Near-extremal points of a random walk and variations around Odlyzko's algorithm for the search of its maximum

Grégory Schehr
Labo. de Physique Théorique et Modèles Statistiques (LPTMS) CNRS-Université Paris-Sud

Séminaire Philippe Flajolet, December 4, 2014

- Anthony Perret (LPTMS, Orsay)
- Alain Comtet (LPTMS, Orsay)
- Satya N. Majumdar (LPTMS, Orsay)
A. Perret, A. Comtet, S. N. Majumdar, G. S., Phys. Rev. Lett. 111, 240601 (2013)
\& preprint arXiv:1502.01218

Near-extremal points of random walks
$X_{0}=0$,
$X_{i}=X_{i-1}+\epsilon_{i}, \epsilon_{i}=\left\{\begin{array}{l}+1, \text { w. proba. } 1 / 2 \\ -1, w . \text { proba. } 1 / 2\end{array}\right.$

- Number of near-extremal points

$$
\begin{aligned}
M_{n} & =\max _{0 \leq k \leq n} X_{k} \\
D(q, n) & =\#\left\{0 \leq k \leq n \mid X_{k}=M_{n}-q\right\}
\end{aligned}
$$

Related questions in the literature on random walks

- Local time of RW (and Brownian motion)
- Frequently and rarely visited sites : Erdös, Revesz,..., Toth
- Number of times a random walk is at its maximum: Csaki, Odlyzko

Motivations

- "Crowding" near the maximum: is the maximum lonely at the top?
- Plays an important role in the analysis of the optimal algorithm to find the maximum of a random walk
- Functionals of the maximum of RW and Brownian motion

Local time of Brownian motion close to its maximum

- Asymptotic limit $n \rightarrow \infty$

$$
\begin{aligned}
\frac{1}{\sqrt{n}} D(q=\lfloor r \sqrt{n}\rfloor, n) \underset{\text { law }}{\longrightarrow} \rho(r)= & \int_{0}^{1} \delta\left(x_{\max }-x(\tau)-r\right) d \tau \\
x(\tau): & \text { Brownian motion } \\
& x_{\max }=\max _{0 \leq \tau \leq 1} x(\tau)
\end{aligned}
$$

- Q: full statistics of the density of near-extremes $\rho(r)$?

$$
\begin{aligned}
& \mathbb{E}\left[\rho^{k}(r)\right]=8 k!\sum_{l=0}^{k-1}(-1)^{l}\binom{k-1}{l}\left[(2 l+1) \Phi^{(k+1)}((2 l+1) r)+(k-2(l+1)) \Phi^{(k+1)}(2(l+1) r)\right] \\
& \Phi^{(0)}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{2}}{2}}, \Phi^{(j+1)}(x)=\int_{x}^{\infty} \Phi^{(j)}(u) d u
\end{aligned}
$$

Motivations

("Crowding" near the maximum: is the maximum lonely at the top?
Sabhapandit, Majumdar '07

- Plays an important role in the analysis of the optimal algorithm to find the maximum of a random walk
- Applications to "functionals" of the RW and Brownian motion

Search algorithm for the maximum of a RW

- $a \in A_{n}$: algorithm that finds M_{n}
- Cost of the algorithm:
$C(a)=$ number of probes needed
- Q: what is the optimal algorithm?
- The simplest algo. probes all the positions: its cost is n
- Because of the correlations between the positions of the random walker, one can usually do much better

Searching for the maximum of a RW: exploiting correlations

The maximum is found in 4 probes $(4<14)$!

Searching for the maximum of a RW: optimal algorithm

- Average case optimality

$$
\min _{a \in A_{n}} \mathbb{E}(C(a))=c_{0} \sqrt{n}+o(\sqrt{n})
$$

" In particular we need to prove that random walks do not spend much time close to their maxima."

