# Trivial words in groups <br> Much ado about nothing 

Andrew Rechnitzer<br>Murray Elder Buks van Rensburg Thomas Wong



Séminaire Flajolet, June 2013

## TWO PROBLEMS LINKED

Two quite different problems

- from geometric group theory - amenability of groups
- from lattice statistical mechanics - ring polymers and random knotting


## TWO PROBLEMS LINKED

Two quite different problems

- from geometric group theory - amenability of groups
- from lattice statistical mechanics - ring polymers and random knotting Start with simplest version of both

Random walk on $\mathbb{Z}^{2}$
Start at $(0,0)$ and take steps $N, S, E, W$.


## Actually - 1D IS EVEN SIMPLER

## Random walk on $\mathbb{Z}$ <br> Start at 0 and take steps $E, W$

- What is probability of ending at 0 ?


## Actually - 1D IS EVEN SIMPLER

## Random walk on $\mathbb{Z}$ <br> Start at 0 and take steps $E, W$

- What is probability of ending at 0 ?
- How many paths of length $2 n$ end at $0-c_{2 n, 0}$


## Actually - 1D IS EVEN SIMPLER

Random walk on $\mathbb{Z}$
Start at 0 and take steps $E, W$

- What is probability of ending at 0 ?
- How many paths of length $2 n$ end at $0-c_{2 n, 0}$

$$
c_{2 n, 0}=\binom{2 n}{n}=1,2,6,20,70 \ldots
$$

## Actually - 1D IS EVEN SIMPLER

## Random walk on $\mathbb{Z}$

Start at 0 and take steps $E, W$

- What is probability of ending at 0 ?
- How many paths of length $2 n$ end at $0-c_{2 n, 0}$

$$
c_{2 n, 0}=\binom{2 n}{n}=1,2,6,20,70 \ldots
$$

Returning to 0 - only even lengths

$$
\operatorname{Pr}(\text { end at } 0)=\frac{\binom{2 n}{2^{2 n}}}{2^{2 n}} \sim \frac{1}{\sqrt{\pi n}} \quad \text { polynomial decay }
$$



- What is probability of ending at $(0,0) ?-c_{n,(0,0)}=$ ?

- What is probability of ending at $(0,0) ?-c_{n,(0,0)}=$ ?

$$
\sum_{n} c_{n,(0,0)} \cdot z^{n}=1+4 z^{2}+36 z^{4}+400 z^{6}+4900 z^{8}+\ldots
$$



- What is probability of ending at $(0,0) ?-c_{n,(0,0)}=$ ?

$$
\sum_{n} c_{n,(0,0)} \cdot z^{n}=1+4 z^{2}+36 z^{4}+400 z^{6}+4900 z^{8}+\ldots
$$

- Why are the terms $\binom{2 n}{n}^{2}$ ?


## Rotate everything



Each step

- changes the $x$-ordinate by $\pm 1$, and
- changes the $y$-ordinate by $\pm 1$

So split into two independent 1d problems - each gives $\binom{2 n}{n}$.

## Rotate everything



Each step

- changes the $x$-ordinate by $\pm 1$, and
- changes the $y$-ordinate by $\pm 1$

So split into two independent 1d problems - each gives $\binom{2 n}{n}$.
Returning to the origin - only even lengths

$$
\operatorname{Pr}(\text { end at origin })=\binom{2 n}{n}^{2} 4^{-2 n} \sim \frac{1}{\pi n} \quad \text { polynomial decay }
$$

## Do the same thing on a tree



## Do THE SAME THING ON A TREE



## Do the same thing on a tree



$$
\sum_{n} t_{n, 0} z^{n}=\frac{3}{1+2 \sqrt{1-12 z^{2}}}
$$

Return to root vertex - even lengths only

$$
\operatorname{Pr}(\text { end at root }) \sim 6 \sqrt{\frac{2}{\pi n^{3}}} \cdot\left(\frac{\sqrt{3}}{2}\right)^{n} \quad \text { exponential decay }
$$

## $\mathbb{Z}^{2}$ AND $F_{2}$ ARE EASY CASE OF HARD PROBLEM

These random walks are special cases of bigger problem
Walks on Cayley graph of group
Let $G=\langle a, b|$ relations $\rangle$

- what is the probability that a random word = identity?

These random walks are special cases of bigger problem

## Walks on Cayley graph of group

Let $G=\langle a, b|$ relations $\rangle$

- what is the probability that a random word $\equiv$ identity?


## Amenability

[Kesten, Grigorchuk, Cohen]
Let $p_{n}$ be the number of words of length $n$ in $G$ equivalent to the identity.

$$
G \text { is amenable } \Leftrightarrow \limsup _{n \rightarrow \infty} p_{n}^{1 / n}=4
$$

These random walks are special cases of bigger problem

## Walks on Cayley graph of group

Let $G=\langle a, b|$ relations $\rangle$

- what is the probability that a random word $\equiv$ identity?


## Amenability

[Kesten, Grigorchuk, Cohen]
Let $p_{n}$ be the number of words of length $n$ in $G$ equivalent to the identity.

$$
G \text { is amenable } \Leftrightarrow \limsup _{n \rightarrow \infty} p_{n}^{1 / n}=4
$$

A very open problem for Thompson's group $F$.

## Piecewise Linear functions




Consider continuous piecewise linear functions from $[0,1] \mapsto[0,1]$ such that

## Piecewise Linear functions



Consider continuous piecewise linear functions from $[0,1] \mapsto[0,1]$ such that

- $f(0)=0$ and $f(1)=1$
- all gradients are powers of 2
- coordinates of breakpoints are dyadic rationals $\frac{a}{2^{2}}$.


## Piecewise Linear functions




Consider continuous piecewise linear functions from $[0,1] \mapsto[0,1]$ such that

- $f(0)=0$ and $f(1)=1$
- all gradients are powers of 2
- coordinates of breakpoints are dyadic rationals $\frac{a}{2^{b}}$.
- Function composition defines a natural group on these objects.


