This presentation contains animations which require PDF browser which accepts JavaScript.

For best results use Acrobat Reader.

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

proof of the key result

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Asymptotic determinism of Robinson-Schensted-Knuth algorithm joint work with Dan Romik

Piotr Śniady

Technische Universität München and Polska Akademia Nauk and Uniwersytet Wrocławski

the key result: new box

proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

32

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

74	99			
23	37	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

proof of the key result

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Robinson-Schensted-Knuth algorithm — induction step

74	99			
23	37	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

proof of the key result

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Robinson-Schensted-Knuth algorithm — induction step

	99			
23	37	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$

proof of the key result

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Robinson-Schensted-Knuth algorithm — induction step

53	99			
23	37	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

the key result: new box

proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x}=\emptyset$

the key result: new box

proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

x = (23, **53**)

the key result: new box

proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

x = (23, 53, 74)

the key result: new box

proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

x = (23, 53, 74, **5**)

the key result: new box

proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99)$

the key result: new box

proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69)$

the key result: new box

proof of the key result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82)$

the key result: new box

proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

◆□> ◆圖> ◆注> ◆注> 二注:

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

the key result: new box

proof of the key result

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

the key result: new box

proof of the key result

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

the key result: new box

proof of the key result

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39, 61)$

the key result: new box

proof of the key result

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39, 61, 73)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

the key result: new box

proof of the key result

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39, 61, 73, 66)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

the key result: new box

proof of the key result

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39, 61, 73, 66, 22)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

proof of the key result

outlook

- x₁, x₂,... independent random variables with uniform distribution on the interval [0, 1];
- insertion tableau $P_m = P(x_1, \ldots, x_m);$

General problem

What can we say about (the time evolution of) the insertion tableau P_m ?

"with the right scaling of time and space,

the answer is deterministic (asymptotically)"

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

the key result: new box

proof of the key result

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

diffusion of a box

• $x_n(P_m)$ denotes the location of the box containing x_n in the insertion tableau P_m , for $m \ge n$;

Concrete problem 1

Suppose that n and x_n are known; what can we say about the time evolution of $x_n(P_m)$ for m = n, n + 1, ...? K asymptotic determinism of this and that ○ 0€○○ ○ 0 the key result: new box 000

proof of the key result

diffusion of a box

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

K asymptotic determinism of this and that ○ 0€○○ ○ 0 the key result: new box 000

proof of the key result

diffusion of a box

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

the key result: new box

proof of the key result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

diffusion of a box

• $x_n(P_m)$ denotes the location of the box containing x_n in insertion tableau P_m , for $m \ge n$;

Theorem

There exists an explicit function $G:\mathbb{R}_+\to\mathbb{R}^2_+$ such that

$$\frac{\boxed{x_n}(P_{\lfloor ne^{\tau} \rfloor})}{\sqrt{n \ x_n}} \xrightarrow[n \to \infty]{in \ probability} G_{\tau} \qquad \textit{for } \tau \geq 0.$$

the key result: new box 000

proof of the key result

hydrodynamic limit of RSK

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

the key result: new box 000

proof of the key result

bumping routes

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, \underbrace{18}_{\times_n})$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● ○ ○ ○ ○ ○

the key result: new box

proof of the key result

bumping routes

Theorem

Bumping route (scaled by factor $\frac{1}{\sqrt{n \times n}}$) obtained by adding entry x_n to the tableau P_{n-1} converges in probability (as $n \to \infty$) to a deterministic curve G_{τ} .

the key result: new box $\bullet \circ \circ$

proof of the key result

new box

$$P(x_1,\ldots,x_n,x_{n+1})\setminus P(x_1,\ldots,x_n)=\left\{\square\right\}$$

Theorem

$$\left\| \frac{1}{\sqrt{n}} - (\text{RSKcos } x_{n+1}, \text{RSKsin } x_{n+1}) \right\| \xrightarrow[in \text{ probability}]{n \to \infty} 0$$