$D(q, n)=\#\left\{0 \leq k \leq n \mid X_{k}=M_{n}-q\right\}$

Motivations

("Crowding" near the maximum: is the maximum lonely at the top?
\square Plays an important role in the analysis of the optimal algorithm to find the maximum of a random walk

- Applications to "functionals" of the RW and Brownian motion

Searching for the maximum of a RW: optimal algorithm

- Average case optimality

$$
\begin{gathered}
\min _{a \in A_{n}} \mathbb{E}(C(a))=c_{0} \sqrt{n}+o(\sqrt{n}) \\
c_{0}=\sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \frac{d y}{y} \int_{0}^{1} \frac{1}{\sqrt{w}} \exp \left(-\frac{y^{2}}{2 w}\right) \operatorname{erf}\left(\frac{y}{\sqrt{2(1-w)}}\right) d w
\end{gathered}
$$

after some manipulations...

$$
c_{0}=\sqrt{\frac{8}{\pi}} \log 2 \quad \text { Hwang '97, Chassaing '99 }
$$

- Connection with a functional of the maximum of Brownian motion

Chassaing '99
Chassaing, Marckert, Yor '99
$x(\tau)$: Brownian motion

$$
x_{\max }=\max _{0 \leq \tau \leq 1} x(\tau)
$$

$$
c_{0}=\mathbb{E}(I), I=\frac{1}{2} \int_{0}^{1} \frac{d \tau}{x_{\max }-x(\tau)}
$$

Searching for the maximum of a RW: optimal algorithm

$$
\min _{a \in A_{n}} \mathbb{E}(C(a))=c_{0} \sqrt{n}+o(\sqrt{n})
$$

Odlyzko '95

$$
c_{0}=\mathbb{E}(I), I=\frac{1}{2} \int_{0}^{1} \frac{d \tau}{x_{\max }-x(\tau)} \quad c_{0}=\sqrt{\frac{8}{\pi}} \log 2
$$

- Odlyzko described an algorithm $\operatorname{Od}(n)$ which is quasi-optimal

$$
\mathbb{E}[C(\operatorname{Od}(n))]=c_{0} \sqrt{n}+o(\sqrt{n})
$$

- $\operatorname{Od}(n)$ is quasi-optimal in distribution (not only on average) and it was shown that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{C(\operatorname{Od}(\mathrm{n}))}{\sqrt{n}} \geq x\right)=\operatorname{Pr}(I \geq x)
$$

\Longrightarrow relevance of a functional of the maximum of Browian motion

$$
I=\int_{0}^{1} V\left(x_{\max }-x(\tau)\right) d \tau, V(x)=\frac{1}{2 x}
$$

Functionals of the maximum of $B M$ in physics

- Largest exit time of classical particles moving ballistically through a disordered Brownian potential
$x(y)$: Brownian motion

the slowest particle that crosses the sample is such that

$$
\frac{1}{2}\left(\frac{d y}{d t}\right)^{2}+x(y)=x_{\max }
$$

and the largest time to cross the sample is $\tau_{\max }=\frac{1}{\sqrt{2}} \int_{0}^{1} \frac{d y}{\sqrt{x_{\max }-x(y)}}$

An interesting family of functionals of the maximum of $B M$

$$
T_{\alpha}(t)=\int_{0}^{t}\left(x_{\max }-x(\tau)\right)^{\alpha} d \tau
$$

- For $\alpha=-1$ it describes the cost of Odlyzko 's algorithm
- For $\alpha=-\frac{1}{2}$ it describes the largest time to cross a Brownian barrier
- For $\alpha=+1$ it describes an area or "Airy" type of random variable

In this work we develop tools to study the statistics of such functionals of the maximum of $B M$
A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 \& 2014

Outline

- Path counting method (based on propagators of BM)
- Feynman-Kac approach
- Applications of the Feynman-Kac approach
- Conclusion

Average number of near-extremal points for RW

- Odlyzko obtained an exact formula for $\mathbb{E}(D(q, n))$

$$
\begin{aligned}
& \mathbb{E}(D(q, n))=\sum_{m=0}^{n}(A(n, m, q)+B(n, m, q)) \\
& A(n, m, q)=2^{-n}\binom{m}{\left\lfloor\frac{m+q+1}{2}\right\rfloor} \sum_{j=0}^{q}\binom{n-m}{\left\lfloor\frac{n-m+j}{2}\right\rfloor} \\
& B(b, m, q)=2^{-n}\binom{m}{\left\lfloor\frac{n-m-q}{2}\right\rfloor} \sum_{j=0}^{q-1}\binom{m}{\left\lfloor\frac{m-q+1}{2}\right\rfloor+j}
\end{aligned}
$$

What about the asymptotic limit $n \rightarrow \infty$?

