Warm-up	Thompson	Back to grid	BFACF	Results	Appendix

Trivial words in groups Much ado about nothing

Andrew Rechnitzer Murray Elder Buks van Rensburg Thomas Wong

Séminaire Flajolet, June 2013

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TWO PROBL	EMS LINKED				

Two quite different problems

- from geometric group theory amenability of groups
- from lattice statistical mechanics ring polymers and random knotting

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TWO PROBL	EMS LINKED				

Two quite different problems

- from geometric group theory amenability of groups
- from lattice statistical mechanics ring polymers and random knotting

Start with simplest version of both

Random walk on \mathbb{Z}^2

Start at (0, 0) and take steps N, S, E, W.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ACTUALLY	— 1D IS EVEN	SIMPLER			

Start at 0 and take steps E, W

• What is probability of ending at 0?

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ACTUALLY	— 1D IS EVEN	SIMPLER			

Start at 0 and take steps E, W

- What is probability of ending at 0?
- How many paths of length 2n end at $0 c_{2n,0}$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ACTUALLY	— 1D IS EVEN	SIMPLER			

Start at 0 and take steps E, W

- What is probability of ending at 0?
- How many paths of length 2n end at $0 c_{2n,0}$

$$c_{2n,0} = \binom{2n}{n} = 1, 2, 6, 20, 70 \dots$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ACTUALL	y = 1 dis fy	/FN SIMPLER			

Start at 0 and take steps E, W

- What is probability of ending at 0?
- How many paths of length 2n end at $0 c_{2n,0}$

$$c_{2n,0} = \binom{2n}{n} = 1, 2, 6, 20, 70 \dots$$

Returning to 0 — only even lengths $Pr(end at 0) = \frac{\binom{2n}{n}}{2^{2n}} \sim \frac{1}{\sqrt{\pi n}}$ polynomial decay

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
BACK TO 2D)				

• What is probability of ending at (0,0)? — $c_{n,(0,0)} =$?

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
BACK TO 2D)				

• What is probability of ending at (0,0)? — $c_{n,(0,0)} =$?

$$\sum_{n} c_{n,(0,0)} \cdot z^{n} = 1 + 4z^{2} + 36z^{4} + 400z^{6} + 4900z^{8} + \dots$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
BACK TO 2D)				

• What is probability of ending at (0,0)? — $c_{n,(0,0)} =$?

$$\sum_{n} c_{n,(0,0)} \cdot z^{n} = 1 + 4z^{2} + 36z^{4} + 400z^{6} + 4900z^{8} + \dots$$

• Why are the terms $\binom{2n}{n}^2$?

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ROTATE	EVERYTHING				

Each step

- changes the *x*-ordinate by ± 1 , and
- changes the *y*-ordinate by ± 1

So split into two independent 1d problems — each gives $\binom{2n}{n}$.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Rotati	E EVERYTHING				

Each step

- changes the *x*-ordinate by ± 1 , and
- changes the *y*-ordinate by ± 1

So split into two independent 1d problems — each gives $\binom{2n}{n}$.

Rechnitzer

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix

DO THE SAME THING ON A TREE

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix

DO THE SAME THING ON A TREE

$$\sum_{n} t_{n,0} z^{n} = \frac{3}{1 + 2\sqrt{1 - 12z^{2}}}$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix

DO THE SAME THING ON A TREE

$$\sum_{n} t_{n,0} z^n = \frac{3}{1 + 2\sqrt{1 - 12z^2}}$$

Return to root vertex — even lengths only

$$\Pr(\text{end at root}) \sim 6\sqrt{\frac{2}{\pi n^3}} \cdot \left(\frac{\sqrt{3}}{2}\right)^n$$
 exponential decay

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
\mathbb{Z}^2 and F_2 A	RE EASY CASE	E OF HARD PRO	BLEM		

These random walks are special cases of bigger problem

Walks on Cayley graph of group
Let G = ⟨a, b | relations ⟩
what is the probability that a random word ≡ identity?

These random walks are special cases of bigger problem

 Walks on Cayley graph of group

 Let $G = \langle a, b \mid \text{ relations } \rangle$

 • what is the probability that a random word \equiv identity?

 Amenability
 [Kesten, Grigorchuk, Cohen]

 Let p_n be the number of words of length n in G equivalent to the identity.

 G is amenable $\Leftrightarrow \limsup_{n \to \infty} p_n^{1/n} = 4$

These random walks are special cases of bigger problem

 Walks on Cayley graph of group

 Let $G = \langle a, b \mid \text{ relations } \rangle$

 • what is the probability that a random word \equiv identity?

 Amenability
 [Kesten, Grigorchuk, Cohen]

 Let p_n be the number of words of length n in G equivalent to the identity.

 G is amenable $\Leftrightarrow \limsup_{n \to \infty} p_n^{1/n} = 4$

A very open problem for Thompson's group *F*.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
PIECEWISE	LINEAR I	FUNCTIONS			

Consider continuous piecewise linear functions from $[0,1] \mapsto [0,1]$ such that

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
PIECEWISE	LINEAR I	FUNCTIONS			

Consider continuous piecewise linear functions from $[0,1] \mapsto [0,1]$ such that

- f(0) = 0 and f(1) = 1
- all gradients are powers of 2
- coordinates of breakpoints are dyadic rationals ^a/_{2^b}.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
PIECEWISE	E LINEAR F	UNCTIONS			

Consider continuous piecewise linear functions from $[0, 1] \mapsto [0, 1]$ such that