RSK	asymptotic	determinism	of	this	and	that
000	0000					

the key result: new box $\circ \bullet \circ$

proof of the key result

new box

RSK	asymptotic	determinism	of	this	and	that
000	0000					

the key result: new box $0 \bullet 0$

proof of the key result

new box

the key result: new box $\circ \circ \bullet$

proof of the key result

the key result explains the behavior of bumping routes

the key result: new box 000

the key result: new box 000

the key result: new box $\circ \circ \bullet$

the key result: new box $\circ \circ \bullet$

the key result: new box

proof of the key result

proof, part 1 — reduction of problem instead of (for deterministic x_{n+1})

 $P(x_1,\ldots,x_n, x_{n+1}) \setminus P(x_1,\ldots,x_n) = \{ \square \}$

the key result: new box

proof of the key result

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

proof, part 1 — reduction of problem

we study (for random $0 < t_1 < \cdots < t_k < 1$)

$$P(x_1,\ldots,x_n, t_1,\ldots,t_k) \setminus P(x_1,\ldots,x_n) = \{ 1,\ldots,k \}$$

the key result: new box

proof of the key result

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

proof, part 1 — reduction of problem

we study (for random $0 < t_1 < \cdots < t_k < 1$)

$$P(x_1,\ldots,x_n, t_1,\ldots,t_k) \setminus P(x_1,\ldots,x_n) = \{ 1,\ldots,k \}$$

proof of the key result

representations of the symmetric groups

representation ρ of a group G is a homomorphism to matrices

 $\rho: G \to \operatorname{GL}_k$

irreducible representation ρ^{λ} of the symmetric group S_n

Young diagram λ with *n* boxes

うして ふゆう ふほう ふほう うらつ

Littlewood-Richardson coefficients

$$\left(
ho^{\lambda}\otimes
ho^{\mu}
ight)igg(\sum_{S_{|\lambda|} imes S_{|\mu|}}^{S_{|\lambda|+|\mu|}}=\bigoplus_{
u}c_{\lambda,\mu}^{
u}
ho^{
u}$$

proof of the key result

RSK and Littlewood-Richardson coefficients

if $0 \le x_1, \ldots, x_n \le 1$ is a random sequence, such that

shape of
$$P(x_1,\ldots,x_n) = \lambda$$
;

and $0 \leq t_1, \ldots, t_k \leq 1$ is a random sequence, such that

shape of
$$P(t_1, \ldots, t_k) = \mu$$

then the random Young diagram

shape of
$$P(x_1, ..., x_n, t_1, ..., t_k)$$

has the same distribution as random irreducible component of

$$V^{\lambda}\otimes V^{\mu}iggstyle {S_{n+k}\atop S_n imes S_k}$$

proof of the key result

RSK and Littlewood-Richardson coefficients

if $0 \le x_1, \ldots, x_n \le 1$ is a random sequence, such that

shape of
$$P(x_1,\ldots,x_n) = \lambda$$
;

and $0 \leq t_1, \ldots, t_k \leq 1$ is a random sequence, such that

shape of
$$P(t_1, ..., t_k) = (k) =$$

then the random Young diagram

shape of
$$P(x_1, ..., x_n, t_1, ..., t_k)$$

has the same distribution as random irreducible component of

$$V^{\lambda} \otimes V^{(k)} \uparrow^{S_{n+k}}_{S_n \times S_k}$$

proof of the key result

RSK and Littlewood-Richardson coefficients

if $0 \le x_1, \ldots, x_n \le 1$ is a random sequence, such that

shape of
$$P(x_1,\ldots,x_n) = \lambda$$
;

