This presentation contains animations which require PDF browser which accepts JavaScript.

For best results use Acrobat Reader.

Asymptotic determinism of Robinson-Schensted-Knuth algorithm joint work with Dan Romik

Piotr Śniady

Technische Universität München
and
Polska Akademia Nauk
and
Uniwersytet Wrocławski

Robinson-Schensted-Knuth algorithm — induction step

$\mathrm{x}=(23,53,74,5,99,69,82,37,41)$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$\mathrm{x}=(23,53,74,5,99,69,82,37,41,18)$

Robinson-Schensted-Knuth algorithm — induction step

$x=(23,53,74,5,99,69,82,37,41,18)$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$x=(23,53,74,5,99,69,82,37,41,18)$

Robinson-Schensted-Knuth algorithm — induction step

$\mathrm{x}=(23,53,74,5,99,69,82,37,41,18)$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm — induction step

$\mathrm{x}=(23,53,74,5,99,69,82,37,41,18)$

Robinson-Schensted-Knuth algorithm — induction step

$\mathrm{x}=(23,53,74,5,99,69,82,37,41,18)$

Robinson-Schensted-Knuth algorithm — induction step

$$
\mathbf{x}=(23,53,74,5,99,69,82,37,41,18)
$$

Robinson-Schensted-Knuth algorithm

 ($x=\emptyset$

Robinson-Schensted-Knuth algorithm

$x=(23)$

Robinson-Schensted-Knuth algorithm

$x=(23,53)$

Robinson-Schensted-Knuth algorithm

$\mathrm{x}=(23,53,74)$

Robinson-Schensted-Knuth algorithm

$x=(23,53,74,5)$

Robinson-Schensted-Knuth algorithm

$x=(23,53,74,5,99)$

Robinson-Schensted-Knuth algorithm

$x=(23,53,74,5,99,69)$

Robinson-Schensted-Knuth algorithm

$x=(23,53,74,5,99,69,82)$

Robinson-Schensted-Knuth algorithm

$x=(23,53,74,5,99,69,82,37)$

Robinson-Schensted-Knuth algorithm

$\mathrm{x}=(23,53,74,5,99,69,82,37,41)$

Robinson-Schensted-Knuth algorithm

$\mathrm{x}=(23,53,74,5,99,69,82,37,41,18)$

Robinson-Schensted-Knuth algorithm

$\mathrm{x}=(23,53,74,5,99,69,82,37,41,18,39)$

Robinson-Schensted-Knuth algorithm

$x=(23,53,74,5,99,69,82,37,41,18,39,61)$

Robinson-Schensted-Knuth algorithm

$x=(23,53,74,5,99,69,82,37,41,18,39,61,73)$

Robinson-Schensted-Knuth algorithm

$\mathrm{x}=(23,53,74,5,99,69,82,37,41,18,39,61,73,66)$

Robinson-Schensted-Knuth algorithm

$x=(23,53,74,5,99,69,82,37,41,18,39,61,73,66,22)$

outlook

- x_{1}, x_{2}, \ldots independent random variables with uniform distribution on the interval $[0,1]$;
- insertion tableau $P_{m}=P\left(x_{1}, \ldots, x_{m}\right)$;

General problem

What can we say about (the time evolution of) the insertion tableau P_{m} ?
"with the right scaling of time and space, the answer is deterministic (asymptotically)"

diffusion of a box

- $x_{n}\left(P_{m}\right)$ denotes the location of the box containing x_{n} in the insertion tableau P_{m}, for $m \geq n$;

Concrete problem 1

Suppose that n and x_{n} are known; what can we say about the time evolution of $x_{n}\left(P_{m}\right)$ for $m=n, n+1, \ldots$?
asymptotic determinism of this and that
the key result: new box
proof of the key result 0 000 00
asymptotic determinism of this and that
the key result: new box
proof of the key result 0 000 00

diffusion of a box

- $x_{n}\left(P_{m}\right)$ denotes the location of the box containing x_{n} in insertion tableau P_{m}, for $m \geq n$;

Theorem

There exists an explicit function $G: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}^{2}$ such that

$$
\frac{x_{n}\left(P_{\left\lfloor n e^{\tau}\right\rfloor}\right)}{\sqrt{n x_{n}}} \frac{\text { in probability }}{n \rightarrow \infty} G_{\tau} \quad \text { for } \tau \geq 0 \text {. }
$$

hydrodynamic limit of RSK

bumping routes

$$
x=(23,53,74,5,99,69,82,37,41, \underbrace{18}_{x_{n}})
$$

bumping routes

Theorem

Bumping route (scaled by factor $\frac{1}{\sqrt{n x_{n}}}$) obtained by adding entry x_{n} to the tableau P_{n-1} converges in probability (as $n \rightarrow \infty$) to a deterministic curve G_{τ}.

