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TWO PROBLEMS LINKED

Two quite different problems
• from geometric group theory — amenability of groups
• from lattice statistical mechanics — ring polymers and random knotting

Start with simplest version of both

Random walk on Z2

Start at (0, 0) and take steps N, S,E,W.
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ACTUALLY — 1D IS EVEN SIMPLER

Random walk on Z
Start at 0 and take steps E,W

• What is probability of ending at 0?

• How many paths of length 2n end at 0 — c2n,0

c2n,0 =

(
2n
n

)
= 1, 2, 6, 20, 70 . . .

Returning to 0 — only even lengths

Pr(end at 0) =

(2n
n

)
22n ∼

1√
πn

polynomial decay
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BACK TO 2D

• What is probability of ending at (0, 0)? — cn,(0,0) =?

∑
n

cn,(0,0) · zn = 1 + 4z2 + 36z4 + 400z6 + 4900z8 + . . .

• Why are the terms
(2n

n

)2
?
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ROTATE EVERYTHING

Each step
• changes the x-ordinate by ±1, and
• changes the y-ordinate by ±1

So split into two independent 1d problems — each gives
(2n

n

)
.

Returning to the origin — only even lengths

Pr(end at origin) =

(
2n
n

)2

4−2n ∼ 1
πn

polynomial decay
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DO THE SAME THING ON A TREE

∑
n

tn,0zn =
3

1 + 2
√

1− 12z2

Return to root vertex — even lengths only

Pr(end at root) ∼ 6

√
2
πn3 ·

(√
3

2

)n

exponential decay
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Z2 AND F2 ARE EASY CASE OF HARD PROBLEM

These random walks are special cases of bigger problem

Walks on Cayley graph of group

Let G = 〈a, b | relations 〉
• what is the probability that a random word ≡ identity?

Amenability [Kesten, Grigorchuk, Cohen]

Let pn be the number of words of length n in G equivalent to the identity.

G is amenable ⇔ lim sup
n→∞

p1/n
n = 4

A very open problem for Thompson’s group F.
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PIECEWISE LINEAR FUNCTIONS

Consider continuous piecewise linear functions from [0, 1] 7→ [0, 1] such that

• f (0) = 0 and f (1) = 1
• all gradients are powers of 2
• coordinates of breakpoints are dyadic rationals a

2b .
• Function composition defines a natural group on these objects.
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A SURPRISING REDUCTION

• Everything in this set can be constructed from just 2 functions

• These are the generators of the group — denote them x0, x1

and these are their inverses

• The generators obey 2 non-trivial relations[
x0x−1

1 , x−1
0 x1x0

]
=
[
x0x−1

1 , x−2
0 x1x2

0

]
= identity
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THOMPSON’S GROUP F

— SOME COMBINATORIAL QUESTIONS

Thompson’s group F [Thompson 1965]

〈
x0, x1

∣∣∣ [x0x−1
1 , x−1

0 x1x0

]
,
[
x0x−1

1 , x−2
0 x1x2

0

]〉

Length

Given a word in F what is the shortest equivalent word?

Growth
How many elements of F are represented by minimal words of length `?

Cogrowth

How many words of n generators are equivalent to the identity?
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THOMPSON’S GROUP F — SOME COMBINATORIAL QUESTIONS

Thompson’s group F [Thompson 1965]

〈
x0, x1

∣∣∣ [x0x−1
1 , x−1

0 x1x0

]
,
[
x0x−1

1 , x−2
0 x1x2

0

]〉
Length [Fordham 2003]

Given a word in F what is the shortest equivalent word?

Growth [E, Fusy & R 2010]

How many elements of F are represented by minimal words of length `?

Cogrowth very open

How many words of n generators are equivalent to the identity?
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VERY OPEN?

