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Positive semidefiniteness vs. total positivity

Compare the following two properties for matrices A € R™*™:

o Aiscalled positive semidefinite if it is square (m = n), symmetric,
and all its principal minors are nonnegative (i.e. det Aj; > 0 for

all I C [n]).

o A is called totally positive if all its minors are nonnegative
(i.e. det Ayy > 0 for all I C [m] and J C [n)).

From the point of view of general linear algebra:

e Positive semidefiniteness is natural: it is equivalent to the
positive semidefiniteness of a quadratic form on a vector space,
and hence is basis-independent.

e Total positivity is unnatural: it is grossly basis-dependent.

This talk is about the “unnatural” property of total positivity.
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o Aiscalled positive semidefinite if it is square (m = n), symmetric,
and all its principal minors are nonnegative (i.e. det Aj; > 0 for

all I C [n]).
o A is called totally positive if all its minors are nonnegative
(i.e. det Ayy > 0 for all I C [m] and J C [n)).
From the point of view of general linear algebra:

e Positive semidefiniteness is natural: it is equivalent to the
positive semidefiniteness of a quadratic form on a vector space,
and hence is basis-independent.

e Total positivity is unnatural: it is grossly basis-dependent.

This talk is about the “unnatural” property of total positivity.

What total positivity is really about:
Functions F': S x T'— R where

e S and T are totally ordered sets, and

e R is a partially ordered commutative ring
(traditionally R = R, but we will generalize this)
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Log-concavity and log-convexity in combinatorics

A sequence (a;);ey of nonnegative real numbers (indexed by an
interval I C Z) is called

e log-concave if a,_1a,+1 < a? for all n
e log-conver if a,_1a,,1 > a* for all n

Many important combinatorial sequences are log-concave (cf. Stanley
1989 review article) or log-convex.

For a triangular array T, (0 < k < n), typically:
e “Horizontal sequences” (n fixed, k varying) are log-concave.

e “Vertical” sequence of row sums is log-convex.

Examples: Binomial coefficients, Stirling numbers of both kinds,
Eulerian numbers, . ..

Proofs can be combinatorial or analytic.



Strengthenings of log-concavity and log-convexity:
Toeplitz- and Hankel-total positivity

To each two-sided-infinite sequence @ = (aj)rez We associate the
Toeplitz matrix

a a; ap ---
a1 Qp ai ---
a_o9 A_1 Qg - --*

If @ is one-sided infinite (ag, ay, .. .) or finite (ag, ay, .. ., a,), set all
“missing” entries to zero.

e We say that the sequence a is Toeplitz-totally positive if the
Toeplitz matrix Ty (a) is totally positive. [Also called “Pdlya
frequency sequence” ]

e Thisimplies that the sequence is log-concave, but is much stronger.

To each one-sided-infinite sequence @ = (ax)r>0 We associate the
Hankel matrix

ag aip as ---
ap az asg ---

Hola) = (aisjligzo = | =0

e We say that the sequence a is Hankel-totally positive if the
Hankel matrix H..(a) is totally positive.

e Thisimplies that the sequence is log-convez, but is much stronger.



Characterization of Toeplitz-total positivity

Aissen—Schoenberg—Whitney—Edrei theorem (1952-53):

1. Finite sequence (ag, a1, . . ., a,) is Toeplitz-TP iff the polynomial

P(z) = " a2" has all its zeros in (—o0, 0].
k=0

2. One-sided infinite sequence (ag, ay, .. .) is Toeplitz-TP iff
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in some neighborhood of z = 0, with a;, G; > 0and Y «;, >~ 3 < 0.

3. Similar but more complicated representation for two-sided-infinite
Sequences.

Proofs of #2 and #3 rely on Nevanlinna theory of meromorphic
functions.

Open problem: Find a more elementary proof.

See Brenti for many combinatorial applications of Toeplitz-total positivity.



Characterization of Hankel-total positivity

For a sequence @ = (ay)r>0, define also the m-shifted Hankel matrix

Ay Am41 Am42 *

a a a ¢ o o
m m—+1 m—+2 m+3
H(a) = (airjim)ij=0 =

Am+2 Am+3 Am44 °

Recall that the sequence a is Hankel-totally positive in case the
Hankel matrix Hég)(a) is totally positive.

Fundamental result (Stieltjes 1894, Gantmakher—Krein 1937, ... ):
For a sequence @ = (a);2 , of real numbers, the following are equivalent:
(a) Hég)(a) is totally positive.

(b) Both Hég)(a) and Hé};)(a) are positive-semidefinite.