## Piecewise linear functions




Consider continuous piecewise linear functions from $[0,1] \mapsto[0,1]$ such that

- $f(0)=0$ and $f(1)=1$
- all gradients are powers of 2
- coordinates of breakpoints are dyadic rationals $\frac{a}{2^{2}}$.
- Function composition defines a natural group on these objects.


## A SURPRISING REDUCTION

- Everything in this set can be constructed from just 2 functions



## A SURPRISING REDUCTION

- Everything in this set can be constructed from just 2 functions

- These are the generators of the group - denote them $x_{0}, x_{1}$


## A SURPRISING REDUCTION

- Everything in this set can be constructed from just 2 functions


- These are the generators of the group - denote them $x_{0}, x_{1}$ and these are their inverses


## A SURPRISING REDUCTION

- Everything in this set can be constructed from just 2 functions


- These are the generators of the group - denote them $x_{0}, x_{1}$ and these are their inverses
- The generators obey 2 non-trivial relations

$$
\left[x_{0} x_{1}^{-1}, x_{0}^{-1} x_{1} x_{0}\right]=\left[x_{0} x_{1}^{-1}, x_{0}^{-2} x_{1} x_{0}^{2}\right]=\text { identity }
$$

## THOMPSON'S GROUP $F$

Thompson's group $F$

## [Thompson 1965]

$$
\left\langle x_{0}, x_{1} \mid\left[x_{0} x_{1}^{-1}, x_{0}^{-1} x_{1} x_{0}\right],\left[x_{0} x_{1}^{-1}, x_{0}^{-2} x_{1} x_{0}^{2}\right]\right\rangle
$$

## THOMPSON'S GROUP $F$ - SOME COMBINATORIAL QUESTIONS

## Thompson's group $F$

[Thompson 1965]

$$
\left\langle x_{0}, x_{1} \mid\left[x_{0} x_{1}^{-1}, x_{0}^{-1} x_{1} x_{0}\right],\left[x_{0} x_{1}^{-1}, x_{0}^{-2} x_{1} x_{0}^{2}\right]\right\rangle
$$

## Length

Given a word in $F$ what is the shortest equivalent word?

## Growth

How many elements of $F$ are represented by minimal words of length $\ell$ ?

## Cogrowth

How many words of $n$ generators are equivalent to the identity?

## THOMPSON'S GROUP $F$ - SOME COMBINATORIAL QUESTIONS

## Thompson's group $F$

[Thompson 1965]

$$
\left\langle x_{0}, x_{1} \mid\left[x_{0} x_{1}^{-1}, x_{0}^{-1} x_{1} x_{0}\right],\left[x_{0} x_{1}^{-1}, x_{0}^{-2} x_{1} x_{0}^{2}\right]\right\rangle
$$

## Length

[Fordham 2003]
Given a word in $F$ what is the shortest equivalent word?

## Growth

How many elements of $F$ are represented by minimal words of length $\ell$ ?

Cogrowth
How many words of $n$ generators are equivalent to the identity?

## THOMPSON'S GROUP $F$ - SOME COMBINATORIAL QUESTIONS

## Thompson's group $F$

[Thompson 1965]

$$
\left\langle x_{0}, x_{1} \mid\left[x_{0} x_{1}^{-1}, x_{0}^{-1} x_{1} x_{0}\right],\left[x_{0} x_{1}^{-1}, x_{0}^{-2} x_{1} x_{0}^{2}\right]\right\rangle
$$

## Length

[Fordham 2003]
Given a word in $F$ what is the shortest equivalent word?

## Growth

[E, Fusy \& R 2010]

How many elements of $F$ are represented by minimal words of length $\ell$ ?

## Cogrowth

How many words of $n$ generators are equivalent to the identity?

## THOMPSON'S GROUP $F$ - SOME COMBINATORIAL QUESTIONS

## Thompson's group $F$

[Thompson 1965]

$$
\left\langle x_{0}, x_{1} \mid\left[x_{0} x_{1}^{-1}, x_{0}^{-1} x_{1} x_{0}\right],\left[x_{0} x_{1}^{-1}, x_{0}^{-2} x_{1} x_{0}^{2}\right]\right\rangle
$$

## Length

[Fordham 2003]
Given a word in $F$ what is the shortest equivalent word?

## Growth

[E, Fusy \& R 2010]

How many elements of $F$ are represented by minimal words of length $\ell$ ?

Cogrowth
How many words of $n$ generators are equivalent to the identity?

## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann conjecture?


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors
- 2011 - Review article: "Recent conference held a vote


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors
- 2011 - Review article: "Recent conference held a vote - split evenly"


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors
- 2011 - Review article: "Recent conference held a vote - split evenly"
- 2011 - " $F$ is not amenable"


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors
- 2011 - Review article: "Recent conference held a vote - split evenly"
- 2011 - " $F$ is not amenable" - serious error


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors
- 2011 - Review article: "Recent conference held a vote - split evenly"
- 2011 - " $F$ is not amenable" - serious error
- 2012 - " $F$ is amenable"


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors
- 2011 - Review article: "Recent conference held a vote - split evenly"
- 2011 - " $F$ is not amenable" - serious error
- 2012 - " $F$ is amenable" - subsequently retracted


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors
- 2011 - Review article: "Recent conference held a vote - split evenly"
- 2011 - " $F$ is not amenable" - serious error
- 2012 - " $F$ is amenable" - subsequently retracted
- This problem is still not settled.


## VERY OPEN?

- Amenability of $F$ - counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
- February: " $F$ is not amenable"
- May: " $F$ is amenable"
- Both have serious errors
- 2011 - Review article: "Recent conference held a vote - split evenly"
- 2011 - " $F$ is not amenable" - serious error
- 2012 - " $F$ is amenable" - subsequently retracted
- This problem is still not settled.

Nasty unsolved problem - why not try some stat-mech?

## Some easy group theory

Murray was teaching me some group theory...
Easy problem on $\mathbb{Z}^{2}$
Given a sequence of steps compute distance of endpoint from origin

## Some easy group theory

Murray was teaching me some group theory...
Easy problem on $\mathbb{Z}^{2}$
Given a sequence of steps compute distance of endpoint from origin

- Use $a, \bar{a}$ for $\mathrm{E}, \mathrm{W}$ and $b, \bar{b}$ for $\mathrm{N}, \mathrm{S}$.


