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Abstract

We present the ideas behind algorithmic proofs of identities involving
sums and integrals of large classes of special functions. Recent results
allowed a new extension of the class of holonomic functions.

1 Introduction

Dictionaries of mathematical formulas like Abramowitz and Stegun’s Hand-
book of Mathematical Functions are among the most cited and used by sci-
entists. This type of collections were traditionally prepared, checked and
proof-read by specialists from various domains. With the development
of computer algebra systems, algorithms lead to error-free and automatic
ways to generate, manipulate and prove entries from these tables. How-
ever, the implementation of special functions in systems like Maple or
Mathematica still relies heavily on table look-up techniques.

The latest step in the evolution of these handbooks is combining
the way information can be retrieved from a website, as a front-end to
computer algebra algorithms. The Dynamic Dictionary of Mathematical
Functions (DDMF)1 is a project employing these two aspects. Its end-
result is a website containing interactive tables of properties for various
special functions. All formulas and graphics are generated in real-time
by computer algebra routines. This web-interaction is flexible enough, for
example, to deliver more digits of numerical values for which correctness
is guaranteed or generate and display proofs of various properties.

The symbolic computation engine behind the DDMF is based on very
recent algorithms [2, 7] as well as on standard Maple routines. Procedures
from the package gfun [8] are used heavily to manipulate differential and
recurrence relations satisfied by holonomic functions. A version of gfun
is integrated in the Maple system.

In the DDMF, mathematical functions are modeled as linear differen-
tial or recurrence equations coupled with finite sets of initial values. Func-
tions or sequences that can be viewed as solutions of such linear relations
constitute about 25% of Sloane’s Encyclopedia of Integer Sequences and,
more importantly, 60% of Abramowitz and Stegun’s handbook. Based on

1http://ddmf.msr-inria.inria.fr/
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this data structure, computer algebra algorithms can determine and prove
identities involving a large variety of special functions.

Initiated by Zeilberger, the method of creative telescoping leads to
automatic proofs of special function identities. It was first applied to
definite summation problems with hypergeometric summands [10, 9] and
later to holonomic systems of differential and difference equations [11, 6].
We extend its input class with types of non-holonomic functions [5].

In this talk we present the ideas which lie at the foundation of algo-
rithms for proving special functions identities, i.e., confinement in finite
dimension and creative telescoping. We also discuss our extension of these
algorithms to classes of non-holonomic functions.

2 Confinement in finite dimension

Given k+ 1 vectors v0, v1, . . . vk from a k-dimensional vector space over a
field F , there exists an identity

c0v0 + c1v1 + · · ·+ ckvk = 0

with coefficients in F . This simple idea can be exploited to find difference
or differential equations satisfied by certain classes of functions. For this
we will confine the function and all its derivatives, respectively its shifts,
in a vector space of finite dimension.

For example, to prove the identity

sin2 x+ cos2 x = 1

we consider the function f(x) = sin2 x+cos2 x−1 and show that it satisfies
a linear differential equation of order at most 4.

Since both sin and cos are defined by the differential equation y′′+y =
0 (but different sets of initial values), the functions sin2 and cos2 will also
be defined by a common differential equation. Indeed, by induction we
see that y2 and all its derivatives belong to the vector space generated by
{y2, yy′, y′

2}. Thus y2 is the solution of an order 3 differential equation,
independent of any initial conditions. This equation is therefore satisfied
by sin2, cos2 and their sum.

This means, the sum of squares and all its derivatives are confined in
a vector space of dimension 3. Additionally, the constant function is a
solution of y′ = 0. Since derivation is a linear operation, the function
f(x) and its derivatives belong to a vector space of dimension 4, i.e., the
sum of the dimensions determined above. This implies that f solves a
differential equation of order at most 4. Using Cauchy’s theorem, the
proof is completed by checking 4 initial values, e.g., by the Maple call

> series(sin2 x + cos2 x− 1, x, 4);

O(x4).

By a similar dimension argument, Cassini’s identity for the Fibonacci
numbers Fn can be proven. For this purpose, it suffices to check whether
the first 5 initial values of the function f(n) = F 2

n − Fn+1Fn−1 + (−1)n

are zero.
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The crucial point in the proof was the dimension argument which led
to the existence of a differential equation for the squares and the sums of
functions involved. This type of closure properties follow along the same
lines for the entire class of ∂-finite functions which we shortly discuss in
the following section.