(¢) There exists a positive measure p on [0, 00) such that
ar = [ 2" dp(z) for all k > 0.

[That is, (ax)k>0 is a Stieltjes moment sequence. |

(d) There exist numbers g, aq, ... > 0 such that
> o)
Zaktk = i
k=0 1 — alt
01275
1.

in the sense of formal power series.

[Steltjes-type continued fraction with nonnegative coefficients]



From numbers to polynomials

lor, From counting to counting-with-weights|

Some simple examples:

L.

Counting subsets of [n]: a, = 2"
Counting subsets of [n] by cardinality: P,(z) = Y. (})z"
k=0
. Counting partitions of [n]: B,, (Bell number)

Counting partitions of [n| by number of blocks:
= > {7}2* (Bell polynomial)
k=0

. Counting non-crossing partitions of [n]: a, = C,, (Catalan number)

Counting non-crossing partitions of [n] by number of blocks:

P,(z) = kZ:O N(n, k) 2* (Narayana polynomial)

Counting permutations of [n|: a, = n!

Counting permutations of [n] by number of cycles:

P,(x) = zn: [Z} "

Counting permutations of [n] by number of descents:

P,(z) = > (})2" (Eulerian polynomial)

An industry in combinatorics: ¢-Narayana polynomials, p, g-Bell

polynomials, ...



Sequences and matrices of polynomials

e Consider sequences and matrices whose entries are polynomials
with real coefficients in one or more indeterminates x.

e P > 0 means that P has nonnegative coefficients.
(“coefficientwise partial order on the ring R[x]”)

e More generally, consider sequences and matrices with entries in
a partially ordered commutative ring R.

We say that a sequence (a;);c; of nonnegative elements of R is

e [og-concave if a,_1a,.1 — a% < 0 for all n

e strongly log-concave if ap_1a;11 — ara; < 0 for all & <

e [og-conver if a,_1a,41 — a% > (0 for all n
e strongly log-conver if ap_1a;.1 — aga; > 0 for all & <[
For sequences of real numbers,
e Strongly log-concave <= log-concave with no internal zeros.
e Strongly log-convex <= log-convex.
But on R|z| this is not so:
Example: The sequence (ag, a1, as, ag) with
ag = az = 2+ + 32
a; = ay = 1+ 2x + 222
is log-convex but not strongly log-convex.

We say that a matrix with entries in R is totally positive if every
minor is nonnegative (in R).

Toeplitz (resp. Hankel) total positivity implies the strong log-concavity
(resp. strong log-convexity).



Coeflicientwise Hankel-total positivity for sequences of
polynomials

Many interesting sequences of polynomials (P,(z)),>o have been
proven in recent years to be coefficientwise (strongly) log-convex:

e Binomials Y (})z* = (1+x)" [trivial]

e Bell polynomials B, (z) = Y {} }z"
k=0
(Liu-Wang 2007, Chen-Wang—Yang 2011)

e Narayana polynomials N,(z) = >_ N(n, k) 2"
k=0
(Chen—Wang—Yang 2010)

n

e Narayana polynomials of type B: W,(z) = > (2)2 z*
k=0
(Chen—Tang—Wang—Yang 2010)

e Eulerian polynomials A,(z) = Y (}) 2"
k=0
(Liu-Wang 2007, Zhu 2013)

Might these sequences actually be coefficientwise Hankel-totally positive?

e In many cases I can prove that the answer is yes, by using the
Flajolet—Viennot method of continued fractions.

e [n several other cases I have strong empirical evidence that
the answer is yes, but no proof.

e The continued-fraction approach gives a suffictent but not
necessary condition for coeflicientwise Hankel-total positivity.

10



The combinatorics of continued fractions (Flajolet 1980)

Let a = (ay)n>0 be a sequence of elements in a commutative ring R.
We associate to a the formal power series

0

f(t) = ) aut" € R[[t]

n=0

We now consider two types of continued fractions:
e Continued fractions of Stieltjes type (S-type):
1

Ozlt

1 —

| _ Oégt

Oégt
1 —---

which we denote by S(t; o) where av = ()1

e Continued fractions of Jacobi type (J-type):

1
ft) = ,

42
1 =t — & 5,0
st?
1 — gt — - - -
which we denote by J(¢; B, ) where B = (5,)n>1 and v = (Y1) n>0-

1—’7115-

1 =yt —
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The combinatorics of continued fractions (continued)

Theorem (Flajolet 1980): As an identity in Z[a][[t]], we have
1

| Ozlt n—0
- Ofgt

1—...

