# Marches dans des cônes: exposants critiques

## KILIAN RASCHEL







< □ > < @ > < 注 > < 注 > ... 注

Séminaire Philippe Flajolet Institut Henri Poincaré 29 septembre 2016

#### Introduction

Dimension 1: examples & limits

Central idea in dimension  $\ge 2$ : approximation by Brownian motion

Application #1: excursions

Application #2: walks with prescribed length



First exit time from a cone C



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

First exit time from a cone C



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 ∽੧<⊙

First exit time from a cone C



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

First exit time from a cone C

 $\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$  $\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$ 



<ロト <四ト <注入 <注下 <注下 <

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Persistence probabilities → total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{\mathcal{C}} > n] \sim \kappa \cdot V(x) \cdot \rho^{n} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Persistence probabilities → total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot V(x) \cdot \rho^{n} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Persistence probabilities → total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}_{\mathbf{X}} \cdot \rho^{n} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Persistence probabilities → total number of walks

 $\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}(\mathbf{x}) \cdot \mathbf{X} \cdot n^{-\alpha}$ 

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$



Persistence probabilities ~> total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}(\mathbf{x}) \cdot \mathbf{X} \cdot n^{-\alpha}$$

Local limit theorems ~> excursions

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n, S(n) = y] \sim \kappa \cdot V(x, y) \cdot \rho^{n} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$



Persistence probabilities ~> total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}(\mathbf{x}) \cdot \mathbf{X} \cdot n^{-\alpha}$$

Local limit theorems ~> excursions

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n, S(n) = y] \sim \mathbf{X} \cdot V(\mathbf{X} y) \cdot \mathbf{X} \cdot n^{-\alpha}$$

First exit time from a cone C

$$\succ \tau_C = \inf\{n \in \mathbf{N} : S(n) \notin C\} (S \text{ RW})$$
$$\triangleright T_C = \inf\{t \in \mathbf{R}_+ : B(t) \notin C\} (B \text{ BM})$$



・ロト ・個ト ・ヨト ・ヨト

E

Persistence probabilities ~> total number of walks

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n] \sim \mathbf{X} \cdot \mathbf{V}(\mathbf{x}) \cdot \mathbf{X} \cdot n^{-\alpha}$$

Local limit theorems ~> excursions

$$\triangleright \mathbf{P}_{x}[\tau_{C} > n, S(n) = y] \sim \mathbf{X} \cdot V(\mathbf{X} y) \cdot \mathbf{X} \cdot n^{-\alpha}$$

Aim of the talk: understanding the critical exponents  $\alpha$ 

# Random walk on $Z^d$

▷ A random walk  $\{S(n)\}_{n \ge 0}$  is  $S(n) = x + X(1) + \dots + X(n),$ 

where the X(i) are i.i.d.



# Random walk on $Z^d$

▷ A random walk  $\{S(n)\}_{n \ge 0}$  is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set  $\mathfrak{S} \subset \mathbf{Z}^d$ )

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## Random walk on $Z^d$

▷ A random walk  $\{S(n)\}_{n \ge 0}$  is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set  $\mathfrak{S} \subset \mathbf{Z}^d$ )

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

▷ Example (Dyck paths): simple random walk  $X(i) \in \{-1, 1\}$ 

## Random walk on $Z^d$

▷ A random walk  $\{S(n)\}_{n \ge 0}$  is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set  $\mathfrak{S} \subset \mathbf{Z}^d$ )  $\triangleright$  Example (Dyck paths): simple random walk  $X(i) \in \{-1, 1\}$ 



200

æ

## Random walk on $Z^d$

▷ A random walk  $\{S(n)\}_{n \ge 0}$  is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set  $\mathfrak{S} \subset \mathbf{Z}^d$ )  $\triangleright$  Example (Dyck paths): simple random walk  $X(i) \in \{-1, 1\}$ 



# Random walk on $Z^d$

▷ A random walk  $\{S(n)\}_{n \ge 0}$  is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set  $\mathfrak{S} \subset \mathbf{Z}^d$ )  $\triangleright$  Example (Dyck paths): simple random walk  $X(i) \in \{-1, 1\}$ 