2.1 Gröebner bases in Ore algebras

Let us consider an example in several variables for identities obtained
with the confinement method. Going back to Gauß (1812), the contiguity
relations for the hypergeometric series

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn

are recurrences involving the shifts with respect to the parameters a, b, c.
Here, the Pochhammer symbol (x)n denotes the rising factorial x(x +
1) . . . (x+ n− 1) for n ∈ N and x ∈ C.

Contiguity relations result from confining F , its derivatives with re-
spect to z and its shifts in the other parameters to a vector space of
finite dimension. For example, let ua,n denote the hypergeometric term
of the series F . From the ratios

ua,n+1

ua,n
and

ua+1,n

ua,n
two mixed difference-

differential equations follow

z(1− z)F ′′ + (c− (a+ b+ 1)z)F ′ − abF = 0,

SaF =
z

a
F ′ + F with SaF := F (a+ 1, b; c; z).

By induction we see that all higher order shifts and derivatives can be
expressed via the two equations in terms of elements from the set {F, F ′}.

The general framework for studying mixed difference-differential equa-
tions is that of Ore algebras [6], denoted by A = K(x1, . . . xn) 〈∂1, . . . ∂n〉
where K is a field. The ∂xi ’s represent either a derivation operator Dxi ,
a shift operator Sxi or a more general Ore operator with respect to the
variable xi.

Back to our example, we consider the left ideal I spanned by the
two difference-differential operators in A = Q(a, b, c, z) 〈∂z, Sa〉. Since all
higher order shifts and derivatives of F can be expressed using the two
equations, A/I has vector-space dimension 2 over Q(a, b, c, z). Therefore
S2
aF, SaF and F must be linearly dependent. By simple linear algebra we

arrive at the contiguity relation

(a+ 1)(z − 1)S2
aF + ((b− a− 1)z + 2− c+ 2a)SaF + (c− a− 1)F = 0.

In the same way we prove Mehler’s identity for Hermite polynomials

∞∑
n=0

Hn(x)Hn(y)
un

n!
=

1√
1− 4u2

exp

(
4u(xy − u(x2 + y2))

1− 4u2

)
.

Since the computations become more involved we call procedures from
the package gfun.

3



Other computations of this type are facilitated by the use of Gröbner
bases in the setting of Ore algebras [6]. Generalizing both Gaussian elim-
ination to find linear dependence between vectors and Euclidean division
from univariate polynomials, Gröbner bases can be used to find unique
representations of elements in these more complicated structures in terms
of finitely many generators.

To define the Gröbner basis of an ideal I ⊂ A, we introduce a well
order on the set of monomials in the ∂xi ’s. Additionally, 1 = ∂0

x1 . . . ∂
0
xn

has to be its minimal element. A Gröbner basis of the (left) ideal I can
be visualized as the corners of a staircase in the multidimensional lattice
Nn. Elements of the algebra modulo this ideal I can be written as lin-
ear combinations of the monomials under the staircase. To find a unique
representation of an element in A/I, we use a generalized Euclidean divi-
sion algorithm with respect to the given Gröbner basis of the ideal. This
unique remainder is called the normal form of the given element.

When the set of monomials under the staircase is finite, A/I is the fi-
nite dimensional vector space over K(x1, . . . , xn) generated by these mono-
mials. In this case I is called ∂-finite and all computations modulo this
ideal can be formulated in terms of linear algebra. For an infinite di-
mensional vector space A/I we generalize the notion of dimension using
the Hilbert function. This generalization defines a ∂-finite ideal as zero-
dimensional.

The set of operators annihilating a given function f has the algebraic
structure of a left ideal and is denoted by annf . When its annihilating
ideal is ∂-finite, we also refer to the function as ∂-finite. Functions of this
type include, for instance, the classical orthogonal polynomials considered
with respect to the shift operator in the index and differentiation in the
argument. The hypergeometric series of the previous example also fulfills
this property. On the other hand, the Stirling numbers S2(n, k) are not
∂-finite. Their annihilating ideal is generated by the relation

S2(n, k) = S2(n− 1, k − 1) + kS2(n− 1, k)

and has Hilbert dimension 1 in Q(n, k) 〈∂n, ∂k〉.
Using dimensional arguments similar to the ones from the proofs of

the above identities, we find the following closure properties for the class
of ∂-finite functions

dim ann(f + g) ≤ max(dim ann f,dim ann g),

dim ann(fg) ≤ dim ann f + dim ann g,

dim ann ∂f ≤ dim ann f.