- f(0) = 0 and f(1) = 1
- all gradients are powers of 2
- coordinates of breakpoints are dyadic rationals ^a/_{2^b}.
- Function composition defines a natural group on these objects.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
PIECEWISE	LINEAR H	FUNCTIONS			

Consider continuous piecewise linear functions from $[0,1] \mapsto [0,1]$ such that

- f(0) = 0 and f(1) = 1
- all gradients are powers of 2
- coordinates of breakpoints are dyadic rationals ^a/_{2^b}.
- Function composition defines a natural group on these objects.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
A SURPRIS	SING REDU	CTION			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
A SURP	RISING REDUC	TION			

• These are the generators of the group — denote them *x*₀, *x*₁

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
A SURP	RISING REDUC	TION			

• These are the generators of the group — denote them *x*₀, *x*₁ and these are their inverses

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
A SURP	RISING REDUC	TION			

- These are the generators of the group denote them *x*₀, *x*₁ and these are their inverses
- The generators obey 2 non-trivial relations

$$\left[x_0x_1^{-1}, x_0^{-1}x_1x_0\right] = \left[x_0x_1^{-1}, x_0^{-2}x_1x_0^{2}\right] = \text{ identity}$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
THOMPSON'S GROUP F					

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Тномр	SON'S GROUP F	- SOME COM	BINATORIAI	OUESTIONS	

 Thompson's group F
 [Thompson 1965]

 $\langle x_0, x_1 \mid [x_0 x_1^{-1}, x_0^{-1} x_1 x_0], [x_0 x_1^{-1}, x_0^{-2} x_1 x_0^2] \rangle$

Length

Given a word in *F* what is the shortest equivalent word?

Growth

How many elements of F are represented by minimal words of length ℓ ?

Cogrowth

How many words of *n* generators are equivalent to the identity?

Length

[Fordham 2003]

Given a word in *F* what is the shortest equivalent word?

Growth

How many elements of *F* are represented by minimal words of length ℓ ?

Cogrowth

How many words of *n* generators are equivalent to the identity?

 $\langle x_0, x_1 \mid [x_0 x_1^{-1}, x_0^{-1} x_1 x_0], [x_0 x_1^{-1}, x_0^{-2} x_1 x_0^2] \rangle$

Cogrowth

Length

How many words of *n* generators are equivalent to the identity?

[Fordham 2003]

Rechnitzer

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPEN)				

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPEN	?				

• Amenability of *F* — counter-example to von Neumann conjecture?

-

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPEN	?				

-

• Amenability of *F* — counter-example to von Neumann ex-conjecture?

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.

-

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
| Warm-up | Thompson | Back to grid | BFACF | Results | Appendix |
|----------|----------|--------------|-------|---------|----------|
| VERY OPE | N? | | | | |
| | | | | | |

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "*F* is not amenable"

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "*F* is not amenable"
 - May: "F is amenable"

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPEN?					

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "*F* is not amenable"
 - May: "F is amenable"
- Both have serious errors

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "*F* is not amenable"
 - May: "F is amenable"
- Both have serious errors
- 2011 Review article: "Recent conference held a vote

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "*F* is not amenable"
 - May: "F is amenable"
- Both have serious errors
- 2011 Review article: "Recent conference held a vote split evenly"

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "*F* is not amenable"
 - May: "F is amenable"
- Both have serious errors
- 2011 Review article: "Recent conference held a vote split evenly"
- 2011 "F is not amenable"

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "*F* is not amenable"
 - May: "F is amenable"
- Both have serious errors
- 2011 Review article: "Recent conference held a vote split evenly"
- 2011 "*F* is not amenable" serious error

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "F is not amenable"
 - May: "F is amenable"
- Both have serious errors
- 2011 Review article: "Recent conference held a vote split evenly"
- 2011 "*F* is not amenable" serious error
- 2012 "*F* is amenable"

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "F is not amenable"
 - May: "F is amenable"
- Both have serious errors
- 2011 Review article: "Recent conference held a vote split evenly"
- 2011 "F is not amenable" serious error
- 2012 "*F* is amenable" subsequently retracted

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "F is not amenable"
 - May: "F is amenable"
- Both have serious errors
- 2011 Review article: "Recent conference held a vote split evenly"
- 2011 "*F* is not amenable" serious error
- 2012 "*F* is amenable" subsequently retracted
- This problem is still not settled.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
VERY OPE	N?				

- Amenability of *F* counter-example to von Neumann ex-conjecture?
- Open problem for 25+ years.
- In 2009 two interesting preprints appeared
 - February: "F is not amenable"
 - May: "F is amenable"
- Both have serious errors
- 2011 Review article: "Recent conference held a vote split evenly"
- 2011 "*F* is not amenable" serious error
- 2012 "*F* is amenable" subsequently retracted
- This problem is still not settled.

Nasty unsolved problem - why not try some stat-mech?