## Random walk on $Z^d$

▷ A random walk  $\{S(n)\}_{n \ge 0}$  is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set  $\mathfrak{S} \subset \mathbf{Z}^d$ )

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

▷ Example (Dyck paths): simple random walk  $X(i) \in \{-1, 1\}$ 

### **Motivations**

- Persistence probabilities in statistical physics
- ▷ Constructing *processes conditioned* never to leave cones

## Random walk on Z<sup>d</sup>

▷ A random walk  $\{S(n)\}_{n \ge 0}$  is

$$S(n) = x + X(1) + \cdots + X(n),$$

where the X(i) are i.i.d. (e.g., uniform on a step set  $\mathfrak{S} \subset \mathbf{Z}^d$ )

▷ Example (Dyck paths): simple random walk  $X(i) \in \{-1, 1\}$ 

### **Motivations**

- Persistence probabilities in statistical physics
- ▷ Constructing *processes conditioned* never to leave cones
- Asymptotics of numbers of walks
- ▷ Transcendental nature of functions counting walks in cones → Alin Bostan's course at AEC
- Important & combinatorial cones (quarter/half/slit plane, orthants, Weyl chambers, etc.)

#### Introduction

Dimension 1: examples & limits

Central idea in dimension  $\ge 2$ : approximation by Brownian motion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Application #1: excursions

Application #2: walks with prescribed length

Non-constrained walk with  $\mathfrak{S}=\{-1,1\}$ 



▲ロト ▲御ト ▲画ト ▲画ト 三回 - のへで



$$\triangleright \ \#\{x \stackrel{n}{\longrightarrow} \mathbf{Z}\} = 2^n$$

Walk  $\rightsquigarrow$  Exponent 0

(日) (部) (注) (注) (注)



 $\#\{x \xrightarrow{n} \mathbf{Z}\} = 2^{n}$  Walk  $\rightsquigarrow$  Exponent 0  $\#\{x \xrightarrow{n} y\} = \binom{n}{\frac{n+(y-x)}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n}}$  Bridge  $\rightsquigarrow$  Exponent  $\frac{1}{2}$ 



▷  $\#\{x \xrightarrow{n} Z\} = 2^n$  Walk  $\rightsquigarrow$  Exponent 0 ▷  $\#\{x \xrightarrow{n} y\} = {n \choose \frac{n+(y-x)}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^n}{\sqrt{n}}$  Bridge  $\rightsquigarrow$  Exponent  $\frac{1}{2}$ ▷  $\sum \frac{1}{\sqrt{n}} = \infty$ : recurrence of the simple random walk in Z



▷ #{x → Z} = 2<sup>n</sup> Walk → Exponent 0 ▷ #{x → y} =  $\binom{n}{\frac{n+(y-x)}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^n}{\sqrt{n}}$  Bridge → Exponent  $\frac{1}{2}$ ▷  $\sum \frac{1}{\sqrt{n}} = \infty$ : recurrence of the simple random walk in Z ▷ Constant  $\sqrt{\frac{2}{\pi}}$  independent of x & y in the asymptotics

ŝ ĉ 2 0 10 15 5 20

# Constrained walk with $\mathfrak{S} = \{-1, 1\}$ (Dyck paths)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの



Constrained walk with  $\mathfrak{S} = \{-1, 1\}$  (Dyck paths)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



### Constrained walk with $\mathfrak{S} = \{-1, 1\}$ (Dyck paths)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで



Constrained walk with  $\mathfrak{S} = \{-1, 1\}$  (Dyck paths)





Constrained walk with  $\mathfrak{S} = \{-1, 1\}$  (Dyck paths)

# Beyond the algebraic exponents 0, $\frac{1}{2}$ & $\frac{3}{2}$

#### Weighted models in dimension 1

Drift  $\sum_{s\in\mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2}$  &  $\frac{3}{2}$ 

# Beyond the algebraic exponents 0, $\frac{1}{2}$ & $\frac{3}{2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2}$  &  $\frac{3}{2}$ The simple walk in two-dimensional wedges