• Amenability of F — counter-example to von Neumann conjecture?
• Open problem for 25+ years.
• In 2009 two interesting preprints appeared

• February: “F is not amenable”
• May: “F is amenable”

• Both have serious errors
• 2011 — Review article: “Recent conference held a vote
• 2011 — “F is not amenable”
• 2012 — “F is amenable”
• This problem is still not settled.

Nasty unsolved problem — why not try some stat-mech?
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• Amenability of F — counter-example to von Neumann ex-conjecture?
• Open problem for 25+ years.
• In 2009 two interesting preprints appeared

• February: “F is not amenable”
• May: “F is amenable”

• Both have serious errors
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• 2012 — “F is amenable”
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SOME EASY GROUP THEORY

Murray was teaching me some group theory. . .

Easy problem on Z2

Given a sequence of steps compute distance of endpoint from origin

• Use a, ā for E,W and b, b̄ for N,S.

•
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SOME EASY GROUP THEORY

Murray was teaching me some group theory. . .

Easy problem on Z2

Given a sequence of steps compute distance of endpoint from origin

• Use a, ā for E,W and b, b̄ for N,S.

a b b a b ā b̄ b̄

• Start with word
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SOME EASY GROUP THEORY

Murray was teaching me some group theory. . .

Easy problem on Z2

Given a sequence of steps compute distance of endpoint from origin

• Use a, ā for E,W and b, b̄ for N,S.

a a ā b b b b̄ b̄

• Push all a and ā to the left
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Easy problem on Z2

Given a sequence of steps compute distance of endpoint from origin

• Use a, ā for E,W and b, b̄ for N,S.
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SOME EASY GROUP THEORY

Murray was teaching me some group theory. . .

Easy problem on Z2

Given a sequence of steps compute distance of endpoint from origin

• Use a, ā for E,W and b, b̄ for N,S.

ab

• Distance is length of remainder — geodesic normal form
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AGAIN, BUT WITH PICTURES

a b b a b ā b̄ b̄

• Start with word
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AGAIN, BUT WITH PICTURES

a a ā b b b b̄ b̄

• Push all a and ā to the left — why can we do this?
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AGAIN, BUT WITH PICTURES

a a ā b b b b̄ b̄

• Cancel aā and bb̄

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

AGAIN, BUT WITH PICTURES

ab

• Distance is length of remainder
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WHY CAN WE COMMUTE a’S AND b’S?

Walks on Cayley graph

Z2 is the group 〈a, b | ab = ba〉

• The generators are the steps
• The relation tells us we can walk around a face.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

WHY CAN WE COMMUTE a’S AND b’S?

Walks on Cayley graph

Z2 is the group 〈a, b | abāb̄ = ·〉

• The generators are the steps
• The relation tells us we can walk around a face.
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LOOK A BIT MORE AT COMMUTING

• Moving a’s to the left is inserting relation and cancelling.

This elbow-flip looks like a move from a stat-mech algorithm
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ANOTHER VERY UNSOLVED PROBLEM

Self-avoiding polygon

• An embedding of a simple closed curve into a regular lattice.
• pn is # polygons of n vertices up to translations.

Stubbornly unsolved, so many numerical methods developed.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

ANOTHER VERY UNSOLVED PROBLEM

Self-avoiding polygon

• An embedding of a simple closed curve into a regular lattice.
• pn is # polygons of n vertices up to translations.

Stubbornly unsolved, so many numerical methods developed.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

RANDOM SAMPLING OF SAPS

BFACF on Z2

Start with unit square, then
• Pick a face adjacent to polygon
• Flip edges around the face
• Accept or reject according to simple rule.

[Berg & Foerster 1981]
[Aragão de Carvalho, Caracciolo & Frölich 1983]

Method of choice for random knots — control over topology
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BFACF←→ ab = ba

We realised that BFACF moves are just insert-relation & cancel.