## SOME EASY GROUP THEORY

Murray was teaching me some group theory...
Easy problem on $\mathbb{Z}^{2}$
Given a sequence of steps compute distance of endpoint from origin

- Use $a, \bar{a}$ for $\mathrm{E}, \mathrm{W}$ and $b, \bar{b}$ for $\mathrm{N}, \mathrm{S}$.

$$
a b b a b \bar{a} \bar{b} \bar{b}
$$

- Start with word


## SOME EASY GROUP THEORY

Murray was teaching me some group theory...
Easy problem on $\mathbb{Z}^{2}$
Given a sequence of steps compute distance of endpoint from origin

- Use $a, \bar{a}$ for $\mathrm{E}, \mathrm{W}$ and $b, \bar{b}$ for $\mathrm{N}, \mathrm{S}$.

$$
a a \bar{a} b b b \bar{b} \bar{b}
$$

- Push all $a$ and $\bar{a}$ to the left


## Some easy group theory

Murray was teaching me some group theory...
Easy problem on $\mathbb{Z}^{2}$
Given a sequence of steps compute distance of endpoint from origin

- Use $a, \bar{a}$ for $\mathrm{E}, \mathrm{W}$ and $b, \bar{b}$ for $\mathrm{N}, \mathrm{S}$.

$$
a a \bar{a} b b b \bar{b} \bar{b}
$$

- Cancel $a \bar{a}$ and $b \bar{b}$


## SOME EASY GROUP THEORY

Murray was teaching me some group theory...
Easy problem on $\mathbb{Z}^{2}$
Given a sequence of steps compute distance of endpoint from origin

- Use $a, \bar{a}$ for $\mathrm{E}, \mathrm{W}$ and $b, \bar{b}$ for $\mathrm{N}, \mathrm{S}$.

$$
a b
$$

- Distance is length of remainder - geodesic normal form


## Again, but With pictures



$$
a b b a b \bar{a} \bar{b} \bar{b}
$$

- Start with word


## Again, but With pictures



$$
a a \bar{a} b b b \bar{b} \bar{b}
$$

- Push all $a$ and $\bar{a}$ to the left - why can we do this?


## Again, but With pictures



$$
a a \bar{a} b b b \bar{b} \bar{b}
$$

- Cancel $a \bar{a}$ and $b \bar{b}$


## Again, But With Pictures


$a b$

- Distance is length of remainder


## WHY CAN WE COMMUTE $a$ 'S AND $b^{\prime}$ 's?



Walks on Cayley graph
$\mathbb{Z}^{2}$ is the group $\langle a, b \mid a b=b a\rangle$

## WHY CAN WE COMMUTE $a$ 'S AND $b^{\prime}$ 's?



Walks on Cayley graph
$\mathbb{Z}^{2}$ is the group $\langle a, b \mid a b \bar{a} \bar{b}=\cdot\rangle$

- The generators are the steps
- The relation tells us we can walk around a face.


## LOOK A BIT MORE AT COMMUTING



- Moving $a^{\prime}$ s to the left is inserting relation and cancelling.


## LOOK A BIT MORE AT COMMUTING



- Moving $a^{\prime}$ s to the left is inserting relation and cancelling.


## LOOK A BIT MORE AT COMMUTING



- Moving $a^{\prime}$ s to the left is inserting relation and cancelling.


## LOOK A BIT MORE AT COMMUTING



- Moving $a^{\prime}$ s to the left is inserting relation and cancelling.


## LOOK A BIT MORE AT COMMUTING



- Moving $a^{\prime}$ s to the left is inserting relation and cancelling.


## LOOK A BIT MORE AT COMMUTING



- Moving $a^{\prime}$ s to the left is inserting relation and cancelling.

This elbow-flip looks like a move from a stat-mech algorithm

## LOOK A BIT MORE AT COMMUTING



- Moving $a^{\prime}$ s to the left is inserting relation and cancelling.

This elbow-flip looks like a move from a stat-mech algorithm

## ANOTHER VERY UNSOLVED PROBLEM



## Self-avoiding polygon

- An embedding of a simple closed curve into a regular lattice.
- $p_{n}$ is \# polygons of $n$ vertices up to translations.


## ANOTHER VERY UNSOLVED PROBLEM



## Self-avoiding polygon

- An embedding of a simple closed curve into a regular lattice.
- $p_{n}$ is \# polygons of $n$ vertices up to translations.

Stubbornly unsolved, so many numerical methods developed.

## Random sampling of SAPs

## BFACF on $\mathbb{Z}^{2}$

Start with unit square, then

- Pick a face adjacent to polygon
- Flip edges around the face
- Accept or reject according to simple rule.


## Random sampling of SAPs

## BFACF on $\mathbb{Z}^{2}$

Start with unit square, then

- Pick a face adjacent to polygon
- Flip edges around the face
- Accept or reject according to simple rule.

[Berg \& Foerster 1981]
[Aragão de Carvalho, Caracciolo \& Frölich 1983]


## Random sampling of SAPs

## BFACF on $\mathbb{Z}^{2}$

Start with unit square, then

- Pick a face adjacent to polygon
- Flip edges around the face
- Accept or reject according to simple rule.

[Berg \& Foerster 1981]
[Aragão de Carvalho, Caracciolo \& Frölich 1983]
Method of choice for random knots - control over topology


## $\mathrm{BFACF} \longleftrightarrow a b=b a$

We realised that BFACF moves are just insert-relation \& cancel.


## $\mathrm{BFACF} \longleftrightarrow a b=b a$

We realised that BFACF moves are just insert-relation \& cancel.


## $\mathrm{BFACF} \longleftrightarrow a b=b a$

We realised that BFACF moves are just insert-relation \& cancel.


## $\mathrm{BFACF} \longleftrightarrow a b=b a$

We realised that BFACF moves are just insert-relation \& cancel.


So why not do BFACF on groups?