# Beyond the algebraic exponents 0, $\frac{1}{2}$ & $\frac{3}{2}$

### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges



- Half-plane: one-dimensional case
- Dyck paths
- ▷ Total number of walks:  $\rightarrow$  Exponent  $\frac{1}{2}$
- Excursions:

 $\rightsquigarrow$  Exponent  $2 = \frac{3}{2} + \frac{1}{2}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○ ○
#### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges



- Quarter plane: product of two one-dimensional cases
- Reflection principle
- ▷ Total number of walks:  $\rightarrow$  Exponent  $1 = \frac{1}{2} + \frac{1}{2}$
- Excursions:

$$\rightsquigarrow$$
 Exponent  $3 = \frac{3}{2} + \frac{3}{2}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

#### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2}$  &  $\frac{3}{2}$ The simple walk in two-dimensional wedges



- Slit plane:
   Bousquet-Mélou & Schaeffer '00
  - Highly non-convex cone
  - $\triangleright \text{ Total number of walks:} \\ \rightsquigarrow \text{ Exponent } \frac{1}{4}$

æ

 $\triangleright \text{ Excursions:} \\ \rightsquigarrow \text{ Exponent } \frac{3}{2}$ 

#### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2}$  &  $\frac{3}{2}$ The simple walk in two-dimensional wedges



▷ 45°: Souyou-Beauchamps '86

▷ See

🖗 Bousquet-Mélou & Mishna '10

《曰》 《聞》 《理》 《理》 三世

- Excursions:
  - $\rightsquigarrow$  Exponent 5

#### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2}$  &  $\frac{3}{2}$ The simple walk in two-dimensional wedges



- ▷ 135°: Gessel
- See See Kauers, Koutschan & Zeilberger '09; etc.
- ▷ Total number of walks:  $\rightarrow$  Exponent  $\frac{2}{3}$

< □ > < @ > < 注 > < 注 > ... 注

 $\triangleright \text{ Excursions:} \\ \rightsquigarrow \text{ Exponent } \frac{7}{3}$ 

#### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges



- Walks avoiding a quadrant
- See See Bousquet-Mélou '15; Mustapha '15
- ▷ Total number of walks:  $\rightarrow$  Exponent  $\frac{1}{3}$

< □ > < @ > < 注 > < 注 > ... 注

 $\triangleright \text{ Excursions:} \\ \rightsquigarrow \text{ Exponent } \frac{5}{3}$ 

#### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges



- $\triangleright$  Arbitrary angular sector  $\theta$
- ▷ See <sup>®</sup> Varopoulos '99; Denisov & Wachtel '15

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語……

#### Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges



- $\triangleright$  Arbitrary angular sector  $\theta$
- ▷ See <sup>®</sup> Varopoulos '99; Denisov & Wachtel '15
- ▷ Total number of walks:  $\rightarrow$  Exponent  $\frac{\pi}{2\theta}$
- ▷ Excursions:
  - $\rightsquigarrow$  Exponent  $\frac{\pi}{\theta} + 1$

(日) (四) (문) (문) (문)

## Weighted models in dimension 1

Drift  $\sum_{s \in \mathfrak{S}} s$  governs the exponents, which are still 0,  $\frac{1}{2} \& \frac{3}{2}$ The simple walk in two-dimensional wedges



- $\triangleright$  Arbitrary angular sector  $\theta$
- ▷ See <sup>®</sup> Varopoulos '99; Denisov & Wachtel '15
- ▷ Total number of walks:  $\rightarrow$  Exponent  $\frac{\pi}{2\theta}$
- Excursions:
  - $\rightsquigarrow$  Exponent  $\frac{\pi}{\theta}+1$

#### Conclusion: 1D case not enough

Dramatic change of behavior: every exponent is possible!

