , (10)

while the second choice gives

G =
⊔

µ∨

U−tµ∨K . (11)

The Mirković-Vilonen cycles of type λ∨ and weight µ∨, (i.e., the MV cycles),
are the irreducible components Zb in the space (closure operation is understood)

Zb ∈ Irr
(

Ktλ∨K ∩ U−tµ∨K
)

. (12)

They are a natural object if one is interested in the question of which cosets are
contained in the intersection. In particular, the Zb’s contain the information on
their subgroups.

It is a result of Kamnitzer that MV-cycles are indexed by MV-polytopes
b. Furthermore, by Baumann and Gaussent we have a parallel between the
“growth” construction on the polytope, and an analogous construction on the
cycle. If

b = f̃c1

i1
f̃c2

i2
· · · f̃cN

iN
b+ , (13)

then, a single step of the growth process is expressed in terms of the generators
yi(at

j)
Zb = yi1

(

te1C[t−1]∗c1

)

. (14)

2[I actually missed the definition of K]... after some desperate google search (for
“loog grassmannian”), I found:
Sergey Arkhipov; Roman Bezrukavnikov; Victor Ginzburg
Quantum groups, the loop Grassmannian, and the Springer resolution,

J. Amer. Math. Soc. 17 (2004), 595-678.
http://www.ams.org/journals/jams/2004-17-03/S0894-0347-04-00454-0/

that, on bottom of page 41, states: — Let K = C((z)) be the field of formal Laurent power
series, and O = C[[z]] ⊂ K its ring of integers, that is, the ring of formal power series regular
at z = 0. Write G∨(K), resp. G∨(O), for the set of K-rational, resp. O-rational, points of
G∨. The coset space Gr := G∨(K)/G∨(O) is called the loop Grassmannian. — With the
hope that this article follows the same notations as the speaker, I will thus assume this in the
following.
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Here ej is just the scalar product

ej = 〈αij
,−cj+1α

∨

ij+1
− · · · − cNα

∨

iN
〉 (15)

and the space C[t−1]∗c is the linear space of polynomials of degree c in t−1, with
no constant term. Thus, it has dimension c. In particular, the dimension of a
Zb cycle is calculated in a straightforward way.

Thus, let Zb be a cycle of dimension d. The analogous of the growth process
is called here a composition series. It is a choice (i1, . . . , id; j1, . . . , jd) such that
Zb is the space

Zb =
{

yi1(a1t
j1) · · · yid

(adt
jd)K

}

a1,...,ad∈C∗
. (16)

Then, the character of Zb is the generating function of the composition series
of b

ch(Zb) =
∑

(i1,...,id;j1,...,jd)

fi1 · · · fid
, (17)

which is again an element in the Shuffle Algebra.
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