## BASIC MOVES

Start with empty word, and then do sequence of moves

## BASIC MOVES

Start with empty word, and then do sequence of moves
Conjugate

- Pick $x \in\{a, \bar{a}, b, \bar{b}\}$
- Replace $w \mapsto x w \bar{x}$
- Reduce


## BASIC MOVES

Start with empty word, and then do sequence of moves
Conjugate

- Pick $x \in\{a, \bar{a}, b, \bar{b}\}$
- Replace $w \mapsto x w \bar{x}$
- Reduce


## Insert

- Pick $r \in\{$ relations* $\}$
- Pick position along word $w=u \cdot v$
- Insert at that position $w \mapsto u r v$
- Reduce


## BASIC MOVES

Start with empty word, and then do sequence of moves
Conjugate

- Pick $x \in\{a, \bar{a}, b, \bar{b}\}$
- Replace $w \mapsto x w \bar{x}$
- Reduce


## Insert

- Pick $r \in\{$ relations* $\}$
- Pick position along word $w=u \cdot v$
- Insert at that position $w \mapsto u r v$
- Reduce

Samples freely reduced words $\equiv$ random walks with no backtracking

## TECHNICAL ISSUE

To sample uniformly at each length, moves must be uniquely reversible

## TECHNICAL ISSUE

To sample uniformly at each length, moves must be uniquely reversible
Conjugation

- Start with $w$, then
- Conjugate by $x-w \mapsto x w \bar{x}$
- Conjugate by $\bar{x}-x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.


## TECHNICAL ISSUE

To sample uniformly at each length, moves must be uniquely reversible
Conjugation $\checkmark$

- Start with $w$, then
- Conjugate by $x-w \mapsto x w \bar{x}$
- Conjugate by $\bar{x}-x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.


## TECHNICAL ISSUE

To sample uniformly at each length, moves must be uniquely reversible
Conjugation $\checkmark$

- Start with $w$, then
- Conjugate by $x-w \mapsto x w \bar{x}$
- Conjugate by $\bar{x}-x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.


## Insertion

- Start with $w=a^{k} \bar{r} \bar{a}^{k}$, then
- Insert $r-w \mapsto a^{k} r \bar{r} \bar{a}^{k}$
- Reduce by $a^{k} r \bar{r} \bar{a}^{k} \mapsto a^{k} \bar{a}^{k} \mapsto$.


## TECHNICAL ISSUE

To sample uniformly at each length, moves must be uniquely reversible
Conjugation $\checkmark$

- Start with $w$, then
- Conjugate by $x-w \mapsto x w \bar{x}$
- Conjugate by $\bar{x}-x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.


## Insertion - work needed

- Start with $w=a^{k} \bar{r} \bar{a}^{k}$, then
- Insert $r-w \mapsto a^{k} r \bar{r} \bar{a}^{k}$
- Reduce by $a^{k} r \bar{r} \bar{a}^{k} \mapsto a^{k} \bar{a}^{k} \mapsto$.
- How can we go back?


## TECHNICAL ISSUE

To sample uniformly at each length, moves must be uniquely reversible
Conjugation $\checkmark$

- Start with $w$, then
- Conjugate by $x-w \mapsto x w \bar{x}$
- Conjugate by $\bar{x}-x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.


## Insertion - work needed

- Start with $w=a^{k} \bar{r} \bar{a}^{k}$, then
- Insert $r-w \mapsto a^{k} r \bar{r} \bar{a}^{k}$
- Reduce by $a^{k} r \bar{r} \bar{a}^{k} \mapsto a^{k} \bar{a}^{k} \mapsto$.
- How can we go back?

Only accept an insertion if cancels at most $|r|$ generators.

## LEFT-INSERTIONS ONLY

Consider $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$

## LEFT-INSERTIONS ONLY

Consider $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$

- Start with

$$
w=u b \bar{a} \bar{b} \cdot a b \bar{a} v
$$

## LEFT-INSERTIONS ONLY

Consider $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$

- Start with

$$
w=u b \bar{a} \bar{b} \cdot a b \bar{a} v
$$

- Now insert $r=b a \bar{b} \bar{a}$

$$
\begin{aligned}
w & \mapsto u b \underbrace{\bar{a} \bar{b} b a} \underbrace{\bar{b}^{\bar{a} a b}} \bar{a} v \\
& \mapsto u b \bar{a} v
\end{aligned}
$$

## LEFT-INSERTIONS ONLY

Consider $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$

- Start with

$$
w=u b \bar{a} \bar{b} \cdot a b \bar{a} v
$$

- Now insert $r=b a \bar{b} \bar{a}$

$$
\begin{aligned}
w & \mapsto u b \underbrace{\bar{a} \bar{b} b a} \underbrace{\bar{b} \bar{a} a b} \bar{a} v \\
& \mapsto u b \bar{a} v
\end{aligned}
$$

- To go back either

$$
\begin{aligned}
u b \bar{a} v & \mapsto u b \bar{a} \bar{b} a b \bar{a} v \\
& \mapsto u b \bar{a} \bar{b} a b \bar{a} v
\end{aligned}
$$

or

## LEFT-INSERTIONS ONLY

Consider $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$

- Start with

$$
w=u b \bar{a} \bar{b} \cdot a b \bar{a} v
$$

- Now insert $r=b a \bar{a} \bar{a}$

$$
\begin{aligned}
w & \mapsto u b \underbrace{\bar{a} \bar{b} b a} \underbrace{\bar{b}-\bar{a} a b} \bar{a} v \\
& \mapsto u b \bar{a} v
\end{aligned}
$$

- To go back either

$$
\begin{aligned}
u b \bar{a} v & \mapsto u b \bar{a} \bar{b} a b \bar{a} v & \text { or } \\
& \mapsto u b \bar{a} \bar{b} a b \bar{a} v &
\end{aligned}
$$

Left-insertions uniquely reversible
Insertion of $r$ accepted only if

- cancellations occur to left of $r$, and
- at most $|r|$ generators canceled.


## THE ALGORITHM

## BFACF on finitely presented group

Start with $w=$.

- Flip coin to choose left-insertion or conjugation
- Do move $w \mapsto w^{\prime}$
- Accept move with probability

$$
\operatorname{Pr}(\text { accept })= \begin{cases}1 & \left|w^{\prime}\right| \leq|w| \\ \beta^{\left|w^{\prime}\right|-|w|} & \text { otherwise }\end{cases}
$$

otherwise reject move and keep $w$.
Then reduced words are sampled with probability $\operatorname{Pr}(w) \propto \beta^{|w|}$.