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Some easy	GROUP T	HEORY			

Easy problem on \mathbb{Z}^2

Given a sequence of steps compute distance of endpoint from origin

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Some easy	GROUP TH	HEORY			

Easy problem on \mathbb{Z}^2

Given a sequence of steps compute distance of endpoint from origin

• Use a, \bar{a} for E,W and b, \bar{b} for N,S.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Some easy	GROUP TH	HEORY			

Easy problem on \mathbb{Z}^2

Given a sequence of steps compute distance of endpoint from origin

• Use a, \bar{a} for E,W and b, \bar{b} for N,S.

a b b a b ā b b

• Start with word

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Some easy	GROUP TH	HEORY			

Easy problem on \mathbb{Z}^2

Given a sequence of steps compute distance of endpoint from origin

• Use a, \bar{a} for E,W and b, \bar{b} for N,S.

a a ā b b b b b b

• Push all a and \bar{a} to the left

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Some easy	GROUP TH	HEORY			

Easy problem on \mathbb{Z}^2

Given a sequence of steps compute distance of endpoint from origin

• Use a, \overline{a} for E,W and b, \overline{b} for N,S.

a a ā b b b b b b

• Cancel $a\bar{a}$ and $b\bar{b}$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
SOME EASY	GROUP T	HEORY			

Easy problem on \mathbb{Z}^2 Given a sequence of steps compute distance of endpoint from origin

• Use a, \bar{a} for E,W and b, \bar{b} for N,S.

ab

• Distance is length of remainder — geodesic normal form

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
AGAIN, BU	JT WITH PIC	TURES			

a b b a b ā <u>b</u> b

• Start with word

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
AGAIN, E	BUT WITH PIC	TURES			

a a ā b b b b b b

• Push all *a* and \bar{a} to the left — why can we do this?

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
AGAIN, BU	JT WITH PIC	TURES			

a a ā b b b b b b

• Cancel $a\bar{a}$ and $b\bar{b}$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
$\Delta C \Lambda IN F$	NIT WITH DIC	TUPES			

ab

• Distance is length of remainder

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WHY CAN	WE COMMI	ITE a 'S AND b 'S	?		

Walks on Cayley graph

 \mathbb{Z}^2 is the group $\langle a, b \mid ab = ba \rangle$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WHYCAN	N WE COMMU	TE a' S AND b' S	?		

Walks on Cayley graph

 \mathbb{Z}^2 is the group $\langle a, b \mid ab\bar{a}\bar{b} = \cdot \rangle$

- The generators are the steps
- The relation tells us we can walk around a face.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
LOOKA	BIT MODE AT	COMMUTINC			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
LOOKA	BIT MODE AT	COMMUTINC			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Ιοοκα	BIT MORE AT	COMMUTING			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Ιοοκα	BIT MORE AT	COMMUTING			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
LOOKA	BIT MODE AT	COMMUTINC			

. MOKE AI

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Ιοοκα	BIT MORE AT	COMMUTING			

• Moving *a*'s to the left is inserting relation and cancelling. This elbow-flip looks like a move from a stat-mech algorithm

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Ιοοκα	BIT MORE AT	COMMUTING			

• Moving *a*'s to the left is inserting relation and cancelling. This elbow-flip looks like a move from a stat-mech algorithm

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ANOTH					

ANOTHER VERY UNSOLVED PROBLEM

Self-avoiding polygon

- An embedding of a simple closed curve into a regular lattice.
- p_n is # polygons of *n* vertices up to translations.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
A			-		

ANOTHER VERY UNSOLVED PROBLEM

Self-avoiding polygon

- An embedding of a simple closed curve into a regular lattice.
- p_n is # polygons of n vertices up to translations.

Stubbornly unsolved, so many numerical methods developed.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
RANDOM S	AMPLING	OF SAPS			

BFACF on \mathbb{Z}^2

Start with unit square, then

- Pick a face adjacent to polygon
- Flip edges around the face
- Accept or reject according to simple rule.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
RANDOM S	AMPLING	OF SAPS			

BFACF on \mathbb{Z}^2

Start with unit square, then

- Pick a face adjacent to polygon
- Flip edges around the face
- Accept or reject according to simple rule.

[Berg & Foerster 1981] [Aragão de Carvalho, Caracciolo & Frölich 1983]

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
RANDOM	SAMPLING (OF SAPS			

BFACF on \mathbb{Z}^2

Start with unit square, then

- Pick a face adjacent to polygon
- Flip edges around the face
- Accept or reject according to simple rule.

[Berg & Foerster 1981] [Aragão de Carvalho, Caracciolo & Frölich 1983] Method of choice for random knots — control over topology

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
$BFACF \leftarrow$	$\rightarrow ab = ba$				

We realised that BFACF moves are just insert-relation & cancel.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
$BFACF \leftarrow$	$\rightarrow ab = ba$				

We realised that BFACF moves are just insert-relation & cancel.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
$BFACF \leftarrow$	$\rightarrow ab = ba$				

We realised that BFACF moves are just insert-relation & cancel.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
$BFACF \leftarrow$	$\rightarrow ab = ba$				

We realised that BFACF moves are just insert-relation & cancel.

So why not do BFACF on groups?

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
BASIC MOV	YES				

-

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
BASIC MOVE	ES				

Conjugate

- Pick $x \in \{a, \overline{a}, b, \overline{b}\}$
- Replace $w \mapsto x \ w \ \bar{x}$
- Reduce

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
BASIC MOVE	ES				

Conjugate

- Pick $x \in \{a, \bar{a}, b, \bar{b}\}$
- Replace $w \mapsto x \ w \ \bar{x}$
- Reduce

Insert

- Pick $r \in {\text{relations}^*}$
- Pick position along word $w = u \cdot v$
- Insert at that position $w \mapsto u r v$
- Reduce

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
BASIC MOVE	ES				

Conjugate

- Pick $x \in \{a, \bar{a}, b, \bar{b}\}$
- Replace $w \mapsto x \ w \ \bar{x}$
- Reduce

Insert

- Pick $r \in {\text{relations}^*}$
- Pick position along word $w = u \cdot v$
- Insert at that position $w \mapsto u r v$
- Reduce

Samples freely reduced words \equiv random walks with no backtracking

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TECHNICAL	ISSUE				

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TECHNICAL	ISSUE				

Conjugation

- Start with *w*, then
- Conjugate by $x w \mapsto x \ w \ \bar{x}$
- Conjugate by $\bar{x} x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TECHNICAL	ISSUE				

Conjugation \checkmark

- Start with *w*, then
- Conjugate by $x w \mapsto x \ w \ \bar{x}$
- Conjugate by $\bar{x} x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TECHNICAL	ISSUE				

Conjugation ✓

- Start with *w*, then
- Conjugate by $x w \mapsto x \ w \ \bar{x}$
- Conjugate by $\bar{x} x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.