and $0 \le t_1 < \cdots < t_k \le 1$ is a random sequence, such that

shape of
$$P(t_1, ..., t_k) = (k) =$$

then the random Young diagram

shape of
$$P(x_1,\ldots,x_n,t_1,\ldots,t_k)$$

has the same distribution as random irreducible component of

$$V^{\lambda} \otimes V^{(k)} \uparrow^{S_{n+k}}_{S_n \times S_k}$$

the key result: new box

proof of the key result

content of the box

 $content(\Box) = (x-coordinate) - (y-coordinate)$

proof of the key result

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Jucys–Murphy elements

$$X_i = (1, i) + (2, i) + \dots + (i - 1, i)$$
 for $i \in \{1, \dots, n\}$

 X_1, \ldots, X_n are elements of the symmetric group algebra $\mathbb{C}(S_n)$

for any Young diagram λ with contents (c_1, \ldots, c_n) and a symmetric polynomial $P(x_1, \ldots, x_n)$

$$\chi^{\lambda}(P(X_1,\ldots,X_n)) = \frac{\operatorname{Tr} \rho^{\lambda}(P(X_1,\ldots,X_n))}{\operatorname{Tr} \rho^{\lambda}(1)} = ?$$

proof of the key result

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Jucys–Murphy elements

$$X_i = (1, i) + (2, i) + \dots + (i - 1, i)$$
 for $i \in \{1, \dots, n\}$

 X_1, \ldots, X_n are elements of the symmetric group algebra $\mathbb{C}(S_n)$

for any Young diagram λ with contents (c_1, \ldots, c_n) and a symmetric polynomial $P(x_1, \ldots, x_n)$

$$\chi^{\lambda}(P(X_1,\ldots,X_n)) = \frac{\operatorname{Tr} \rho^{\lambda}(P(X_1,\ldots,X_n))}{\operatorname{Tr} \rho^{\lambda}(1)} = P(c_1,\ldots,c_n)$$

the key result: new box

proof of the key result

growth of Young diagrams and Jucys-Murphy elements

C

let $\lambda \vdash n$, $\mu \vdash k$ be fixed Young diagrams

let Γ be a random irreducible component of $V^{\lambda} \otimes V^{\mu} \uparrow_{S_n \times S_k}^{S_{n+k}}$

let c_{n+1}, \ldots, c_{n+k} be the contents of boxes of $\Gamma \setminus \lambda$

then for any symmetric polynomial $P(x_{n+1}, \ldots, x_{n+k})$ we have

$$\begin{pmatrix} \chi^{\lambda} \otimes \chi^{\mu} \end{pmatrix} \left(P(X_{n+1}, \dots, X_{n+k}) \downarrow_{S_n \times S_k}^{S_{n+k}} \right)$$

= $\mathbb{E} P(c_{n+1}, \dots, c_{n+k})$

ヘロト ヘヨト ヘヨト

the key result: new box

proof of the key result

proof, part 2

Hint: p-th moment of the left-hand-side

$$\frac{1}{k}\sum_{j}\left(\frac{c_{j}}{\sqrt{n}}\right)^{p}$$

is a random variable,

show that the mean converges to *p*-th moment of μ_{SC} show that the variance converges to zero

the key result: new box

proof of the key result

proof, part 2

since $c_1 < \cdots < c_k$, this implies that if $\frac{i}{k} \to x_{n+1}$ then

$$\frac{c([i])}{\sqrt{n}} \xrightarrow{\text{in probability}} F_{\mu_{\mathsf{SC}}}^{-1}(x_{n+1})$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

the key result: new box

proof of the key result

proof, part 3

TTDIII

shape of P_n (scaled by factor $\frac{1}{\sqrt{n}}$) with high probability concentrates around some explicit shape LOGAN, SHEPP, VERSHIK, KEROV

 $\bigcup_{\sqrt{n}}$ is with high probability close to the boundary of this limit shape

the key result: new box

proof of the key result

further reading

Dan Romik, Piotr Śniady

Jeu de taquin dynamics on infinite Young tableaux and second class particles Annals of Probability, to appear

arXiv:1111.0575

Dan Romik, Piotr Śniady

Limit shapes of bumping routes in the Robinson-Schensted correspondence

arXiv:1304.7589