Non-D-finite behaviors (first observed by Varopoulos '99)

Introduction

Dimension 1: examples & limits

Central idea in dimension  $\ge 2$ : approximation by Brownian motion

(日) (월) (일) (문) (문)

Application #1: excursions

Application #2: walks with prescribed length

Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \stackrel{\text{a.s.}}{\longrightarrow} \mathbf{E}[X(1)]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathsf{E}[X(1)]\right\}\stackrel{\mathsf{law}}{\longrightarrow}\mathcal{N}(0,\mathsf{V}[X(1)])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

## Donsker's theorem (functional central limit theorem)



 $RW \longrightarrow BM$ 

<ロ> (四) (四) (三) (三) (三)

æ

#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

Donsker's theorem (functional central limit theorem)



#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Denisov & Wachtel '15 (excursions for RW in cones  $\subset Z^d$ )

 $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$ 

#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\stackrel{\text{law}}{\longrightarrow}\mathcal{N}(0,\mathbf{V}[X(1)])$$

**Denisov & Wachtel '15** (excursions for RW in cones  $\subset Z^d$ )

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM

<ロ> (四) (四) (王) (王) (王) (王)

#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

**Denisov & Wachtel '15** (excursions for RW in cones  $\subset Z^d$ )

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM

▷ For excursions,  $\alpha$ {RW} =  $\alpha$ {BM} if  $\begin{cases}
E[RW] = E[BM] = 0 \\
V[RW] = V[BM] = id
\end{cases}$ 

#### ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

**Denisov & Wachtel '15** (excursions for RW in cones  $\subset Z^d$ )

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM
- ▷ For excursions,  $\alpha$ {RW} =  $\alpha$ {BM} if  $\begin{cases}
  \mathbf{E}[RW] = \mathbf{E}[BM] = 0 \\
  \mathbf{V}[RW] = \mathbf{V}[BM] = id
  \end{cases}$
- ▷ If  $\mathbf{V}[\mathsf{RW}] \neq \mathsf{id}$  then  $\mathbf{V}[M \cdot \mathsf{RW}] = \mathsf{id}$  for some  $M \in \mathbf{M}_d(\mathbf{R})$

#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

**Denisov & Wachtel '15** (excursions for RW in cones  $\subset Z^d$ )

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM
- ▷ For excursions,  $\alpha$ {RW} =  $\alpha$ {BM} if  $\begin{cases}
  \mathbf{E}[RW] = \mathbf{E}[BM] = 0 \\
  \mathbf{V}[RW] = \mathbf{V}[BM] = id
  \end{cases}$
- $\triangleright \ \, \mathsf{If} \ \, \mathbf{V}[\mathsf{RW}] \neq \mathsf{id} \ \mathsf{then} \ \, \mathbf{V}[M \cdot \mathsf{RW}] = \mathsf{id} \ \mathsf{for} \ \mathsf{some} \ \, M \in \mathbf{M}_d(\mathbf{R})$
- $\triangleright$  Cone *C* becomes  $M \cdot C$

#### Law of large numbers

$$\frac{X(1) + \dots + X(n)}{n^1} \xrightarrow{\text{a.s.}} \mathbf{E}[X(1)]$$

**Central limit theorem** 

$$n^{\frac{1}{2}}\left\{\frac{X(1)+\cdots+X(n)}{n^{1}}-\mathbf{E}[X(1)]\right\}\xrightarrow{\text{law}}\mathcal{N}(0,\mathbf{V}[X(1)])$$

**Denisov & Wachtel '15** (excursions for RW in cones  $\subset Z^d$ )

- $\triangleright \ \mathsf{RW} \longrightarrow \mathsf{BM}$
- Mapping theorem: many asymptotic results concerning RW can be deduced from BM

▷ For excursions, 
$$\alpha$$
{RW} =  $\alpha$ {BM} if   

$$\begin{cases}
E[RW] = E[BM] = 0 \\
V[RW] = V[BM] = ic
\end{cases}$$

**Remainder of this section:** computing  $\alpha$ {BM} (easier)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

## Two derivations of the BM persistence probability in R

## **Reflection principle**



$$\begin{aligned} \mathbf{P}_{x}[T_{(0,\infty)} > t] &= \mathbf{P}_{0}[\min_{0 \le u \le t} B(u) > -x] \\ &= \mathbf{P}_{0}[|B(t)| < x] \\ &= \frac{2}{\sqrt{2\pi t}} \int_{0}^{x} e^{-\frac{y^{2}}{2t}} dy \end{aligned}$$