Insertion

- Start with $w = a^k \bar{r} \bar{a}^k$, then
- Insert $r w \mapsto a^k r \bar{r} \bar{a}^k$
- Reduce by $a^k r \bar{r} \bar{a}^k \mapsto a^k \bar{a}^k \mapsto \cdot$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TECHNICAL	ISSUE				

Conjugation \checkmark

- Start with *w*, then
- Conjugate by $x w \mapsto x \ w \ \bar{x}$
- Conjugate by $\bar{x} x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.

Insertion — work needed

- Start with $w = a^k \bar{r} \bar{a}^k$, then
- Insert $r w \mapsto a^k r \bar{r} \bar{a}^k$
- Reduce by $a^k r \bar{r} \bar{a}^k \mapsto a^k \bar{a}^k \mapsto \cdot$
- How can we go back?

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TECHNICAL	ISSUE				

Conjugation ✓

- Start with *w*, then
- Conjugate by $x w \mapsto x \ w \ \bar{x}$
- Conjugate by $\bar{x} x w \bar{x} \mapsto \bar{x} x w \bar{x} x \mapsto w$.

Insertion — work needed

- Start with $w = a^k \bar{r} \bar{a}^k$, then
- Insert $r w \mapsto a^k r \bar{r} \bar{a}^k$
- Reduce by $a^k r \bar{r} \bar{a}^k \mapsto a^k \bar{a}^k \mapsto \cdot$
- How can we go back?

Only accept an insertion if cancels at most |r| generators.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Left-inser	TIONS ONLY				

Consider $\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Left-inser	TIONS ONLY				

Consider
$$\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$$

• Start with

 $w = u \ b \ \bar{a} \ \bar{b} \ \cdot \ a \ b \ \bar{a} \ v$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
LEFT-INS	ERTIONS ONL	Y			

Consider
$$\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$$

• Start with

$$w = u \ b \ \bar{a} \ \bar{b} \ \cdot \ a \ b \ \bar{a} \ v$$

• Now insert
$$r = ba\bar{b}\bar{a}$$

$$w \mapsto u \ b \ \overline{a} \ \overline{b} \ b \ a \ \overline{b} \ \overline{a} \ a \ b \ \overline{a} \ v$$

 $\mapsto u \ b \ \overline{a} \ v$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Left-insi	ERTIONS ONL	Y			

Consider
$$\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$$

Start with

$$w = u \ b \ \bar{a} \ \bar{b} \ \cdot \ a \ b \ \bar{a} \ v$$

• Now insert $r = ba\bar{b}\bar{a}$

$$w \mapsto u \ b \ \overline{a} \ \overline{b} \ b \ a \ \overline{b} \ \overline{a} \ b \ \overline{a} \ b \ \overline{a} \ v$$
$$\mapsto u \ b \ \overline{a} \ v$$

• To go back either

$$u \ b \ \bar{a} \ v \mapsto u \ b \ \bar{a} \ \bar{b} \ a \ b \ \bar{a} \ v \qquad \text{or}$$
$$\mapsto u \ b \ \bar{a} \ \bar{b} \ a \ b \ \bar{a} \ v$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Left-inse	RTIONS ONI	LY			

Consider
$$\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$$

• Start with

$$w = u \ b \ \bar{a} \ \bar{b} \ \cdot \ a \ b \ \bar{a} \ v$$

• Now insert $r = ba\bar{b}\bar{a}$

$$w \mapsto u \ b \ \overline{a} \ \overline{b} \ b \ a \ \overline{b} \ \overline{a} \ b \ \overline{a} \ b \ \overline{a} \ \overline{b} \ \overline{a} \ b \ \overline{a} \ \overline{b} \ \overline{b} \ \overline{a} \ \overline{b} \ \overline{b} \ \overline{a} \ \overline{b} \ \overline{b} \ \overline{b} \ \overline{a} \ \overline{b} \ \overline{b} \ \overline{b} \ \overline{a} \ \overline{b} \ \overline{b$$

• To go back either

$$u \ b \ \bar{a} \ v \mapsto u \ b \ \bar{a} \ \bar{b} \ a \ b \ \bar{a} \ v$$
 or
$$\mapsto u \ b \ \bar{a} \ \bar{b} \ a \ b \ \bar{a} \ v$$

Left-insertions uniquely reversible

Insertion of *r* accepted only if

- cancellations occur to left of *r*, and
- at most |r| generators canceled.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
The algo	RITHM				

BFACF on finitely presented group

Start with $w = \cdot$

- Flip coin to choose left-insertion or conjugation
- Do move $w \mapsto w'$
- Accept move with probability

$$\Pr(\text{accept}) = \begin{cases} 1 & |w'| \le |w| \\ \beta^{|w'| - |w|} & \text{otherwise} \end{cases}$$

otherwise reject move and keep w.

Then reduced words are sampled with probability $\Pr(w) \propto \beta^{|w|}$.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
THE ALGOR	ITHM				

BFACF on finitely presented group

Start with $w = \cdot$

- Flip coin to choose left-insertion or conjugation
- Do move $w \mapsto w'$
- Accept move with probability

$$\Pr(\text{accept}) = \begin{cases} 1 & |w'| \le |w| \\ \beta^{|w'| - |w|} & \text{otherwise} \end{cases}$$

otherwise reject move and keep *w*.