Mg

011,... tn

where S, (a1, . .., ) is the generating polynomial for Dyck paths of
length 2n in which each fall starting at height ¢ gets weight ;.

Sy(a) is called the Stieltjes—Rogers polynomial of order n.

Theorem (Flajolet 1980): As an identity in Z[3, v|[[t]], we have

51752 — ;Jn(677)t

Bt

1

1—”70t—

1=t -
where J,(8,7) is the generating polynomial for Motzkin paths of

length n in which each level step at height ¢ gets weight +; and each
fall starting at height ¢ gets weight ;.

Jn(B, ) is called the Jacobi—Rogers polynomial of order n.

12



Hankel matrix of Stieltjes—Rogers polynomials

Now form the infinite Hankel matrix corresponding to the sequence
S = (Sp(a))p>p of Stieltjes—Rogers polynomials:

HOO(S) = (Sz’—kj(a))mzo

And consider any minor of Hy(S):
A[J(S) = det H[J(S)

where [ = {iy,d9,... 0} with 0 <iy < iy < ... <1y
aﬂdJ:{jl,jg,...,jk}WithOSjl<j2<...<jk

Theorem (Viennot 1983): The minor A;;(S) is the generating
polynomial for families of disjoint Dyck paths P, . .., P, where path
P, starts at (—2i,,0) and ends at (2j,,0), in which each fall starting
at height 7 gets weight a.

The proof uses the Karlin—-McGregor—Lindstrom—Gessel-Viennot lemma
on families of nonintersecting paths.

Corollary: The sequence S = (5, (ax)),>0 is a Hankel-totally positive
sequence in the polynomial ring Z|a| equipped with the coefficientwise
partial order.

Now specialize ar to nonnegative elements in any partially ordered
commutative ring:

Corollary: Let a = (a,),>0 be a sequence of nonnegative elements
in a partially ordered commutative ring R. Then (S,(a)),>0 is a
Hankel-totally positive sequence in R.

13



Hankel matrix of Stieltjes—Rogers polynomials (continued)

Can also get explicit formulae for the Hankel determinants

A%W(S) = det H7§m>(5) for small m:

Theorem:
A%O)(S> = (041042)n_1(043044)n_2 (Oézn—30é2n—2)
AP(S) = af(agas)" auas)" ™ -+ (agu-202,1)

These formulae are classical in the theory of continued fractions,
but Viennot 1983 gives a beautiful combinatorial interpretation.

See also Ishikawa—Tagawa—Zeng 2009 for extensions to m = 2, 3.

14



Finding Hankel-totally positive sequences of polynomials

A general strategy:

1. Start from a sequence (¢, ),>0 of positive real numbers that is a
Stieltjes moment sequence, i.e. is Hankel-totally positive.
[This property is easy to test empirically: just expand the
generating series Y, ¢,t" as an S-type continued fraction and
test whether all coefficients «; are > 0]

2. Refine this sequence somehow to a triangular array (¢, 1 )o<p< ——

kmax(n)

satisfying > cpp = cp;
k=0

kEmax (n)

then define the polynomials P,(z) = > c¢,p 2.
k=0

3. By construction, the sequence (P,(1)),>q is Hankel-totally positive;
and if we are lucky, we will find that two successively stronger
properties of Hankel-total positivity also hold:

(a) For each real number x > 0, the sequence (P, (z)),>0 of real
numbers is Hankel-totally positive (i.e. is a Stieltjes moment
sequence).

(b) The sequence (P, (x)),>0 of polynomials is coefficientwise
Hankel-totally positive.

e Usually (¢;,),>0 will usually be a sequence of positive integers
having some combinatorial interpretation, i.e. as the cardinality
of some “naturally occurring” set S,,.

e Then the ¢, will arise from the partition of &, into disjoint
subsets S, 1, according to some “natural” statistic k: S, — N.

15



Some examples of combinatorial Stieltjes moment sequences

n Continued fraction
01 2 3 4 5 6 (05) ] a9k
Catalan numbers C), 11 2 5 14 42 132 1 1
Central binomials (Zg) 1 2 20 70 252 924 ap =2, 1
all others 1
Bell numbers B,, 11 2 5 15 52 203 1 k
Irreducible Bell numbers IB,,; |1 1 2 6 22 92 426 k 1
Factorials n! 11 2 6 24 120 720 k k
Ordered Bell numbers OB, 11 3 13 75 541 4683 k 2k
Odd semifactorials (2n—1)!! |1 1 3 15 105 945 10395 2k —1 2k
Even semifactorials (2n)!! 1 2 8 48 384 3840 46080 2k 2k
Genocchi medians Ho,, 11 1 1 2 8 56 608 9440 k? k?
Genocchi numbers G492 1 1 3 17 155 2073 38227 k? k(k+1)
Secant numbers Ey, 1 1 5 611385 50521 2702765 | (2k— 1) (2k)?
Tangent numbers Es), 11 1 216 272 7936 353792 22368256 | (2k—1)(2k) (2k)(2k+1)

So our polynomial examples will divide naturally into “families”:
the Catalan family, the Bell family, the factorial family, etc.