## THE ALGORITHM

## BFACF on finitely presented group

Start with $w=$.

- Flip coin to choose left-insertion or conjugation
- Do move $w \mapsto w^{\prime}$
- Accept move with probability

$$
\operatorname{Pr}(\text { accept })= \begin{cases}1 & \left|w^{\prime}\right| \leq|w| \\ \beta^{\left|w^{\prime}\right|-|w|} & \text { otherwise }\end{cases}
$$

otherwise reject move and keep $w$.
Then reduced words are sampled with probability $\operatorname{Pr}(w) \propto \beta^{|w|}$.
Sampling behaviour depends on parameter $\beta$.

## WHAT DOES $\beta$ DO?

- Words are sampled at all lengths and uniform at each length.


## What does $\beta$ DO?

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function $\beta$ :


## What does $\beta$ DO?

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function $\beta$ :


Mean length diverges as $\beta \rightarrow \beta_{c}$

- and $\beta_{c}$ is radius of convergence, $\beta_{c}^{-1}=\limsup p_{n}^{1 / n}$
$n \rightarrow \infty$


## What does $\beta$ do?

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function $\beta$ :


Mean length diverges as $\beta \rightarrow \beta_{c}$

- and $\beta_{c}$ is radius of convergence, $\beta_{c}^{-1}=\limsup p_{n}^{1 / n}$

$$
n \rightarrow \infty
$$

## The plan

Plot of mean length

## What does $\beta$ do?

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function $\beta$ :


Mean length diverges as $\beta \rightarrow \beta_{c}$

- and $\beta_{c}$ is radius of convergence, $\beta_{c}^{-1}=\limsup p_{n}^{1 / n}$

$$
n \rightarrow \infty
$$

## The plan

Plot of mean length $\mapsto$ estimate of $\beta_{c}$

## What does $\beta$ do?

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function $\beta$ :


Mean length diverges as $\beta \rightarrow \beta_{c}$

- and $\beta_{c}$ is radius of convergence, $\beta_{c}^{-1}=\limsup p_{n}^{1 / n}$

$$
n \rightarrow \infty
$$

## The plan

Plot of mean length $\mapsto$ estimate of $\beta_{c} \mapsto$ decide amenability

## WARM UP WITH GROUPS WE KNOW

Evangelise

## Warm up with groups We know

Evangelise - lots of enumeration problems waiting here!

## WARM UP WITH GROUPS WE KNOW

Evangelise - lots of enumeration problems waiting here!


- Here is mean length vs $\beta$ for $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$ - data from simulation \& exact results.


## WARM UP WITH GROUPS WE KNOW

Evangelise - lots of enumeration problems waiting here!


- Here is mean length vs $\beta$ for $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$ - data from simulation \& exact results.
- Clear singularity at $\beta=1 / 3$
- remember random words, no backtracking.


## WARM UP WITH GROUPS WE KNOW

Evangelise - lots of enumeration problems waiting here!


- Here is mean length vs $\beta$ for $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$ - data from simulation \& exact results.
- Clear singularity at $\beta=1 / 3$
- remember random words, no backtracking.

Data says "amenable" - agrees with known results.

## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $\left\langle a, b \mid a^{2}=b^{3}=\cdot\right\rangle$ —data from simulation \& exact results [Kouksov 1998].


## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $\left\langle a, b \mid a^{2}=b^{3}=\cdot\right\rangle$
- data from simulation \& exact results [Kouksov 1998].
- Clearly $\beta_{c}>1 / 3$, consistent with known $\beta_{c}=0.341882 \ldots$


## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $\left\langle a, b \mid a^{2}=b^{3}=\cdot\right\rangle$ - data from simulation \& exact results [Kouksov 1998].
- Clearly $\beta_{c}>1 / 3$, consistent with known $\beta_{c}=0.341882 \ldots$

Data says "not amenable" - agrees with known results.

## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $B S(2,2)=\left\langle a, b \mid a^{2} b=b a^{2}\right\rangle$ - data from simulation \& exact results $[\mathrm{E}, \mathrm{JvR}, \mathrm{R} \& \mathrm{~W}]$.


## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $B S(2,2)=\left\langle a, b \mid a^{2} b=b a^{2}\right\rangle$ - data from simulation \& exact results $[\mathrm{E}, \mathrm{JvR}, \mathrm{R} \& \mathrm{~W}]$.
- Clearly $\beta_{c}>1 / 3$, consistent with known $\beta_{c}=0.374733 \ldots$


## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $B S(2,2)=\left\langle a, b \mid a^{2} b=b a^{2}\right\rangle$ - data from simulation \& exact results $[\mathrm{E}, \mathrm{JvR}, \mathrm{R} \& \mathrm{~W}]$.
- Clearly $\beta_{c}>1 / 3$, consistent with known $\beta_{c}=0.374733 \ldots$

Data says "not amenable" - agrees with known results.

## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $B S(1,2)=\left\langle a, b \mid a b=b a^{2}\right\rangle$ - data from simulation \& "exact results" [E, JvR, R\&W].


## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $B S(1,2)=\left\langle a, b \mid a b=b a^{2}\right\rangle$
- data from simulation \& "exact results" [E, JvR, R\&W].
- recurrence for series data, no closed form.


## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $B S(1,2)=\left\langle a, b \mid a b=b a^{2}\right\rangle$ - data from simulation \& "exact results" [E, JvR, R\&W]. - recurrence for series data, no closed form.
- Singularity $\beta_{c} \approx 1 / 3$


## WARM UP WITH GROUPS WE KNOW



- Here is mean length vs $\beta$ for $B S(1,2)=\left\langle a, b \mid a b=b a^{2}\right\rangle$
- data from simulation \& "exact results" [E, JvR, R\&W].
- recurrence for series data, no closed form.
- Singularity $\beta_{c} \approx 1 / 3$

Data says "amenable" - agrees with known results.