(日) (四) (王) (王) (王)

æ

## Two derivations of the BM persistence probability in R

#### **Reflection principle**



$$\begin{aligned} \mathbf{P}_{x}[T_{(0,\infty)} > t] &= \mathbf{P}_{0}[\min_{0 \leqslant u \leqslant t} B(u) > -x] \\ &= \mathbf{P}_{0}[|B(t)| < x] \\ &= \frac{2}{\sqrt{2\pi t}} \int_{0}^{x} e^{-\frac{y^{2}}{2t}} dy \end{aligned}$$

Heat equation

Function  $g(t; x) = \mathbf{P}_x[T_{(0,\infty)} > t]$  satisfies

$$\begin{cases} \left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right)g(t;x) = 0, & \forall x \in (0,\infty), \ \forall t \in (0,\infty) \\ g(0;x) = 1, & \forall x \in (0,\infty) \\ g(t;0) = 0, & \forall t \in (0,\infty) \end{cases}$$

## **Dimension** *d*: explicit expression for $P_x[T_C > t]$

#### Heat equation

🔊 Doob '55

For essentially any domain C in any dimension d,  $\mathbf{P}_x[T_C > t] \& p^C(t; x, y) (\mathbf{P}_x[T_C > t] = \int_C p^C(t; x, y) dy)$  satisfy heat equations

## Dimension *d*: explicit expression for $P_x[T_C > t]$

#### Heat equation

🔊 Doob '55

For essentially any domain C in any dimension d,  $\mathbf{P}_x[T_C > t] \& p^C(t; x, y) (\mathbf{P}_x[T_C > t] = \int_C p^C(t; x, y) dy)$  satisfy heat equations

**Dirichlet eigenvalues problem** 

🕲 Chavel '84

◆□> <@> < E> < E> < E</p>

$$\Delta_{\mathbf{S}^{d-1}}m = -\lambda m \quad \text{in } \mathbf{S}^{d-1} \cap C$$
$$m = 0 \qquad \text{in } \partial(\mathbf{S}^{d-1} \cap C)$$

# Dimension d: explicit expression for $P_x[T_c > t]$ Heat equation Doob '55 For essentially any domain C in any dimension d, $\mathbf{P}_{x}[T_{C} > t]$ & $p^{C}(t; x, y)$ ( $\mathbf{P}_{x}[T_{C} > t] = \int_{C} p^{C}(t; x, y) dy$ ) satisfy heat equations **Dirichlet eigenvalues problem** Chavel '84 $\begin{cases} \Delta_{\mathbf{S}^{d-1}}m = -\lambda m & \text{in } \mathbf{S}^{d-1} \cap C \\ m = 0 & \text{in } \partial(\mathbf{S}^{d-1} \cap C) \end{cases}$ Discrete eigenvalues $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \dots$ and eigenfunctions $m_1, m_2, m_3, \dots$

## Dimension d: explicit expression for $P_x[T_c > t]$ Heat equation Doob '55 For essentially any domain C in any dimension d, $\mathbf{P}_{x}[T_{C} > t]$ & $p^{C}(t; x, y)$ ( $\mathbf{P}_{x}[T_{C} > t] = \int_{C} p^{C}(t; x, y) dy$ ) satisfy heat equations **Dirichlet eigenvalues problem** Chavel '84 $\begin{cases} \Delta_{\mathbf{S}^{d-1}}m = -\lambda m & \text{in } \mathbf{S}^{d-1} \cap C \\ m = 0 & \text{in } \partial(\mathbf{S}^{d-1} \cap C) \end{cases}$ $\mathbf{S}^{d-1} \cap C$ Discrete eigenvalues $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \dots$ and eigenfunctions $m_1, m_2, m_3, \dots$ Series expansion DeBlassie '87; Bañuelos & Smits '97 $\infty$