Then reduced words are sampled with probability $\Pr(w) \propto \beta^{|w|}$.

Sampling behaviour depends on parameter β .

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WHAT DOES	β do?				

• Words are sampled at all lengths and uniform at each length.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WHAT DOES	$\beta \beta$ do?				
					_

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function β :

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WHAT DOES	β do?				

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function *β*:

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WHAT DOES	β do?				

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function β :

The plan

Plot of mean length

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WHAT DOES	β do?				

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function β :

The plan

Plot of mean length \mapsto estimate of β_c

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WHAT DOES	β do?				

- Words are sampled at all lengths and uniform at each length.
- Mean length is an increasing function β :

The plan

Plot of mean length \mapsto estimate of $\beta_c \mapsto$ decide amenability

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARM UP W	ITH GROUPS V	VE KNOW			

Evangelise

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARM UP W	VITH GROUPS	WE KNOW			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARM UP W	VITH GROUPS	WE KNOW			

Here is mean length vs β for Z² = ⟨a, b | ab = ba⟩
— data from simulation & exact results.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARM UP	WITH GROU	JPS WE KNOW			

- Here is mean length vs β for Z² = ⟨a, b | ab = ba⟩
 data from simulation & exact results.
- Clear singularity at $\beta = 1/3$

- remember random words, no backtracking.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARM UP	WITH GROU	JPS WE KNOW			

- Here is mean length vs β for Z² = ⟨a, b | ab = ba⟩
 data from simulation & exact results.
- Clear singularity at $\beta = 1/3$
 - remember random words, no backtracking.

Data says "amenable" — agrees with known results.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARM UP	WITH CROI	IPS WE KNOW			

• Here is mean length vs β for $\langle a, b \mid a^2 = b^3 = \cdot \rangle$ — data from simulation & exact results [Kouksov 1998].

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARMIII	WITH CROU	IPS WE KNOW			

- Here is mean length vs β for $\langle a, b \mid a^2 = b^3 = \cdot \rangle$ — data from simulation & exact results [Kouksov 1998].
- Clearly $\beta_c > 1/3$, consistent with known $\beta_c = 0.341882...$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARMIII	WITH CROU	IPS WE KNOW			

- Here is mean length vs β for $\langle a, b \mid a^2 = b^3 = \cdot \rangle$ — data from simulation & exact results [Kouksov 1998].
- Clearly $\beta_c > 1/3$, consistent with known $\beta_c = 0.341882...$

Data says "not amenable" — agrees with known results.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARMUP	WITH CROU	IPS WE KNOW			

• Here is mean length vs β for $BS(2,2) = \langle a, b \mid a^2b = ba^2 \rangle$ — data from simulation & exact results [E, JvR, R & W].

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
WARMIT	P WITH CROU	IPS WE KNOW			

- Here is mean length vs β for $BS(2,2) = \langle a, b \mid a^2b = ba^2 \rangle$ — data from simulation & exact results [**E**, **JvR**, **R** & **W**].
- Clearly $\beta_c > 1/3$, consistent with known $\beta_c = 0.374733...$
| Warm-up | Thompson | Back to grid | BFACF | Results | Appendix |
|---------|-------------|--------------|-------|---------|----------|
| WARMIT | P WITH CROU | IPS WE KNOW | | | |

- Here is mean length vs β for $BS(2,2) = \langle a, b \mid a^2b = ba^2 \rangle$ — data from simulation & exact results [**E**, **JvR**, **R** & **W**].
- Clearly $\beta_c > 1/3$, consistent with known $\beta_c = 0.374733...$

Data says "not amenable" — agrees with known results.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
MADNET		DC ME KNOM			

WARM UP WITH GROUPS WE KNOW

Here is mean length vs β for BS(1,2) = ⟨a, b | ab = ba²⟩
data from simulation & "exact results" [E, JvR, R & W].

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
MADNET		DC ME KNOM			

WARM UP WITH GROUPS WE KNOW

- Here is mean length vs β for $BS(1,2) = \langle a, b \mid ab = ba^2 \rangle$
 - data from simulation & "exact results" [E, JvR, R & W].
 - recurrence for series data, no closed form.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
MADNET		DC ME KNOM			

WARM UP WITH GROUPS WE KNOW

- Here is mean length vs β for BS(1,2) = ⟨a, b | ab = ba²⟩
 data from simulation & "exact results" [E, JvR, R & W].
 recurrence for series data, no closed form.
- Singularity $\beta_c \approx 1/3$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
MADNET		DC ME KNOM			

- Here is mean length vs β for BS(1,2) = ⟨a,b | ab = ba²⟩
 data from simulation & "exact results" [E, JvR, R & W].
 recurrence for series data, no closed form.
- Singularity $\beta_c \approx 1/3$

Data says "amenable" - agrees with known results.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
AND NO	W THOMPSON	J'S GROUP F			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
AND NO	MATTION DCON	I'S CROUR E			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
	W THOMPSON				

• Appears that $\beta_c \gg 1/3$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
AND NOW	THOMPSON	N'S GROUP F			

- Appears that $\beta_c \gg 1/3$
- So growth rate of all trivial words $\ll 4^n$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
AND NOW	THOMPSO	N'S GROUP F			

- Appears that $\beta_c \gg 1/3$
- So growth rate of all trivial words $\ll 4^n$

Data says "Thompson's group is not amenable."