## And now Thompson's group $F$

## Warm-up <br> And NOW THOMPSON's GROUP $F$



## AND NOW THOMPSON'S GROUP $F$



- Appears that $\beta_{c} \gg 1 / 3$


## And now Thompson's group $F$



- Appears that $\beta_{c} \gg 1 / 3$
- So growth rate of all trivial words $\ll 4^{n}$


## And NOW THOMPSON's GROUP $F$



- Appears that $\beta_{c} \gg 1 / 3$
- So growth rate of all trivial words $\ll 4^{n}$

Data says "Thompson's group is not amenable."

## CHECK A DIFFERENT PRESENTATION OF $F$

## CHECK A DIFFERENT PRESENTATION OF $F$

$$
\langle a, b, c, d \mid c=\bar{a} b a, d=\bar{a} c a,[a \bar{b}, c]=[a \bar{b}, d]=\cdot\rangle
$$

## CHECK A DIFFERENT PRESENTATION OF $F$

$$
\langle a, b, c, d \mid c=\bar{a} b a, d=\bar{a} c a,[a \bar{b}, c]=[a \bar{b}, d]=\cdot\rangle
$$



## CHECK A DIFFERENT PRESENTATION OF $F$

$$
\langle a, b, c, d \mid c=\bar{a} b a, d=\bar{a} c a,[a \bar{b}, c]=[a \bar{b}, d]=\cdot\rangle
$$



- Has 4 generators, so amenable $\Leftrightarrow \beta_{c}=1 / 7$
- Appears that $\beta_{c} \gg 1 / 7$


## CHECK A DIFFERENT PRESENTATION OF $F$

$$
\langle a, b, c, d \mid c=\bar{a} b a, d=\bar{a} c a,[a \bar{b}, c]=[a \bar{b}, d]=\cdot\rangle
$$



- Has 4 generators, so amenable $\Leftrightarrow \beta_{c}=1 / 7$
- Appears that $\beta_{c} \gg 1 / 7$

Data says "Thompson's group is not amenable."

ONE MORE FOR PARANOIA

## ONE MORE FOR PARANOIA

$$
\langle a, b, c, d, e \mid c=\bar{a} b a, d=\bar{a} c a, e=a \bar{b},[e, c]=[e, d]=\cdot\rangle
$$

## ONE MORE FOR PARANOIA

$$
\langle a, b, c, d, e \mid c=\bar{a} b a, d=\bar{a} c a, e=a \bar{b},[e, c]=[e, d]=\cdot\rangle
$$



## ONE MORE FOR PARANOIA

$$
\langle a, b, c, d, e \mid c=\bar{a} b a, d=\bar{a} c a, e=a \bar{b},[e, c]=[e, d]=\cdot\rangle
$$



- Has 5 generators, so amenable $\Leftrightarrow \beta_{c}=1 / 9$
- Appears that $\beta_{c} \gg 1 / 9$


## ONE MORE FOR PARANOIA

$$
\langle a, b, c, d, e \mid c=\bar{a} b a, d=\bar{a} c a, e=a \bar{b},[e, c]=[e, d]=\cdot\rangle
$$



- Has 5 generators, so amenable $\Leftrightarrow \beta_{c}=1 / 9$
- Appears that $\beta_{c} \gg 1 / 9$

Data says "Thompson's group is not amenable."

## CONCLUSIONS

- Amenability of Thompson's group is a very hard open problem


## CONCLUSIONS

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work


## CONCLUSIONS

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
- [Burillo, Cleary \& Weist 2007]
- random walks on Cayley graph
- [Arzhantseva, Guba, Lustig \& Préaux 2008]
- testing Cayley graph densities
- [E, R \& W 2011]
- finite subgraphs of Cayley graph


## CONCLUSIONS

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
- [Burillo, Cleary \& Weist 2007]
- random walks on Cayley graph
- [Arzhantseva, Guba, Lustig \& Préaux 2008]
- testing Cayley graph densities
- [E, R \& W 2011]
- finite subgraphs of Cayley graph
- A hard numerical problem too


## CONCLUSIONS

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
- [Burillo, Cleary \& Weist 2007]
- random walks on Cayley graph
- [Arzhantseva, Guba, Lustig \& Préaux 2008]
- testing Cayley graph densities
- [E, R \& W 2011]
- finite subgraphs of Cayley graph
- A hard numerical problem too - early days


## CONCLUSIONS

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
- [Burillo, Cleary \& Weist 2007]
- random walks on Cayley graph
- [Arzhantseva, Guba, Lustig \& Préaux 2008]
- testing Cayley graph densities
- [E, R \& W 2011]
- finite subgraphs of Cayley graph
- A hard numerical problem too - early days so be careful


## CONCLUSIONS

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
- [Burillo, Cleary \& Weist 2007]
- random walks on Cayley graph
- [Arzhantseva, Guba, Lustig \& Préaux 2008]
- testing Cayley graph densities
- [E, R \& W 2011]
- finite subgraphs of Cayley graph
- A hard numerical problem too - early days so be careful


## But if I had to guess

Thompson's group is not amenable

## CONCLUSIONS

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
- [Burillo, Cleary \& Weist 2007]
- random walks on Cayley graph
- [Arzhantseva, Guba, Lustig \& Préaux 2008]
- testing Cayley graph densities
- [E, R \& W 2011]
- finite subgraphs of Cayley graph
- A hard numerical problem too - early days so be careful


## But if I had to guess

Thompson's group is not amenable

Thanks for listening.

## Trivial words in Baumslag-Solitar groups

## Baumslag-Solitar groups

$$
B S(N, M)=\left\langle a, b \mid a^{N} b=b a^{M}\right\rangle
$$

## Trivial words in Baumslag-Solitar groups

## Baumslag-Solitar groups

$$
B S(N, M)=\left\langle a, b \mid a^{N} b=b a^{M}\right\rangle
$$

- We already know $B S(1,1) \equiv \mathbb{Z}^{2}$


## Trivial words in Baumslag-Solitar groups

## Baumslag-Solitar groups

$$
B S(N, M)=\left\langle a, b \mid a^{N} b=b a^{M}\right\rangle
$$

- We already know $B S(1,1) \equiv \mathbb{Z}^{2}$
- We have found functional equations for cogrowth of all $B S(N, M)$
- Can solve these for $B S(N, N)$


## Trivial words in Baumslag-Solitar groups

## Baumslag-Solitar groups

$$
B S(N, M)=\left\langle a, b \mid a^{N} b=b a^{M}\right\rangle
$$

- We already know $B S(1,1) \equiv \mathbb{Z}^{2}$
- We have found functional equations for cogrowth of all $B S(N, M)$
- Can solve these for $B S(N, N)$
- Key idea - cut group into cosets of $\langle a\rangle$


## CoUNTING LOOPS IN $B S(1,1)$

- Before we used a cute construction - try to be more systematic.