Density of near-extremes for Brownian motion

- Asymptotic limit $n \rightarrow \infty$

$$
\begin{aligned}
\frac{1}{\sqrt{n}} D(q=\lfloor r \sqrt{n}\rfloor, n) \underset{\text { law }}{\longrightarrow} \rho(r)= & \int_{0}^{1} \delta\left(x_{\max }-x(\tau)-r\right) d \tau \\
x(\tau): & \text { Brownian motion } \\
& x_{\max }=\max _{0 \leq \tau \leq 1} x(\tau)
\end{aligned}
$$

$\rho(r) d r$: time spent by the BM in

$$
\left[x_{\max }-r-d r, x_{\max }-r\right]
$$

$\int_{0}^{\infty} \rho(r) d r=1$

$$
\mathbb{E}[\rho(r)]=?
$$

Average density of near-extremes for Brownian motion

- Propagator of Brownian motion

$$
\begin{gathered}
G_{M}(\alpha \mid \beta, t) d \beta=\operatorname{Pr} .[x(t) \in[\beta, \beta+d \beta] \mid x(0)=\alpha \& x(\tau)<M \quad \forall \tau \in[0, t]] \\
G_{M}(\alpha \mid \beta, t)=\frac{1}{\sqrt{2 \pi t}}\left(e^{-\frac{(\beta-\alpha)^{2}}{2 t}}-e^{-\frac{(2 M-\beta-\alpha)^{2}}{2 t}}\right)
\end{gathered}
$$

- Average density of near-extremes: counting paths method

$$
\mathbb{E}[\rho(r, t)]=\int_{0}^{t} \mathbb{E}\left[\delta\left(x_{\max }-x(\tau)-r\right)\right] d \tau
$$

Average density of near-extreme: counting paths

$$
\mathbb{E}[\rho(r, t)]=\int_{0}^{t} \mathbb{E}\left[\delta\left(x_{\max }-x(\tau)-r\right)\right] d \tau
$$

$$
\begin{aligned}
& \mathbb{E}[\rho(r, t)]= \lim _{\varepsilon \rightarrow 0} \frac{2}{Z(\varepsilon)} \int_{0}^{\infty} d M \int_{0}^{t} d t_{\max } \int_{-\infty}^{M} d x_{F} \int_{0}^{t_{\max }} d \tau \quad G_{M}(0 \mid M-r, \tau) G_{M}\left(M-r \mid M-\varepsilon, t_{\max }-\tau\right) \\
& \times G_{M}\left(M-\varepsilon \mid x_{F}, t-t_{\max }\right)
\end{aligned},
$$

Average density of near-extremes: counting paths

$$
\mathbb{E}[\rho(r, t)]=\int_{0}^{t} \mathbb{E}\left[\delta\left(x_{\max }-x(\tau)-r\right)\right] d \tau
$$

- Use of Laplace transform with respect to time t

$$
\int_{0}^{\infty} d t e^{-s t} \mathbb{E}[\rho(r, t)]=8 \frac{e^{-\sqrt{2 s} r}-e^{-2 \sqrt{2 s} r}}{(2 s)^{3 / 2}}
$$

And finally...

$$
\mathbb{E}[\rho(r, t)]=\sqrt{t} \mathbb{E}\left[\rho\left(\frac{r}{\sqrt{t}}, 1\right)\right], \mathbb{E}[\rho(r, t=1)]=8\left(\Phi^{(2)}(r)-\Phi^{(2)}(2 r)\right),
$$