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
CHECK /	A DIFFERENT P	RESENTATION	of F		

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Снеск	A DIFFERENT P	RESENTATION	of F		

$$\langle a, b, c, d \mid c = \bar{a}ba, d = \bar{a}ca, [a\bar{b}, c] = [a\bar{b}, d] = \cdot \rangle$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Снеск л	A DIFFERENT P	RESENTATION	of F		

$$\langle a, b, c, d \mid c = \overline{a}ba, d = \overline{a}ca, [a\overline{b}, c] = [a\overline{b}, d] = \langle a, b, c \rangle$$

 Warm-up
 Thompson
 Back to grid
 BFACF
 Results
 Appendix

 CHECK A DIFFERENT PRESENTATION OF F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F

$$\langle a, b, c, d \mid c = \bar{a}ba, d = \bar{a}ca, [a\bar{b}, c] = [a\bar{b}, d] = \cdot \rangle$$

- Has 4 generators, so amenable $\Leftrightarrow \beta_c = 1/7$
- Appears that $\beta_c \gg 1/7$

 Warm-up
 Thompson
 Back to grid
 BFACF
 Results
 Appendix

 CHECK A DIFFERENT PRESENTATION OF F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F

$$\langle a, b, c, d \mid c = \overline{a}ba, d = \overline{a}ca, [a\overline{b}, c] = [a\overline{b}, d] = \cdot \rangle$$

- Has 4 generators, so amenable $\Leftrightarrow \beta_c = 1/7$
- Appears that $\beta_c \gg 1/7$

Data says "Thompson's group is not amenable."

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ONE MORE	FOR PARANOL	A			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ONE MORE	FOR PARANOI	А			

$$\langle a, b, c, d, e \mid c = \overline{a}ba, d = \overline{a}ca, e = a\overline{b}, [e, c] = [e, d] = \cdot \rangle$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
ONE MOR	E FOR PARA	NOIA			

$$\langle a, b, c, d, e \mid c = \overline{a}ba, d = \overline{a}ca, e = a\overline{b}, [e, c] = [e, d] = \cdot \rangle$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
One mo	RE FOR PARAN	JOIA			

$$\langle a, b, c, d, e \mid c = \overline{a}ba, d = \overline{a}ca, e = a\overline{b}, [e, c] = [e, d] = \cdot \rangle$$

- Has 5 generators, so amenable $\Leftrightarrow \beta_c = 1/9$
- Appears that $\beta_c \gg 1/9$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
One mo	RE FOR PARAN	JOIA			

$$\langle a, b, c, d, e \mid c = \overline{a}ba, d = \overline{a}ca, e = a\overline{b}, [e, c] = [e, d] = \cdot \rangle$$

- Has 5 generators, so amenable $\Leftrightarrow \beta_c = 1/9$
- Appears that $\beta_c \gg 1/9$

Data says "Thompson's group is not amenable."

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Conclusio	NS				

• Amenability of Thompson's group is a very hard open problem

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
CONCLUS	IONS				

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Conclu	SIONS				

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
 - [Burillo, Cleary & Weist 2007] — random walks on Cayley graph
 - [Arzhantseva, Guba, Lustig & Préaux 2008] — testing Cayley graph densities
 - [E, R & W 2011]
 - finite subgraphs of Cayley graph

Warm-up T	Thompson	Back to grid	BFACF	Results	Appendix
CONCLUSION	NS				

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
 - [Burillo, Cleary & Weist 2007] — random walks on Cayley graph
 - [Arzhantseva, Guba, Lustig & Préaux 2008] — testing Cayley graph densities
 - [E, R & W 2011] — finite subgraphs of Cayley graph
- A hard numerical problem too

Warm-up T	Thompson	Back to grid	BFACF	Results	Appendix
CONCLUSION	NS				

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
 - [Burillo, Cleary & Weist 2007] — random walks on Cayley graph
 - [Arzhantseva, Guba, Lustig & Préaux 2008] — testing Cayley graph densities
 - [E, R & W 2011] — finite subgraphs of Cayley graph
- A hard numerical problem too early days

Warm-up T	Thompson	Back to grid	BFACF	Results	Appendix
CONCLUSION	NS				

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
 - [Burillo, Cleary & Weist 2007] — random walks on Cayley graph
 - [Arzhantseva, Guba, Lustig & Préaux 2008] — testing Cayley graph densities
 - [E, R & W 2011] — finite subgraphs of Cayley graph
- A hard numerical problem too early days so be careful

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Conclu	SIONS				

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
 - [Burillo, Cleary & Weist 2007] — random walks on Cayley graph
 - [Arzhantseva, Guba, Lustig & Préaux 2008] — testing Cayley graph densities
 - [E, R & W 2011] — finite subgraphs of Cayley graph
- A hard numerical problem too early days so be careful

But if I had to guess

Thompson's group is not amenable

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Conclu	SIONS				

- Amenability of Thompson's group is a very hard open problem
- Very little prior numerical work
 - [Burillo, Cleary & Weist 2007] — random walks on Cayley graph
 - [Arzhantseva, Guba, Lustig & Préaux 2008] — testing Cayley graph densities
 - [E, R & W 2011] — finite subgraphs of Cayley graph
- A hard numerical problem too early days so be careful

But if I had to guess

Thompson's group is not amenable

Thanks for listening.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Triviai	, words in Ba	UMSLAG-SOLI	TAR GROUPS		

 $BS(N,M) = \langle a,b \mid a^N b = ba^M \rangle$

 $BS(N,M) = \langle a, b \mid a^N b = b a^M \rangle$

• We already know $BS(1,1) \equiv \mathbb{Z}^2$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TRIVIAI	WORDS IN BA	UMSLAG-SOLI	TAR GROUPS		