So why not do BFACF on groups?
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BASIC MOVES

Start with empty word, and then do sequence of moves

Conjugate

• Pick x ∈ {a, ā, b, b̄}
• Replace w 7→ x w x̄
• Reduce

Insert
• Pick r ∈ {relations∗}
• Pick position along word w = u · v
• Insert at that position w 7→ u r v
• Reduce

Samples freely reduced words ≡ random walks with no backtracking
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TECHNICAL ISSUE

To sample uniformly at each length, moves must be uniquely reversible

Conjugation

• Start with w, then
• Conjugate by x — w 7→ x w x̄
• Conjugate by x̄ — x w x̄ 7→ x̄ x w x̄ x 7→ w.

Insertion

• Start with w = ak r̄ āk, then
• Insert r — w 7→ ak r r̄ āk

• Reduce by ak r r̄ āk 7→ ak āk 7→ ·

• How can we go back?

Only accept an insertion if cancels at most |r| generators.
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• Insert r — w 7→ ak r r̄ āk
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LEFT-INSERTIONS ONLY

Consider Z2 = 〈a, b | ab = ba〉

• Start with

w = u b ā b̄ · a b ā v

• Now insert r = bab̄ā

w 7→ u b ā b̄ b a︸ ︷︷ ︸ b̄ ā a b︸ ︷︷ ︸ ā v

7→ u b ā v

• To go back either

u b ā v 7→ u b ā b̄ a b ā v or

7→ u b ā b̄ a b ā v

Left-insertions uniquely reversible

Insertion of r accepted only if
• cancellations occur to left of r, and
• at most |r| generators canceled.
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THE ALGORITHM

BFACF on finitely presented group

Start with w = ·
• Flip coin to choose left-insertion or conjugation
• Do move w 7→ w′

• Accept move with probability

Pr(accept) =

{
1 |w′| ≤ |w|
β|w

′|−|w| otherwise

otherwise reject move and keep w.

Then reduced words are sampled with probability Pr(w) ∝ β|w|.

Sampling behaviour depends on parameter β.
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WHAT DOES β DO?

• Words are sampled at all lengths and uniform at each length.

• Mean length is an increasing function β:

Mean length diverges as β → βc

— and βc is radius of convergence, β−1
c = lim sup

n→∞
p1/n

n

The plan

Plot of mean length 7→ estimate of βc 7→ decide amenability
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WARM UP WITH GROUPS WE KNOW

Evangelise

— lots of enumeration problems waiting here!

• Here is mean length vs β for Z2 = 〈a, b | ab = ba〉
— data from simulation & exact results.

• Clear singularity at β = 1/3
— remember random words, no backtracking.

Data says “amenable” — agrees with known results.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

WARM UP WITH GROUPS WE KNOW

Evangelise — lots of enumeration problems waiting here!

• Here is mean length vs β for Z2 = 〈a, b | ab = ba〉
— data from simulation & exact results.

• Clear singularity at β = 1/3
— remember random words, no backtracking.

Data says “amenable” — agrees with known results.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

WARM UP WITH GROUPS WE KNOW

Evangelise — lots of enumeration problems waiting here!

• Here is mean length vs β for Z2 = 〈a, b | ab = ba〉
— data from simulation & exact results.

• Clear singularity at β = 1/3
— remember random words, no backtracking.

Data says “amenable” — agrees with known results.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

WARM UP WITH GROUPS WE KNOW

Evangelise — lots of enumeration problems waiting here!

• Here is mean length vs β for Z2 = 〈a, b | ab = ba〉
— data from simulation & exact results.

• Clear singularity at β = 1/3
— remember random words, no backtracking.

Data says “amenable” — agrees with known results.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

WARM UP WITH GROUPS WE KNOW

Evangelise — lots of enumeration problems waiting here!

• Here is mean length vs β for Z2 = 〈a, b | ab = ba〉
— data from simulation & exact results.

• Clear singularity at β = 1/3
— remember random words, no backtracking.