Application to the average cost of Odlyzko 's algorithm

- Average cost of the optimal algorithm for the search of the maximum of RW

$$
\begin{aligned}
\mathbb{E}[C(\mathrm{Od}(n))] & =c_{0} \sqrt{n}+o(\sqrt{n}) \\
c_{0} & =\mathbb{E}(I), I=\frac{1}{2} \int_{0}^{1} \frac{d \tau}{x_{\max }-x(\tau)}
\end{aligned}
$$

- Using the average density of near-extremes of Brownian

$$
\begin{aligned}
\mathbb{E}[\rho(r)] & =\int_{0}^{1} \mathbb{E}\left[\delta\left(x_{\max }-x(\tau)-r\right)\right] d \tau \\
& \Longrightarrow c_{0}=\frac{1}{2} \int_{0}^{\infty} \frac{\mathbb{E}[\rho(r)]}{r} d r=\sqrt{\frac{8}{\pi}} \log 2
\end{aligned}
$$

- For more general functionals of the maximum of $B M$

$$
T_{\alpha}=\int_{0}^{1}\left(x_{\max }-x(\tau)\right)^{\alpha} d \tau, \mathbb{E}\left[T_{\alpha}\right]=\int_{0}^{\infty} r^{\alpha} \rho(r) d r=\frac{\left(2-2^{-\alpha}\right) \Gamma\left(\frac{1+\alpha}{2}\right)}{(2+\alpha) \sqrt{\pi}}
$$

Average density of near-extremes of constrained $B M$

For instance, for the Brownian meander:

$$
\mathbb{E}\left[\rho_{M e}(r)\right]=\sqrt{2 \pi}\left(\sum_{n=1}^{\infty} \frac{4 n(-1)^{n}}{2 n^{2}+3(-1)^{n}-5} \operatorname{erfc}(n r)-\operatorname{erfc}(2 r)\right)
$$

Average density of near-extremes of constrained $B M$

A. Perret, A. Comtet, S. N. Majumdar, G. S., 2013 \& 2014

What about higher moments of such functionals ?

Outline

- Path counting method (based on propagators of BM)
- Feynman-Kac approach
- Applications of the Feynman-Kac approach
- Conclusion

Exponential functionals of the maximum of $B M$

- Functional of the maximum of Brownian motion :

$$
\mathcal{O}_{\max }(t)=\int_{0}^{t} V\left(x_{\max }-x(\tau)\right) d \tau
$$

- Goal: compute the Laplace transform of the PDF of $\mathcal{O}_{\max }(t)$:

$$
\mathbb{E}\left[\exp \left(-\lambda \int_{0}^{t} V\left(x_{\max }-x(\tau)\right) d \tau\right)\right]
$$

- Decompose the path into two independent meanders

Two independent meanders

$$
\text { Pr. }\left(t_{\max } \leq T\right)=\int_{0}^{T} \frac{d x}{\pi \sqrt{x(t-x)}}
$$

Lévy 's arcsine law

Reducing to functionals of the Brownian meander

- Decompose the path into two independent meanders

Two independent meanders

Pr. $\left(t_{\max } \leq T\right)=\int_{0}^{T} \frac{d x}{\pi \sqrt{x(t-x)}}$

Lévy 's arcsine law

$$
\begin{aligned}
\mathbb{E}\left[e^{-\lambda \int_{0}^{t} d \tau V\left(x_{\max }-x(\tau)\right)}\right] & =\int_{0}^{t} d t_{\max } \varphi\left(t_{\max }\right) \varphi\left(t-t_{\max }\right) \\
\varphi(\tau) & =\frac{1}{\sqrt{\pi \tau}} \mathbb{E}_{+}\left[\exp \left(-\lambda \int_{0}^{\tau} d u V\left(x_{\mathrm{Me}}(u)\right)\right)\right]
\end{aligned}
$$

\Longrightarrow Back to functionals of the Brownian meander

Feynman-Kac formula

$$
\begin{aligned}
\mathbb{E}\left[e^{-\lambda \int_{0}^{t} d \tau V\left(x_{\max }-x(\tau)\right)}\right] & =\int_{0}^{t} d t_{\max } \varphi\left(t_{\max }\right) \varphi\left(t-t_{\max }\right) \\
\varphi(\tau) & =\frac{1}{\sqrt{\pi \tau}} \mathbb{E}_{+}\left[\exp \left(-\lambda \int_{0}^{\tau} d u V\left(x_{\mathrm{Me}}(u)\right)\right)\right]
\end{aligned}
$$