The Maple package Mgfun [3] implements closure properties in the ∂-finite
case together with algorithms for computing generators of these ideals. It
also includes an extension of Zeilberger’s creative telescoping method to
∂-finite ideals [4]. We discuss these aspects in the next section.
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3 Creative telescoping

To illustrate the idea of creative telescoping we prove the identity

In :=

n∑
k=0

(
n

k

)
= 2n

by rewriting Pascal’s triangle as(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
= 2

(
n

k

)
+

(
n

k − 1

)
−

(
n

k

)
and summing over all 0 ≤ k ≤ n+ 1

n+1∑
k=0

(
n+ 1

k

)
= 2

n∑
k=0

(
n

k

)
.

Solving the first order recurrence In+1 = 2In and checking an initial
condition completes the proof. In general, we have a recurrence for the
sum

Fn =
∑
k

un,k (1)

provided one can determine operators A(n, Sn) and B(n, k, Sn, Sk) such
that

(A(n, Sn) + ∆kB(n, k, Sn, Sk))un,k = 0.

Using the telescoping property of the forward-difference operator ∆k and
assuming a summand having finite support included in the summation
range, we obtain a homogeneous recurrence for the sum A(n, Sn)Fn = 0.

Similarly, in the integration case,

I(x) :=

∫
Ω

u(x, y)dy , (2)

we obtain a differential equation after determining operators A(x, ∂x) and
B(x, y, ∂x, ∂y) satisfying

(A(x, ∂x) + ∂yB(x, y, ∂x, ∂y))u(x, y) = 0.

Creative telescoping can be viewed as an algorithmic combination of dif-
ferentiation under the integral sign and integration by parts. Let us prove
here that the equation zJ ′′0 + J ′0 + zJ0 = 0 together with the initial value
J0(0) = 1 define the Bessel function

J0 =
2

π

∫ 1

0

cos zt√
1− t2

dt.

By successive differentiation under the integral sign, we have

I(z) =

∫ 1

0

cos zt√
1− t2

dt, I ′(z) =

∫ 1

0

−t sin zt√
1− t2

dt

I ′′(z) = −I(z) +

∫ 1

0

√
1− t2 cos zt dt.
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After integration by parts, the last identity leads to the desired differential
equation.

I ′′(z) + I(z) =
√

1− t2 sin zt

z

∣∣∣∣1
0

+

∫ 1

0

t√
1− t2

sin zt

z
dt

=

∫ 1

0

∂t

(
1− t2

zt
∂z

)
cos zt√
1− t2

dt− I ′(z)

z
.

We denote by A(z, ∂z) = z∂2
z + ∂z + z the operator from the Ore algebra

Q(z) 〈∂z〉. In this way we found that A(z, ∂z) − ∂t 1−t2
t
∂z belongs to the

annihilating ideal of the integrand of I(z).
Note that several non-algorithmic aspects were involved in the ap-

proach. For a large class of integrals, it is not clear how to integrate by
parts, in particular, which parts to choose. Additionally, a bound for the
degree of the differential equation is not known. This last issue means
that termination of the method is not guaranteed.

In the general setting of the integral (2) the input of the creative
telescoping method are operators belonging to the annihilating ideal of
the integrand u. These operators generate an ideal I in the Ore algebra
Q(x, y) 〈∂x, ∂y〉. The output are operatorsA,B from this algebra such that
the relation A − ∂yB annihilates u and A ∈ Q(x) 〈∂x〉. The summation
problem (1) can be formulated in similar terms. In other words, we search
for the set of telescopers of the ideal I with respect to y, denoted by

Ty(I) := (I + ∂yQ(x, y) 〈∂x, ∂y〉) ∩Q(x) 〈∂x〉 .

An extension of Zeilberger’s fast algorithm to ∂-finite functions is pre-
sented in [3, 6]. It proceeds by making an ansatz for the operators A,B
and computing the normal form of Q := A − ∂yB ∈ I with respect to a
given Gröbner basis G of the ideal I. Since the operator Q is confined to
the annihilating ideal I, all coefficients of its normal must be zero. This
leads to a coupled system of equations for the unknown coefficients of the
operators A and B.