Data says “amenable” — agrees with known results.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

WARM UP WITH GROUPS WE KNOW

• Here is mean length vs β for 〈a, b | a2 = b3 = ·〉
— data from simulation & exact results [Kouksov 1998].

• Clearly βc > 1/3, consistent with known βc = 0.341882 . . .

Data says “not amenable” — agrees with known results.
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WARM UP WITH GROUPS WE KNOW

• Here is mean length vs β for BS(1, 2) = 〈a, b | ab = ba2〉
— data from simulation & “exact results” [E, JvR, R & W].

— recurrence for series data, no closed form.
• Singularity βc ≈ 1/3

Data says “amenable” — agrees with known results.
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AND NOW THOMPSON’S GROUP F

• Appears that βc � 1/3
• So growth rate of all trivial words� 4n

Data says “Thompson’s group is not amenable.”
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CHECK A DIFFERENT PRESENTATION OF F

〈a, b, c, d | c = āba, d = āca, [ab̄, c] = [ab̄, d] = ·〉

• Has 4 generators, so amenable⇔ βc = 1/7
• Appears that βc � 1/7

Data says “Thompson’s group is not amenable.”
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〈a, b, c, d | c = āba, d = āca, [ab̄, c] = [ab̄, d] = ·〉

• Has 4 generators, so amenable⇔ βc = 1/7
• Appears that βc � 1/7

Data says “Thompson’s group is not amenable.”

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

CHECK A DIFFERENT PRESENTATION OF F
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ONE MORE FOR PARANOIA

〈a, b, c, d, e | c = āba, d = āca, e = ab̄, [e, c] = [e, d] = ·〉

• Has 5 generators, so amenable⇔ βc = 1/9
• Appears that βc � 1/9

Data says “Thompson’s group is not amenable.”
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CONCLUSIONS

• Amenability of Thompson’s group is a very hard open problem

• Very little prior numerical work
• [Burillo, Cleary & Weist 2007]

— random walks on Cayley graph
• [Arzhantseva, Guba, Lustig & Préaux 2008]

— testing Cayley graph densities
• [E, R & W 2011]

— finite subgraphs of Cayley graph

• A hard numerical problem too — early days so be careful

But if I had to guess

Thompson’s group is not amenable

Thanks for listening.
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TRIVIAL WORDS IN BAUMSLAG-SOLITAR GROUPS

Baumslag-Solitar groups

BS(N,M) = 〈a, b | aNb = baM〉

• We already know BS(1, 1) ≡ Z2

• We have found functional equations for cogrowth of all BS(N,M)

• Can solve these for BS(N,N)

• Key idea — cut group into cosets of 〈a〉
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COUNTING LOOPS IN BS(1, 1)

• Before we used a cute construction — try to be more systematic.

• Cut Z2 into cosets bk〈a〉— ie horizontal lines.

• Horizontal steps move within coset
• Vertical steps move between them.
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COUNTING LOOPS IN BS(1, 1)

Count all walks ending in 〈a〉:

G(z; q) =
∑

k

∑
w ≡ ak

z|w|qk

Use a standard factorisation for Catalan objects (eg Dyck paths, binary trees)
• Cut walk into pieces at each visit to 〈a〉
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SCHEMATIC FACTORISATION

G(z; q) = 1 + z (q + q̄) G(z, q) + 2z2G(z; q)L(z; q)

L(z; q) = 1 + z (q + q̄) L(z; q) + z2L(z; q)L(z; q)

• Solve for G(z; q) — algebraic function
• Take constant term wrt q — D-finite function
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NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat
• Parity of x-ordinate decides if vertical step moves to a different “sheet”
• Looked at from the side, cosets form a tree
• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat

• Parity of x-ordinate decides if vertical step moves to a different “sheet”
• Looked at from the side, cosets form a tree
• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat
• Parity of x-ordinate decides if vertical step moves to a different “sheet”

• Looked at from the side, cosets form a tree
• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat
• Parity of x-ordinate decides if vertical step moves to a different “sheet”