- Laplace transform with respect to time t

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} \mathbb{E}\left(e^{-\lambda \int_{0}^{t} V\left(x_{\max }-x(\tau)\right) d \tau}\right) d t=[\tilde{\varphi}(s)]^{2} \\
& \tilde{\varphi}(s)=\int_{0}^{\infty} e^{-s t} \varphi(t) d t
\end{aligned}
$$

$$
\tilde{\varphi}(s)=\frac{\sqrt{2}}{W} \int_{0}^{\infty} d y_{F} u_{s}^{\prime}(0) v_{s}\left(y_{F}\right)
$$

where $u_{s}(x), v_{s}(x)$ are two independent solutions of

$$
\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\lambda V(x)+s\right) \psi(x)=0
$$

such that $\lim _{x \rightarrow 0} u_{s}(x)=0$ and $W=u_{s}^{\prime}(x) v_{s}(x)-u_{s}(x) v_{s}^{\prime}(x)$

$$
\lim _{x \rightarrow+\infty} v_{s}(x)=0
$$

Outline

- Path counting method (based on propagators of BM)
- Feynman-Kac approach
- Applications of the Feynman-Kac approach
- Conclusion

Feynman-Kac formula: application to the density of near-extremes

$$
\mathcal{O}_{\max }(t)=\int_{0}^{t} V\left(x_{\max }-x(\tau)\right) d \tau
$$

- The density of near-extremes $\rho(r, t)=\int_{0}^{t} \delta\left(x_{\max }-x(\tau)-r\right) d \tau$ corresponds to $V(x)=\delta(x-r)$
- Applying the general formalism to this specific case

Feynman-Kac formula

$$
\begin{aligned}
\mathbb{E}\left[e^{-\lambda \int_{0}^{t} d \tau V\left(x_{\max }-x(\tau)\right)}\right] & =\int_{0}^{t} d t_{\max } \varphi\left(t_{\max }\right) \varphi\left(t-t_{\max }\right) \\
\varphi(\tau) & =\frac{1}{\sqrt{\pi \tau}} \mathbb{E}_{+}\left[\exp \left(-\lambda \int_{0}^{\tau} d u V\left(x_{\mathrm{Me}}(u)\right)\right)\right]
\end{aligned}
$$

- Laplace transform with respect to time t

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} \mathbb{E}\left(e^{-\lambda \int_{0}^{t} V\left(x_{\max }-x(\tau)\right) d \tau}\right) d t=[\tilde{\varphi}(s)]^{2} \\
& \tilde{\varphi}(s)=\int_{0}^{\infty} e^{-s t} \varphi(t) d t
\end{aligned}
$$

$$
\tilde{\varphi}(s)=\frac{\sqrt{2}}{W} \int_{0}^{\infty} d y_{F} u_{s}^{\prime}(0) v_{s}\left(y_{F}\right)
$$

where $u_{s}(x), v_{s}(x)$ are two independent solutions of

$$
\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\lambda V(x)+s\right) \psi(x)=0
$$

such that $\lim _{x \rightarrow 0} u_{s}(x)=0$ and $W=u_{s}^{\prime}(x) v_{s}(x)-u_{s}(x) v_{s}^{\prime}(x)$

$$
\lim _{x \rightarrow+\infty} v_{s}(x)=0
$$

Feynman-Kac formula: application to the density of near-extremes

$$
\mathcal{O}_{\max }(t)=\int_{0}^{t} V\left(x_{\max }-x(\tau)\right) d \tau
$$

- The density of near-extremes $\rho(r, t)=\int_{0}^{t} \delta\left(x_{\max }-x(\tau)-r\right) d \tau$ corresponds to $V(x)=\delta(x-r)$
- Applying the general formalism to this specific case

$$
\int_{0}^{\infty} e^{-s t} \mathbb{E}\left(e^{-\lambda \rho(r, t)}\right) d t=\frac{1}{s}\left(\frac{\sqrt{2 s}+\lambda\left(1-e^{-\sqrt{2 s} r}\right)^{2}}{\sqrt{2 s}+\lambda\left(1-e^{-2 \sqrt{2 s} r}\right)}\right)^{2}
$$