## CoUNTING LOOPS IN $B S(1,1)$

- Before we used a cute construction - try to be more systematic.
- Cut $\mathbb{Z}^{2}$ into cosets $b^{k}\langle a\rangle$ - ie horizontal lines.



## CoUnting loops in $B S(1,1)$

- Before we used a cute construction - try to be more systematic.
- Cut $\mathbb{Z}^{2}$ into cosets $b^{k}\langle a\rangle$ - ie horizontal lines.

- Horizontal steps move within coset
- Vertical steps move between them.


## CoUNTING LOOPS IN $B S(1,1)$

Count all walks ending in $\langle a\rangle$ :

$$
G(z ; q)=\sum_{k} \sum_{w \equiv a^{k}} z^{|w|} q^{k}
$$



## CoUnting loops in $B S(1,1)$

Count all walks ending in $\langle a\rangle$ :

$$
G(z ; q)=\sum_{k} \sum_{w \equiv a^{k}} z^{|w|} q^{k}
$$



Use a standard factorisation for Catalan objects (eg Dyck paths, binary trees)

## Counting loops in $B S(1,1)$

Count all walks ending in $\langle a\rangle$ :

$$
G(z ; q)=\sum_{k} \sum_{w \equiv a^{k}} z^{|w|} q^{k}
$$



Use a standard factorisation for Catalan objects (eg Dyck paths, binary trees)

- Cut walk into pieces at each visit to $\langle a\rangle$


## SCHEMATIC FACTORISATION


$G(z ; q)=1+z(q+\bar{q}) G(z, q)+2 z^{2} G(z ; q) L(z ; q)$

## SCHEMATIC FACTORISATION



$$
\begin{aligned}
& G(z ; q)=1+z(q+\bar{q}) G(z, q)+2 z^{2} G(z ; q) L(z ; q) \\
& L(z ; q)=1+z(q+\bar{q}) L(z ; q)+z^{2} L(z ; q) L(z ; q)
\end{aligned}
$$

## SCHEMATIC FACTORISATION

$G(z ; q)=1+z(q+\bar{q}) G(z, q)+2 z^{2} G(z ; q) L(z ; q)$

$$
L(z ; q)=1+z(q+\bar{q}) L(z ; q)+z^{2} L(z ; q) L(z ; q)
$$

- Solve for $G(z ; q)$ — algebraic function
- Take constant term wrt $q$ - D-finite function

Now DO BS $(2,2)$

The Cayley graph is not so simple


Now Do BS $(2,2)$

The Cayley graph is not so simple


- It is not flat

The Cayley graph is not so simple


- It is not flat
- Parity of $x$-ordinate decides if vertical step moves to a different "sheet"

The Cayley graph is not so simple


- It is not flat
- Parity of $x$-ordinate decides if vertical step moves to a different "sheet"

The Cayley graph is not so simple


- It is not flat
- Parity of $x$-ordinate decides if vertical step moves to a different "sheet"

The Cayley graph is not so simple


- It is not flat
- Parity of $x$-ordinate decides if vertical step moves to a different "sheet"
- Looked at from the side, cosets form a tree

The Cayley graph is not so simple


- It is not flat
- Parity of $x$-ordinate decides if vertical step moves to a different "sheet"
- Looked at from the side, cosets form a tree

The Cayley graph is not so simple


- It is not flat
- Parity of $x$-ordinate decides if vertical step moves to a different "sheet"
- Looked at from the side, cosets form a tree

The Cayley graph is not so simple


- It is not flat
- Parity of $x$-ordinate decides if vertical step moves to a different "sheet"
- Looked at from the side, cosets form a tree
- Factor as before, but more care to decide if $b, \bar{b}$ moves to or from root.


## SCHEMATIC FACTORISATION



$$
G(z ; q)=1+z(q+\bar{q}) G(z, q)+2 z^{2} G(z ; q)[\mathcal{E} \circ L(z ; q)]
$$

## SCHEMATIC FACTORISATION



$$
\begin{aligned}
& G(z ; q)=1+z(q+\bar{q}) G(z, q)+2 z^{2} G(z ; q)[\mathcal{E} \circ L(z ; q)] \\
& L(z ; q)=1+z(q+\bar{q}) L(z ; q)+z^{2} L(z ; q)[\mathcal{E} \circ L(z ; q)]+z^{2}[\mathcal{O} \circ L(z ; q)][\mathcal{E} \circ L(z ; q)]
\end{aligned}
$$

## SCHEMATIC FACTORISATION



$$
\begin{aligned}
& G(z ; q)=1+z(q+\bar{q}) G(z, q)+2 z^{2} G(z ; q)[\mathcal{E} \circ L(z ; q)] \\
& L(z ; q)=1+z(q+\bar{q}) L(z ; q)+z^{2} L(z ; q)[\mathcal{E} \circ L(z ; q)]+z^{2}[\mathcal{O} \circ L(z ; q)][\mathcal{E} \circ L(z ; q)]
\end{aligned}
$$

- Solve for $G(z ; q)$ - algebraic function
- Take constant term wrt $q$ - D-finite function


## More generally

## D-finite solution for $B S(N, N)=\left\langle a, b \mid a^{N} b=b a^{N}\right\rangle$

- Similar factorisation gives $G(z, q)$ algebraic degree $N+1$
- Take constant term wrt $q$ gives D-finite solution