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

**Series expansion** 

🔊 DeBlassie '87; Bañuelos & Smits '97

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|),$$

with

- ▷ B<sub>j</sub> hypergeometric
- ▷ series expansion very well suited for asymptotics

**Series expansion** 

DeBlassie '87; Bañuelos & Smits '97

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|),$$

with

- ▷ B<sub>j</sub> hypergeometric
- ▷ series expansion very well suited for asymptotics

Asymptotic result

DeBlassie '87; Bañuelos & Smits '97

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$$\mathbf{P}_{x}[T_{C} > t] \sim \kappa \cdot u(x) \cdot t^{-\alpha},$$

Series expansion

DeBlassie '87; Bañuelos & Smits '97

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|),$$

with

- ▷ B<sub>j</sub> hypergeometric
- ▷ series expansion very well suited for asymptotics

Asymptotic result

DeBlassie '87; Bañuelos & Smits '97

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$$\mathbf{P}_{x}[T_{C} > t] \sim \kappa \cdot u(x) \cdot t^{-\alpha},$$

with  $\alpha = 2\sqrt{\lambda_1 + (\frac{d}{2} - 1)^2 - (\frac{d}{2} - 1)}$  linked to the *first eigenvalue* 

Series expansion

DeBlassie '87; Bañuelos & Smits '97

$$\mathbf{P}_{x}[T_{C} > t] = \sum_{j=1}^{\infty} B_{j}(|x|^{2}/t)m_{j}(x/|x|),$$

with

- ▷ B<sub>j</sub> hypergeometric
- ▷ series expansion very well suited for asymptotics

Asymptotic result

DeBlassie '87; Bañuelos & Smits '97

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\mathbf{P}_{x}[T_{C} > t] \sim \kappa \cdot u(x) \cdot t^{-\alpha},$$

with  $\alpha = 2\sqrt{\lambda_1 + (\frac{d}{2} - 1)^2 - (\frac{d}{2} - 1)}$  linked to the *first eigenvalue* 

#### Exercise

Recover the exponent  $\frac{\pi}{2\theta}$  of the persistence probability for a simple random walk in a two-dimensional wedge of opening angle  $\theta$ 

Introduction

Dimension 1: examples & limits

Central idea in dimension  $\ge 2$ : approximation by Brownian motion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Application #1: excursions

Application #2: walks with prescribed length

## In the quarter plane





## In the quarter plane



Hypotheses on the *moments*:

$$\mathbf{E}[GB] = (1,0) + (1,-1) + (-1,0) + (-1,1)$$
  
= (0,0)

< □ > < □ > < □ > < □ > < □ > < □ >

æ

## In the quarter plane



Hypotheses on the *moments*:

$$\begin{aligned} \mathbf{E}[GB] &= (1,0) + (1,-1) + (-1,0) + (-1,1) \\ &= (0,0) \\ \mathbf{V}[GB] &= \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} \neq \mathsf{id} \end{aligned}$$

<ロ> (四) (四) (日) (日) (日)

æ

#### In the quarter plane



Hypotheses on the *moments*:

$$\begin{aligned} \mathbf{E}[GB] &= (1,0) + (1,-1) + (-1,0) + (-1,1) \\ &= (0,0) \\ \mathbf{V}[GB] &= \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} \neq \mathsf{id} \end{aligned}$$

Changing the cone



#### In the quarter plane



Hypotheses on the *moments*:

$$\begin{aligned} \mathbf{E}[GB] &= (1,0) + (1,-1) + (-1,0) + (-1,1) \\ &= (0,0) \\ \mathbf{V}[GB] &= \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} \neq \mathsf{id} \end{aligned}$$

#### Changing the cone



- $\triangleright$  Wedge of angle  $\theta = \frac{\pi}{4}$
- ▷ Total number of walks:  $\Rightarrow$  Exponent  $\frac{\pi}{2\theta} = 2$

Excursions:

 $\rightsquigarrow$  Exponent  $\frac{\pi}{\theta} + 1 = 5$ 

## Example #2: quadrant walks

A scarecrow



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの


$$\triangleright \mathbf{E} = (0,0) \& \mathbf{V} = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \neq \mathsf{id}$$

( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) (

A scarecrow



$$\triangleright \mathbf{E} = (0,0) \& \mathbf{V} = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \neq \mathrm{id}$$
$$\triangleright \theta = \arccos\left(-\frac{1}{4}\right) \Longrightarrow \alpha = \frac{\pi}{\theta} + 1 \notin \mathbf{Q}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

A scarecrow



► **E** = (0,0) & **V** = 
$$\begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \neq \text{id}$$
► θ =  $\arccos\left(-\frac{1}{4}\right) \implies \alpha = \frac{\pi}{\theta} + 1 \notin \mathbf{Q}$ 
►  $\sum_{n=0}^{\infty} \#_{\mathbf{N}^2}\{(0,0) \xrightarrow{n} (0,0)\}t^n$ 
non-D-finite

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ



(日) (國) (필) (필) (필) 표

▷ Systematic computation of  $\alpha = \arccos\{algebraic number\}$ 





(日) (國) (필) (필) (필) 표

### In dimension 2 (excursions only) Sostan, R. & Salvy '14

- ▷ Systematic computation of  $\alpha = \arccos{algebraic number}$
- ▷ Walks with small steps:
  - $\triangleright \ \alpha \in \mathbf{Q} \text{ iff }$
  - generating function of the excursions is D-finite iff
  - ▷ the group of the model is finite





# In dimension 2 (excursions only) 🔊 Bostan, R. & Salvy '14

▷ Systematic computation of  $\alpha = \arccos{algebraic number}$ 

▷ Walks with small steps:

 $\triangleright \ \alpha \in \mathbf{Q} \text{ iff }$ 

- generating function of the excursions is D-finite iff
- ▷ the group of the model is finite

▷ If  $\sum_{s \in \mathfrak{S}} s \neq 0$ , first perform a *Cramér transform* 

Example: Kreweras 3D

Model with jumps:





### **Example: Kreweras 3D**

Model with jumps:

Exponent  $\alpha = 2\sqrt{\lambda_1 + \frac{1}{4}} - \frac{1}{2}$ 





### Example: Kreweras 3D

Model with jumps:







◆□▶ ◆舂▶ ★注≯ ★注≯ 注目

### Example: Kreweras 3D

Model with jumps:







Value of  $\lambda_1$ ?  $\lambda_1 \in \mathbf{Q}$ ?



Model with jumps:







## Value of $\lambda_1$ ? $\lambda_1 \in \mathbf{Q}$ ?

### General theory (still to be done!)

▷ Classification & resolution of some finite group models

🕲 Bostan, Bousquet-Mélou, Kauers & Melczer '16

- ▷ Asymptotic simulation
   ◇ Conjectured Kreweras exponent: 3.3257569
- ▷ Equivalence finite group iff D-finite generating functions?

~ ~ ~ ~

크

Introduction

Dimension 1: examples & limits

Central idea in dimension  $\ge 2$ : approximation by Brownian motion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Application #1: excursions

Application #2: walks with prescribed length

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

**Case #1:** interior drift



# **Non-universal exponents:** six cases **Excursions:** formula for $\alpha$ independent of the drift $\sum_{s \in \mathfrak{S}} s$

**Case #1:** interior drift



▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$ 

・ロト ・四ト ・ヨト ・ヨト

æ

 $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$ 

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ {\rm Exponent} \ \alpha = {\rm 0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注



- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注



- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

- 2



- ▷ Half-plane case
- ▷ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注



- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注



- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注



- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注



- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注



- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness

< □ > < @ > < 注 > < 注 > ... 注



- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{1}{2}$

**Excursions:** formula for  $\alpha$  independent of the drift  $\sum_{s \in \mathfrak{S}} s$ 

Case #1: interior drift



- ▷ Law of large numbers:  $\mathbf{P}[\forall n, S(n) \in C] > 0$
- $\triangleright \ \mathsf{Exponent} \ \alpha = \mathbf{0}$
- Cannot be used as a filter to detect non-D-finiteness