Feynman-Kac formula: applications to the density of near-extremes

From

$$
\int_{0}^{\infty} e^{-s t} \mathbb{E}\left(e^{-\lambda \rho(r, t)}\right) d t=\frac{1}{s}\left(\frac{\sqrt{2 s}+\lambda\left(1-e^{-\sqrt{2 s} r}\right)^{2}}{\sqrt{2 s}+\lambda\left(1-e^{-2 \sqrt{2 s} r}\right)}\right)^{2}
$$

we obtain the moments of arbitrary order

$$
\mathbb{E}\left(\rho^{k}(r, t=1)\right)=8 k!\sum_{l=0}^{k-1}(-1)^{l}\binom{k-1}{l}\left[(2 l+1) \Phi^{(k+1)}((2 l+1) r)+(k-2(l+1)) \Phi^{(k+1)}(2(l+1) r)\right]
$$

where $\frac{e^{-\sqrt{2 s} u}}{(\sqrt{2 s})^{j+1}}=\int_{0}^{\infty} t^{\frac{j-1}{2}} \Phi^{(j)}\left(\frac{u}{\sqrt{t}}\right) e^{-s t} d t$
These functions were studied in detail in Chassaing \& Louchard '02

Feynman-Kac formula: applications to the cost of Odlyzko 's algorithm

$$
\mathcal{O}_{\text {max }}(t)=\int_{0}^{t} V\left(x_{\max }-x(\tau)\right) d \tau
$$

- The cost of Odlyzko 's algorithm is given by $I=\frac{1}{2} \int_{0}^{t} \frac{d \tau}{x_{\max }-x(\tau)}$ which corresponds to $V(x)=\frac{1}{2 x}$
- Applying the general formalism to this specific case

$$
\begin{aligned}
\int_{0}^{\infty} e^{-s t} \mathbb{E}\left[e^{-\frac{\lambda}{2} \int_{0}^{t} \frac{d \tau}{x_{\max }-x(\tau)}}\right] d t & =\frac{4}{s} \sum_{n=0}^{\infty}(-1)^{n} \frac{\lambda^{n}}{2^{n}(\sqrt{2 s})^{n}} \sum_{k=0}^{n} \tilde{\zeta}(k) \tilde{\zeta}(n-k) \\
\tilde{\zeta}(k) & =\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{k}}
\end{aligned}
$$

Feynman-Kac formula: applications to more general functionals

$$
T_{\alpha}(t)=\int_{0}^{t}\left(x_{\max }-x(\tau)\right)^{\alpha} d \tau
$$

corresponding to $V(x)=x^{\alpha}$

- Exact results for the second moment

$$
\mathbb{E}\left(T_{\alpha}^{2}(t)\right)=\frac{t^{2+\alpha}}{2^{3 \alpha} \Gamma(3+\alpha)}\left(\Gamma(\alpha+1)^{2}\left(2^{\alpha}-1\right)\left(2^{\alpha+1}-1\right)+\frac{\Gamma(3+2 \alpha)\left(4^{\alpha+1}-1\right)}{4(1+\alpha)^{2}}+\sum_{n=1}^{\infty} \frac{\Gamma(2+2 \alpha+n)}{n!2^{1+n}(1+\alpha+n)}\right)
$$

Outline

- Path counting method (based on propagators of BM)

G Feynman-Kac approach

- Applications of the Feynman-Kac approach
- Conclusion

Conclusion and perspectives

- Various tools to study the statistics of functionals of the maximum of Brownian motion
- Application to the full statistics of near-extremal points of long random walks
- Alternative method to study the cost of Odlyzko 's optimal algorithm to find the maximum of long random walks
- Extension of these techniques to system with several random walkers ?
- What about more general stable processes?