In the ∂-finite case, the operator B can be written as a linear combina-
tion of the monomials under the staircase of G. We proceed by increasing
the total degree in the ansatz for A till a solution for the resulting system
of equations is found. This procedure is guaranteed to terminate if we
start with an integrand u from Zeilberger’s class of holonomic functions
for which Ty(I) is non-trivial.

In [5] the algorithm was extended to types of non-holonomic functions.
We introduce a new class of functions and give an upper bound for the
dimension of Ty(I) which provides termination of the approach.

Let us go back to the simple example of Pascal’s identity for the se-
quence of summands

((
n
k

))
n,k≥0

. To discover this identity algorithmically

we want to find the operator SnSk − Sk − 1 in the annihilating ideal of(
n
k

)
. We start with a Gröbner basis of this ideal which has leading terms

{Sn, Sk} and only the minimal monomial under the resulting staircase.
Reducing all monomials of degree s ≤ 2

1→ 1, Sn →
n+ 1

n+ 1− k 1, Sk →
n− k
k + 1

1, SnSk →
n+ 1

k + 1
1,
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S2
n →

(n+ 1)(n+ 2)

(n+ 1− k)(n+ 2− k)
1, S2

k →
(n− k)(n− k − 1)

(k + 1)(k + 2)
1

we compute their common denominator

D2 = (k + 1)(k + 2)(n+ 1− k)(n+ 2− k).

All operators D2S
α
nS

β
k for α+ β ≤ 2 are confined in the vector space over

Q(n) generated by {1, k, k2, k3, k4}. The linear dependency between these
operators will deliver the identity we want to prove.

Additionally, this technique leads to a sequence of polynomials with
the property degDs = O(s). On the other hand the number of operators
SαnS

β
k with α + β ≤ s is given by

(
s+2

2

)
and behaves like O(s2) as s

tends to infinity. Since the number of operators will eventually exceed the
dimension of the vector space confining them, an identity can be found.
This property holds for all holonomic functions.

More generally we define the notion of polynomial growth for an ideal
I ⊂ K(x1, . . . , xn) 〈∂1, . . . , ∂n〉 with respect to a given graded order. This
means the existence of a sequence of polynomials Ps ∈ K[x1, . . . , xn]
such that for all monomials ∂a11 . . . ∂ann with

∑n
i=1 ai ≤ s the operator

Ps∂
a1
1 . . . ∂ann has a normal form with polynomial coefficients of degrees

O(sp) with respect to the Gröbner basis of I. In this case the ideal has
polynomial growth p in the graded order used for the computation of the
Gröbner basis.

The main result from [5] is a bound on the dimension of the ideal
Ty(I). Namely, if I has polynomial growth p with respect to a given
graded order, we have

dimTy(I) ≤ max (dim(I) + p− 1, 0) .

As soon as the bound on the right-hand side of this inequality is smaller
than the number of variables remaining after integration or summation,
a non-trivial identity exists and can be found.

For instance, coming back to the Stirling numbers of the first and
second kind we obtain annihilating ideals of dimension 1 and polynomial
growth 1. Using the above bound on the telescoping ideal, we can algo-
rithmically find Frobenius identity

n∑
k=0

(−1)m−kk!

(
n− k
m− k

)
S2(n+ 1, k + 1) = S1(n,m).

4 Conclusions

In the Dynamic Dictionary of Mathematical Functions (DDMF) project
[1], linear differential or difference equations together with finite sets of
initial values form data structures for storing and manipulating special
functions. The main goal of the project is that all formulas in this library
are generated and proven dynamically through summation and integra-
tion algorithms. We present the foundations of these algorithms, namely
the idea of confinement in finite dimension and the method of creative
telescoping. We also discuss our extension of their input class to include
non-holonomic functions.
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Our generalized algorithms rely on the notion of polynomial growth
defined in [5]. For an arbitrary ideal in an arbitrary Ore algebra, it is
not clear how to determine its polynomial growth algorithmically. Fu-
ture research will focus on this open question by reducing the notion of
polynomial growth to an intrinsic property of the given ideal.
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