## More generally

## D-finite solution for $B S(N, N)=\left\langle a, b \mid a^{N} b=b a^{N}\right\rangle$

- Similar factorisation gives $G(z, q)$ algebraic degree $N+1$
- Take constant term wrt $q$ gives D-finite solution
- Growth rate of trivial words are algebraic numbers
- The DE satisfied by the CT gets worse with $N$


## MORE GENERALLY

## D-finite solution for $B S(N, N)=\left\langle a, b \mid a^{N} b=b a^{N}\right\rangle$

- Similar factorisation gives $G(z, q)$ algebraic degree $N+1$
- Take constant term wrt $q$ gives D-finite solution
- Growth rate of trivial words are algebraic numbers
- The DE satisfied by the CT gets worse with $N$
- BS $(1,1)$ - Write as elliptic integrals
- $B S(2,2)-6^{\text {th }}$ order ODE, coeffs degree $\leq 47$
- $B S(3,3)-8^{\text {th }}$ order ODE, coeffs degree $\leq 105$


## MORE GENERALLY

## D-finite solution for $B S(N, N)=\left\langle a, b \mid a^{N} b=b a^{N}\right\rangle$

- Similar factorisation gives $G(z, q)$ algebraic degree $N+1$
- Take constant term wrt $q$ gives D-finite solution
- Growth rate of trivial words are algebraic numbers
- The DE satisfied by the CT gets worse with $N$
- BS $(1,1)$ - Write as elliptic integrals
- $B S(2,2)-6^{\text {th }}$ order ODE, coeffs degree $\leq 47$
- $B S(3,3)-8^{\text {th }}$ order ODE, coeffs degree $\leq 105$
- $B S(10,10)-22^{\text {nd }}$ order ODE - 6 megabyte text file!


## MORE GENERALLY

## D-finite solution for $B S(N, N)=\left\langle a, b \mid a^{N} b=b a^{N}\right\rangle$

- Similar factorisation gives $G(z, q)$ algebraic degree $N+1$
- Take constant term wrt $q$ gives D-finite solution
- Growth rate of trivial words are algebraic numbers
- The DE satisfied by the CT gets worse with $N$
- BS $(1,1)$ - Write as elliptic integrals
- $B S(2,2)-6^{\text {th }}$ order ODE, coeffs degree $\leq 47$
- BS $(3,3)-8^{\text {th }}$ order ODE, coeffs degree $\leq 105$
- $B S(10,10)-22^{\text {nd }}$ order ODE - 6 megabyte text file!
- A big thanks to [Manuel Kauers] for help with this.


## More generally still - Messier

A similar, but more technical factorisation gives

## More generally still - Messier

A similar, but more technical factorisation gives
Functional equations for $B S(N, M)=\left\langle a, b \mid a^{N} b=b a^{M}\right\rangle$

$$
\begin{aligned}
& L=1+z(q+\bar{q}) L+z^{2} L \cdot\left[\Phi_{N, M} \circ L+\Phi_{M, N} \circ K\right]-z^{2}\left[\Phi_{M, N} \circ K\right] \cdot\left[\Phi_{N, N} \circ L\right], \\
& K=1+z(q+\bar{q}) K+z^{2} K \cdot\left[\Phi_{M, N} \circ K+\Phi_{N, M} \circ L\right]-z^{2}\left[\Phi_{N, M} \circ L\right] \cdot\left[\Phi_{M, M} \circ K\right], \\
& G=1+z(q+\bar{q}) G+z^{2} G \cdot\left[\Phi_{N, M} \circ L+\Phi_{M, N} \circ K\right],
\end{aligned}
$$

where

$$
\Phi_{d, e} \circ \sum_{k} c_{n, k} q^{k}=\sum_{j} c_{n, d j} q^{q j}
$$

## More generally still - Messier

A similar, but more technical factorisation gives
Functional equations for $B S(N, M)=\left\langle a, b \mid a^{N} b=b a^{M}\right\rangle$

$$
\begin{aligned}
& L=1+z(q+\bar{q}) L+z^{2} L \cdot\left[\Phi_{N, M} \circ L+\Phi_{M, N} \circ K\right]-z^{2}\left[\Phi_{M, N} \circ K\right] \cdot\left[\Phi_{N, N} \circ L\right], \\
& K=1+z(q+\bar{q}) K+z^{2} K \cdot\left[\Phi_{M, N} \circ K+\Phi_{N, M} \circ L\right]-z^{2}\left[\Phi_{N, M} \circ L\right] \cdot\left[\Phi_{M, M} \circ K\right], \\
& G=1+z(q+\bar{q}) G+z^{2} G \cdot\left[\Phi_{N, M} \circ L+\Phi_{M, N} \circ K\right],
\end{aligned}
$$

where

$$
\Phi_{d, e} \circ \sum_{k} c_{n, k} q^{k}=\sum_{j} c_{n, d j} q^{q j}
$$

- Unable to solve closed form - even for $B S(1,2)$.


## More generally still - MESSIER

A similar, but more technical factorisation gives
Functional equations for $B S(N, M)=\left\langle a, b \mid a^{N} b=b a^{M}\right\rangle$

$$
\begin{aligned}
& L=1+z(q+\bar{q}) L+z^{2} L \cdot\left[\Phi_{N, M} \circ L+\Phi_{M, N} \circ K\right]-z^{2}\left[\Phi_{M, N} \circ K\right] \cdot\left[\Phi_{N, N} \circ L\right], \\
& K=1+z(q+\bar{q}) K+z^{2} K \cdot\left[\Phi_{M, N} \circ K+\Phi_{N, M} \circ L\right]-z^{2}\left[\Phi_{N, M} \circ L\right] \cdot\left[\Phi_{M, M} \circ K\right], \\
& G=1+z(q+\bar{q}) G+z^{2} G \cdot\left[\Phi_{N, M} \circ L+\Phi_{M, N} \circ K\right],
\end{aligned}
$$

where

$$
\Phi_{d, e} \circ \sum_{k} c_{n, k} q^{k}=\sum_{j} c_{n, d j} q^{q j}
$$

- Unable to solve closed form - even for $B S(1,2)$.
- Series generation hard since $\operatorname{deg}_{q}\left[z^{n}\right] G(z ; q)$ grows exponentially with $n$.