- ▷ Half-plane case
- ▷ Exponent  $\alpha = \frac{1}{2}$
- Cannot be used as a filter to detect non-D-finiteness
- $\triangleright \text{ Exponent } \alpha = \frac{i}{2} \text{ for non-smooth}$  boundary





- ▷ Half-plane case
- ▷ Exponent  $\alpha = \frac{3}{2}$
- Cannot be used as a filter to detect non-D-finiteness

(日) (四) (문) (문) (문)





- ▷ Half-plane case
- ▶ Exponent  $\alpha = \frac{3}{2}$
- Cannot be used as a filter to detect non-D-finiteness

Case #4: zero drift



- ▷ See <sup>©</sup> Varopoulos '99; Denisov & Wachtel '15
- ▷ Exponent
  - $\alpha_1 = 2\sqrt{\lambda_1 + (\frac{d}{2} 1)^2 (\frac{d}{2} 1)}$
- Can be used as a filter to detect non-D-finiteness

### Case #5: polar interior drift



- 🕞 See 🥯 Duraj '14
  - $\triangleright$  Exponent  $2\alpha_1 + 1$
  - Can be used as a filter to detect non-D-finiteness

◆□▶ ◆□▶ ◆□▶ ◆□▶

12

## Case #5: polar interior drift



- 🕞 🛇 🔊 Duraj '14
- $\triangleright$  Exponent  $2\alpha_1 + 1$ 
  - Can be used as a filter to detect non-D-finiteness

# Case #6: polar boundary drift



- $\triangleright$  Exponent  $\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

## Case #5: polar interior drift



- ▷ See <sup>©</sup> Duraj '14
- $\triangleright$  Exponent  $2\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

# Case #6: polar boundary drift



- $\triangleright$  Exponent  $\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

▲□▶ ▲□▶ ▲厘▶

Weighted GB model: with J. Courtiel, S. Melczer & M. Mishna

## Case #5: polar interior drift



- ▷ See <sup>©</sup> Duraj '14
- $\triangleright$  Exponent  $2\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

# Case #6: polar boundary drift



- $\triangleright$  Exponent  $\alpha_1 + 1$
- Can be used as a filter to detect non-D-finiteness

Six-exponents-result: joint with R. Garbit & S. Mustapha

# **Philippe Flajolet and critical exponents**

| ● O O raschel2.mw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 🗅 🖉 🍘 👙 🖏 🖏 🏷 🥂 T 🕨 🏹 🗰 🌰 🌧 🗰 🖊 🔿 🍿 🖉 🕸 🕸 🛷 🔍 🔍 🗭 🗮 🕲 🔞 Rechercher pour side, täches, applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| Texte Math Dessin Graphique Animation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Masquer                                           |
| C Text ▼ (Times New Roman ▼) 12 ▼ B I U ■ Ξ □ 0.0 Ξ Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |
| ON THE WALK {N,E,S,SW}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Philippe Flajolet, NOV 27, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
| ► EXACT COUNTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| ► THE KERNEL CURVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
| ▼ CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| * The growth constant of excursions seems to be related to the disappearance of the central "oval", which is altogether not that surprising.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
| * It is interesting to note that the radius of convergence of the GF is strictly latger than 1/s=1/4, though by only a little bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| * The critical exponent -5/2 in the empirical formula is fairly plausible: we know -3/2 to be present<br>in many similar problem. It corresponds with Z=1-z/tho for the GF to a singuar expansion of type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
| $c_0 = c_1 z + c_2 Z^{3/2} + etc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3.1)                                             |
| (Similar things are encoutered in the enumeration of planar maps, but this is probably not very significant.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| Tele Nice Televis Balls - Hans Smooth (Product West and All Product & Product All Product & Product and All Product & Product | Connect 1 Minutes (1994) Trans. 0.075 Made Trans. |
| Maple Detail Profile (USPS) Krascher/Dopbox/Maths/Projets/re-Work Extended/ConjectureMemmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vertear. a weindre, 4.100 Temps, 0.065 Mode Texce |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