 $BS(N,M) = \langle a,b \mid a^N b = ba^M \rangle$

- We already know $BS(1,1) \equiv \mathbb{Z}^2$
- We have found functional equations for cogrowth of all BS(N, M)
- Can solve these for *BS*(*N*, *N*)

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
TRIVIAI	WORDS IN BA	UMSLAG-SOLI	TAR GROUPS		

 $BS(N,M) = \langle a,b \mid a^N b = ba^M \rangle$

- We already know $BS(1,1) \equiv \mathbb{Z}^2$
- We have found functional equations for cogrowth of all BS(N, M)
- Can solve these for *BS*(*N*, *N*)
- Key idea cut group into cosets of $\langle a \rangle$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
COUNTING	LOOPS IN	BS(1, 1)			

• Before we used a cute construction — try to be more systematic.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
COUNTING	LOOPS IN	BS(1,1)			

- Before we used a cute construction try to be more systematic.
- Cut \mathbb{Z}^2 into cosets $b^k \langle a \rangle$ ie horizontal lines.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
COUNTING	LOOPS IN	BS(1,1)			

- Before we used a cute construction try to be more systematic.
- Cut \mathbb{Z}^2 into cosets $b^k \langle a \rangle$ ie horizontal lines.

- Horizontal steps move within coset
- Vertical steps move between them.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
COUNTING	loops in <i>BS</i>	(1, 1)			

Count all walks ending in $\langle a \rangle$:

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
COUNTING	LOOPS IN $BS(2)$	1,1)			

Count all walks ending in $\langle a \rangle$:

Use a standard factorisation for Catalan objects (eg Dyck paths, binary trees)

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
COUNTING	loops in <i>BS</i>	(1, 1)			

Count all walks ending in $\langle a \rangle$:

Use a standard factorisation for Catalan objects (eg Dyck paths, binary trees)

• Cut walk into pieces at each visit to $\langle a \rangle$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
SCHEMAT	TIC FACTORIS	ATION			

 $G(z;q) = 1 + z (q + \bar{q}) G(z,q) + 2z^2 G(z;q) L(z;q)$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
SCHEMATI	C FACTORIS	SATION			

 $G(z;q) = 1 + z (q + \bar{q}) G(z,q) + 2z^2 G(z;q) L(z;q)$ $L(z;q) = 1 + z (q + \bar{q}) L(z;q) + z^2 L(z;q) L(z;q)$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Schematic	C FACTORIS	SATION			

$$G(z;q) = 1 + z (q + \bar{q}) G(z,q) + 2z^2 G(z;q) L(z;q)$$

$$L(z;q) = 1 + z (q + \bar{q}) L(z;q) + z^2 L(z;q) L(z;q)$$

- Solve for G(z; q) algebraic function
- Take constant term wrt *q* D-finite function

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do B	S(2, 2)				

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do E	SS(2,2)				

• It is not flat

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do	BS(2,2)				

- It is not flat
- Parity of *x*-ordinate decides if vertical step moves to a different "sheet"

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do BS	5(2,2)				

- It is not flat
- Parity of *x*-ordinate decides if vertical step moves to a different "sheet"

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do BS	5(2,2)				

- It is not flat
- Parity of *x*-ordinate decides if vertical step moves to a different "sheet"

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do BS	5(2,2)				

- It is not flat
- Parity of *x*-ordinate decides if vertical step moves to a different "sheet"
- Looked at from the side, cosets form a tree

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do BS	5(2,2)				

- It is not flat
- Parity of *x*-ordinate decides if vertical step moves to a different "sheet"
- Looked at from the side, cosets form a tree

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do B	S(2,2)				

- It is not flat
- Parity of *x*-ordinate decides if vertical step moves to a different "sheet"
- Looked at from the side, cosets form a tree

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Now do E	S(2,2)				

- It is not flat
- Parity of *x*-ordinate decides if vertical step moves to a different "sheet"
- Looked at from the side, cosets form a tree
- Factor as before, but more care to decide if b, \overline{b} moves to or from root.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
SCHEMATIC	C FACTORIS	ATION			

 $G(z;q) = 1 + z \left(q + \bar{q}\right) G(z,q) + 2z^2 G(z;q) \left[\mathcal{E} \circ L(z;q)\right]$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
SCHEMATIC	FACTORIS	ATION			

 $\begin{aligned} G(z;q) &= 1 + z \left(q + \bar{q} \right) G(z,q) + 2z^2 G(z;q) \left[\mathcal{E} \circ L(z;q) \right] \\ L(z;q) &= 1 + z \left(q + \bar{q} \right) L(z;q) + z^2 L(z;q) \left[\mathcal{E} \circ L(z;q) \right] + z^2 \left[\mathcal{O} \circ L(z;q) \right] \left[\mathcal{E} \circ L(z;q) \right] \end{aligned}$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
Schematic	C FACTORIS	SATION			

 $\begin{aligned} G(z;q) &= 1 + z \left(q + \bar{q} \right) G(z,q) + 2z^2 G(z;q) \left[\mathcal{E} \circ L(z;q) \right] \\ L(z;q) &= 1 + z \left(q + \bar{q} \right) L(z;q) + z^2 L(z;q) \left[\mathcal{E} \circ L(z;q) \right] + z^2 \left[\mathcal{O} \circ L(z;q) \right] \left[\mathcal{E} \circ L(z;q) \right] \end{aligned}$

- Solve for G(z;q) algebraic function
- Take constant term wrt *q* D-finite function