new box

$$
P\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \backslash P\left(x_{1}, \ldots, x_{n}\right)=\{\square\}
$$

Theorem

$$
\left\|\frac{\square}{\sqrt{n}}-\left(\mathrm{RSK} \cos x_{n+1}, \mathrm{RSK} \sin x_{n+1}\right)\right\| \underset{\text { in probability }}{n \rightarrow \infty} 0
$$

new box

new box

the key result explains the behavior of bumping routes

the key result explains the behavior of bumping routes

the key result explains the behavior of bumping routes

the key result explains the behavior of bumping routes

the key result explains the behavior of bumping routes

proof, part 1 - reduction of problem

instead of (for deterministic x_{n+1})

$$
P\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \backslash P\left(x_{1}, \ldots, x_{n}\right)=\{\square\}
$$

proof, part 1 - reduction of problem

we study (for random $0<t_{1}<\cdots<t_{k}<1$)

$$
P\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{k}\right) \backslash P\left(x_{1}, \ldots, x_{n}\right)=\{1, \ldots, k
$$

proof, part 1 - reduction of problem

we study (for random $0<t_{1}<\cdots<t_{k}<1$)

$$
P\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{k}\right) \backslash P\left(x_{1}, \ldots, x_{n}\right)=\{1, \ldots, k\}
$$

if $x_{n+1}<t_{i}$ then \square is north-west from $\quad \mathrm{i}$
for $\frac{i}{k} \approx x_{n+1}+\epsilon$, this happens with high probability, as $k \rightarrow \infty$

representations of the symmetric groups

representation ρ of a group G is a homomorphism to matrices

$$
\rho: G \rightarrow \mathrm{GL}_{k}
$$

irreducible representation ρ^{λ} of the symmetric group S_{n}

Young diagram λ with n boxes

Littlewood-Richardson coefficients

$$
\left(\rho^{\lambda} \otimes \rho^{\mu}\right) \uparrow_{S_{|\lambda|} \times S_{|\mu|}}^{S_{|\lambda|+|\mu|}}=\bigoplus_{\nu} c_{\lambda, \mu}^{\nu} \rho^{\nu}
$$

RSK and Littlewood-Richardson coefficients

if $0 \leq x_{1}, \ldots, x_{n} \leq 1$ is a random sequence, such that

$$
\text { shape of } P\left(x_{1}, \ldots, x_{n}\right)=\lambda ;
$$

and $0 \leq t_{1}, \ldots, t_{k} \leq 1$ is a random sequence, such that

$$
\text { shape of } P\left(t_{1}, \ldots, t_{k}\right)=\mu
$$

then the random Young diagram

$$
\text { shape of } P\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{k}\right)
$$

has the same distribution as random irreducible component of

$$
V^{\lambda} \otimes V^{\mu} \uparrow \begin{aligned}
& S_{n+k} \\
& S_{n} \times S_{k}
\end{aligned}
$$

RSK and Littlewood-Richardson coefficients

if $0 \leq x_{1}, \ldots, x_{n} \leq 1$ is a random sequence, such that

$$
\text { shape of } P\left(x_{1}, \ldots, x_{n}\right)=\lambda ;
$$

and $0 \leq t_{1}, \ldots, t_{k} \leq 1$ is a random sequence, such that

$$
\text { shape of } P\left(t_{1}, \ldots, t_{k}\right)=(k)=\begin{array}{|l|l|l|l|l|}
\hline & & & & \\
\hline
\end{array}
$$

then the random Young diagram

$$
\text { shape of } P\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{k}\right)
$$

has the same distribution as random irreducible component of

$$
V^{\lambda} \otimes V^{(k)} \uparrow \begin{aligned}
& S_{n+k} \\
& S_{n} \times S_{k}
\end{aligned}
$$

RSK and Littlewood-Richardson coefficients

if $0 \leq x_{1}, \ldots, x_{n} \leq 1$ is a random sequence, such that

$$
\text { shape of } P\left(x_{1}, \ldots, x_{n}\right)=\lambda ;
$$

and $0 \leq t_{1}<\cdots<t_{k} \leq 1$ is a random sequence, such that

$$
\text { shape of } P\left(t_{1}, \ldots, t_{k}\right)=(k)=\begin{array}{|l|l|l|l|l|}
\hline & & & & \\
\hline
\end{array}
$$

then the random Young diagram

$$
\text { shape of } P\left(x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{k}\right)
$$

has the same distribution as random irreducible component of

$$
V^{\lambda} \otimes V^{(k)} \uparrow \begin{aligned}
& S_{n+k} \\
& S_{n} \times S_{k}
\end{aligned}
$$

content of the box

$$
\text { content }(\square)=(x \text {-coordinate })-(y \text {-coordinate })
$$