• Looked at from the side, cosets form a tree
• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat
• Parity of x-ordinate decides if vertical step moves to a different “sheet”

• Looked at from the side, cosets form a tree
• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat
• Parity of x-ordinate decides if vertical step moves to a different “sheet”
• Looked at from the side, cosets form a tree

• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat
• Parity of x-ordinate decides if vertical step moves to a different “sheet”
• Looked at from the side, cosets form a tree

• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat
• Parity of x-ordinate decides if vertical step moves to a different “sheet”
• Looked at from the side, cosets form a tree

• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

NOW DO BS(2, 2)

The Cayley graph is not so simple

• It is not flat
• Parity of x-ordinate decides if vertical step moves to a different “sheet”
• Looked at from the side, cosets form a tree
• Factor as before, but more care to decide if b, b̄ moves to or from root.

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

SCHEMATIC FACTORISATION

G(z; q) = 1 + z (q + q̄) G(z, q) + 2z2G(z; q) [E ◦ L(z; q)]

L(z; q) = 1 + z (q + q̄) L(z; q) + z2L(z; q) [E ◦ L(z; q)] + z2 [O ◦ L(z; q)] [E ◦ L(z; q)]

• Solve for G(z; q) — algebraic function
• Take constant term wrt q — D-finite function

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

SCHEMATIC FACTORISATION

G(z; q) = 1 + z (q + q̄) G(z, q) + 2z2G(z; q) [E ◦ L(z; q)]

L(z; q) = 1 + z (q + q̄) L(z; q) + z2L(z; q) [E ◦ L(z; q)] + z2 [O ◦ L(z; q)] [E ◦ L(z; q)]

• Solve for G(z; q) — algebraic function
• Take constant term wrt q — D-finite function

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

SCHEMATIC FACTORISATION

G(z; q) = 1 + z (q + q̄) G(z, q) + 2z2G(z; q) [E ◦ L(z; q)]

L(z; q) = 1 + z (q + q̄) L(z; q) + z2L(z; q) [E ◦ L(z; q)] + z2 [O ◦ L(z; q)] [E ◦ L(z; q)]

• Solve for G(z; q) — algebraic function
• Take constant term wrt q — D-finite function

Rechnitzer



Warm-up Thompson Back to grid BFACF Results Appendix

MORE GENERALLY

D-finite solution for BS(N,N) = 〈a, b | aNb = baN〉
• Similar factorisation gives G(z, q) algebraic degree N + 1
• Take constant term wrt q gives D-finite solution

• Growth rate of trivial words are algebraic numbers
• The DE satisfied by the CT gets worse with N

• BS(1, 1) — Write as elliptic integrals
• BS(2, 2) — 6th order ODE, coeffs degree ≤ 47
• BS(3, 3) — 8th order ODE, coeffs degree ≤ 105
• BS(10, 10) — 22nd order ODE — 6 megabyte text file!

• A big thanks to [Manuel Kauers] for help with this.
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MORE GENERALLY STILL — MESSIER

A similar, but more technical factorisation gives

Functional equations for BS(N,M) = 〈a, b | aNb = baM〉

L = 1 + z(q + q̄)L + z2L · [ΦN,M ◦ L + ΦM,N ◦ K]− z2 [ΦM,N ◦ K] · [ΦN,N ◦ L] ,

K = 1 + z(q + q̄)K + z2K · [ΦM,N ◦ K + ΦN,M ◦ L]− z2 [ΦN,M ◦ L] · [ΦM,M ◦ K] ,

G = 1 + z(q + q̄)G + z2G · [ΦN,M ◦ L + ΦM,N ◦ K] ,

where

Φd,e ◦
∑

k

cn,kqk =
∑

j

cn,djq
ej

• Unable to solve closed form — even for BS(1, 2).
• Series generation hard since degq[z

n]G(z; q) grows exponentially with n.
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