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
More ge	NERALLY				

- Similar factorisation gives G(z, q) algebraic degree N + 1
- Take constant term wrt *q* gives D-finite solution

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
More ge	ENERALLY				

- Similar factorisation gives G(z,q) algebraic degree N + 1
- Take constant term wrt *q* gives D-finite solution
- Growth rate of trivial words are algebraic numbers
- The DE satisfied by the CT gets worse with N

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
More ge	INERALLY				

- Similar factorisation gives G(z,q) algebraic degree N + 1
- Take constant term wrt *q* gives D-finite solution
- Growth rate of trivial words are algebraic numbers
- The DE satisfied by the CT gets worse with N
 - *BS*(1, 1) Write as elliptic integrals
 - $BS(2,2) 6^{\text{th}}$ order ODE, coeffs degree ≤ 47
 - $BS(3,3) 8^{\text{th}}$ order ODE, coeffs degree ≤ 105

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
More ge	INERALLY				

- Similar factorisation gives G(z, q) algebraic degree N + 1
- Take constant term wrt *q* gives D-finite solution
- Growth rate of trivial words are algebraic numbers
- The DE satisfied by the CT gets worse with N
 - *BS*(1, 1) Write as elliptic integrals
 - $BS(2,2) 6^{\text{th}}$ order ODE, coeffs degree ≤ 47
 - $BS(3,3) 8^{\text{th}}$ order ODE, coeffs degree ≤ 105
 - *BS*(10, 10) 22nd order ODE 6 megabyte text file!

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
More ge	INERALLY				

- Similar factorisation gives G(z,q) algebraic degree N + 1
- Take constant term wrt *q* gives D-finite solution
- Growth rate of trivial words are algebraic numbers
- The DE satisfied by the CT gets worse with N
 - *BS*(1, 1) Write as elliptic integrals
 - $BS(2,2) 6^{\text{th}}$ order ODE, coeffs degree ≤ 47
 - $BS(3,3) 8^{\text{th}}$ order ODE, coeffs degree ≤ 105
 - *BS*(10, 10) 22nd order ODE 6 megabyte text file!
- A big thanks to [Manuel Kauers] for help with this.

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
MORE GENE	ERALLY STILL -	— MESSIER			

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
More generally still — messier					

Functional equations for $BS(N, M) = \langle a, b \mid a^N b = ba^M \rangle$

$$\begin{split} L &= 1 + z(q + \bar{q})L + z^2L \cdot \left[\Phi_{N,M} \circ L + \Phi_{M,N} \circ K\right] - z^2 \left[\Phi_{M,N} \circ K\right] \cdot \left[\Phi_{N,N} \circ L\right], \\ K &= 1 + z(q + \bar{q})K + z^2K \cdot \left[\Phi_{M,N} \circ K + \Phi_{N,M} \circ L\right] - z^2 \left[\Phi_{N,M} \circ L\right] \cdot \left[\Phi_{M,M} \circ K\right], \\ G &= 1 + z(q + \bar{q})G + z^2G \cdot \left[\Phi_{N,M} \circ L + \Phi_{M,N} \circ K\right], \end{split}$$

where

$$\Phi_{d,e} \circ \sum_{k} c_{n,k} q^{k} = \sum_{j} c_{n,dj} q^{ej}$$

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
More generally still — messier					

Functional equations for $BS(N, M) = \langle a, b \mid a^N b = ba^M \rangle$

$$\begin{split} & L = 1 + z(q + \bar{q})L + z^2L \cdot \left[\Phi_{N,M} \circ L + \Phi_{M,N} \circ K\right] - z^2 \left[\Phi_{M,N} \circ K\right] \cdot \left[\Phi_{N,N} \circ L\right], \\ & K = 1 + z(q + \bar{q})K + z^2K \cdot \left[\Phi_{M,N} \circ K + \Phi_{N,M} \circ L\right] - z^2 \left[\Phi_{N,M} \circ L\right] \cdot \left[\Phi_{M,M} \circ K\right], \\ & G = 1 + z(q + \bar{q})G + z^2G \cdot \left[\Phi_{N,M} \circ L + \Phi_{M,N} \circ K\right], \end{split}$$

where

$$\Phi_{d,e} \circ \sum_k c_{n,k} q^k = \sum_j c_{n,dj} q^{ej}$$

• Unable to solve closed form — even for *BS*(1,2).

Warm-up	Thompson	Back to grid	BFACF	Results	Appendix
More generally still — messier					

Functional equations for $BS(N, M) = \langle a, b \mid a^N b = ba^M \rangle$

$$\begin{split} L &= 1 + z(q + \bar{q})L + z^2L \cdot \left[\Phi_{N,M} \circ L + \Phi_{M,N} \circ K\right] - z^2 \left[\Phi_{M,N} \circ K\right] \cdot \left[\Phi_{N,N} \circ L\right], \\ K &= 1 + z(q + \bar{q})K + z^2K \cdot \left[\Phi_{M,N} \circ K + \Phi_{N,M} \circ L\right] - z^2 \left[\Phi_{N,M} \circ L\right] \cdot \left[\Phi_{M,M} \circ K\right], \\ G &= 1 + z(q + \bar{q})G + z^2G \cdot \left[\Phi_{N,M} \circ L + \Phi_{M,N} \circ K\right], \end{split}$$

where

$$\Phi_{d,e} \circ \sum_k c_{n,k} q^k = \sum_j c_{n,dj} q^{ej}$$

- Unable to solve closed form even for *BS*(1,2).
- Series generation hard since $\deg_{q}[z^{n}]G(z;q)$ grows exponentially with *n*.