Example

c
content of Young diagram $=(-2,-1,0,0,1,1,2,3)$

Jucys-Murphy elements

$$
X_{i}=(1, i)+(2, i)+\cdots+(i-1, i) \quad \text { for } i \in\{1, \ldots, n\}
$$

X_{1}, \ldots, X_{n} are elements of the symmetric group algebra $\mathbb{C}\left(S_{n}\right)$
for any Young diagram λ with contents $\left(c_{1}, \ldots, c_{n}\right)$ and a symmetric polynomial $P\left(x_{1}, \ldots, x_{n}\right)$

$$
\chi^{\lambda}\left(P\left(X_{1}, \ldots, X_{n}\right)\right)=\frac{\operatorname{Tr} \rho^{\lambda}\left(P\left(X_{1}, \ldots, X_{n}\right)\right)}{\operatorname{Tr} \rho^{\lambda}(1)}=?
$$

Jucys-Murphy elements

$$
X_{i}=(1, i)+(2, i)+\cdots+(i-1, i) \quad \text { for } i \in\{1, \ldots, n\}
$$

X_{1}, \ldots, X_{n} are elements of the symmetric group algebra $\mathbb{C}\left(S_{n}\right)$
for any Young diagram λ with contents $\left(c_{1}, \ldots, c_{n}\right)$ and a symmetric polynomial $P\left(x_{1}, \ldots, x_{n}\right)$

$$
\chi^{\lambda}\left(P\left(X_{1}, \ldots, X_{n}\right)\right)=\frac{\operatorname{Tr} \rho^{\lambda}\left(P\left(X_{1}, \ldots, X_{n}\right)\right)}{\operatorname{Tr} \rho^{\lambda}(1)}=P\left(c_{1}, \ldots, c_{n}\right)
$$

growth of Young diagrams and Jucys-Murphy elements

let $\lambda \vdash n, \mu \vdash k$ be fixed Young diagrams
let Γ be a random irreducible component of $V^{\lambda} \otimes V^{\mu} \uparrow{ }_{S_{n} \times S_{k}}^{S_{n+k}}$
let c_{n+1}, \ldots, c_{n+k} be the contents of boxes of $\Gamma \backslash \lambda$
then for any symmetric polynomial $P\left(x_{n+1}, \ldots, x_{n+k}\right)$ we have

$$
\begin{gathered}
\left(\chi^{\lambda} \otimes \chi^{\mu}\right)\left(P\left(X_{n+1}, \ldots, X_{n+k}\right) \downarrow_{S_{n+k}}^{S_{n}}, \begin{array}{c}
S_{k}
\end{array}\right) \\
=\mathbb{E} P\left(c_{n+1}, \ldots, c_{n+k}\right)
\end{gathered}
$$

proof, part 2

if $k \approx \sqrt[4]{n}$

$$
\frac{1}{k}\left(\delta_{\frac{c_{1}}{\sqrt{n}}}+\cdots+\delta_{\frac{c_{k}}{\sqrt{n}}}\right) \frac{\text { in probability }}{n \rightarrow \infty} \mu_{\mathrm{SC}}=\underbrace{}_{-2}
$$

where $c_{i}=c(i)$
Hint: p-th moment of the left-hand-side

$$
\frac{1}{k} \sum_{j}\left(\frac{c_{j}}{\sqrt{n}}\right)^{p}
$$

is a random variable, show that the mean converges to p-th moment of μ_{SC} show that the variance converges to zero

proof, part 2

if $k \approx \sqrt[4]{n}$

$$
\frac{1}{k}\left(\delta_{\frac{c_{1}}{\sqrt{n}}}+\cdots+\delta_{\frac{c_{k}}{\sqrt{n}}}\right) \frac{\text { in probability }}{n \rightarrow \infty} \mu_{\mathrm{SC}}=\prod_{-2}
$$

where $c_{i}=c(\boxed{\mathrm{i}})$
since $c_{1}<\cdots<c_{k}$, this implies that if $\frac{i}{k} \rightarrow x_{n+1}$ then

$$
\frac{c(\sqrt{\mathrm{i}})}{\sqrt{n}} \stackrel{\text { in probability }}{\longrightarrow} F_{\mu_{\mathrm{SC}}}^{-1}\left(x_{n+1}\right)
$$

proof, part 3

shape of P_{n} (scaled by factor $\frac{1}{\sqrt{n}}$) with high probability concentrates around some explicit shape
Logan, Shepp, Vershik, Kerov

$\frac{\square}{\sqrt{n}}$ is with high probability close to the boundary of this limit shape

further reading

Dan Romik, Piotr Śniady
Jeu de taquin dynamics on infinite Young tableaux and second class particles
Annals of Probability, to appear arXiv:1111.0575
围 Dan Romik, Piotr Śniady
Limit shapes of bumping routes in the Robinson-Schensted correspondence
arXiv:1304.7589