Can also pursue this strategy in reverse:

o
e Find the S-type continued fraction for the generating series ) ¢,t".
n=0
e Generalize it by inserting one or more indeterminates x.

e Try to compute the corresponding polynomials P,(x) and/or
find a combinatorial interpretation for them.
Caveat:

e There also exist important combinatorial Stieltjes moment sequences
that do not seem to have nice continued fractions.

e Some of them have polynomial refinements that are empirically
Hankel-totally positive; but new methods will be needed to prove it!

16




Example 1. Narayana polynomials

1
e Narayana numbers N(n, k) = — <Z> (k " 1) form >k >1
n JR—

with convention N (0, k) = dxg

e They refine Catalan numbers: >~ N(n,k) = C,
k=0

e They count numerous objects of combinatorial interest:

— Dyck paths of length 2n with k peaks
— Non-crossing partitions of [n] with k blocks

— Non-nesting partitions of [n| with &k blocks

e Define Narayana polynomials N, (z) = >° N(n, k) z*
k=0

e Define ordinary generating function N(¢,z) = > t" N,(x)
n=0

e Elementary “renewal” argument on Dyck paths implies

1
N =
1 —tx —tN —1)
which can be rewritten as
1
N = | xt
1 —tN

e Leads immediately to S-type continued fraction

0.9) , 1
Zt Nu(z) = xt
n=0

with coefficients anr_1 = @, a9y, = 1.

17



Narayana polynomials (continued)

Conclusions:

1. The sequence N = (N,(z)),>o of Narayana polynomials is
coefficientwise Hankel-totally positive. The minor A;;(IN) counts
families of disjoint Dyck paths as specified by Viennot 1983, with
weights aor_1 =, aor = 1.

2. The first Hankel determinants Ay (IN) are

A O)(N) _ xn(n—l)/Q

Al)(N) _ xn(n+1)/2

Remarks:

1. The strong log-convexity was known previously (Chen—Wang-
Yang 2010), but with a much more difficult proof.

2. The formula for A (INV') was also known (Sivasubramanian 2010),

by an explicit bijective argument.

18



Example 2: Bell polynomials

e Stirling number {}'} = # of partitions of [n] with & blocks

e Convention {2} = 10

e They refine Bell numbers: > {}} = B,
k=0
e Define Bell polynomials B, (z) = Y {}} ="
k=0

e Define ordinary generating function B(t,z) = > t" B,(z)
n=0

e Flajolet (1980) expressed B(t, ) as a J-type continued fraction

e Can be transformed to an S-type continued fraction

(0. @] ; 1
Y t"B,(x) = —
n=0

with coefficients aor_1 = &, agp = k.

19



Bell polynomials (continued)

Conclusions:

1. The sequence B = (B,(x)),>0 of Bell polynomials is
coefficientwise Hankel-totally positive. The minor Aj;(B) counts
families of disjoint Dyck paths as specified by Viennot 1983, with
weights aop_1 = 2, a9 = k.

2. The first Hankel determinants A%m)(B ) are

n

n—1
A(B) = x"("_l)/QHz'!
i=1

n

n—1
A(l)(B) _ xn(n+1)/2 H i
=1

Remarks:

1. The strong log-convexity was known previously (Chen—Wang—
Yang 2011).

2. The formula for A%O)(B) has also been known for a long time
(Radoux 1979, Ehrenborg 2000).

3. For each real number x > 0, the sequence (B, (z))s2, is the

moment sequence for the Poisson distribution of expected value x:

e = S (2

Hence (B,(x))>2, is a Hankel-totally positive sequence of real
numbers. But the weights e *2*/k! here are not nonnegative
elements of R[x] or R[[x]], so this approach cannot be used to

prove the coefficientwise total positivity.

20



Example 3: Interpolating between Narayana and Bell

o Let m = {By, Bo,..., B} be a partition of [n]

e Associate to 7 a graph G, with vertex set [n] such that 7, j are
joined by an edge iff they are consecutive elements within the
same block

e Always write an edge e of G, as a pair (i, 7) with ¢ < j

e We say that edges e; = (i1, j1) and ey = (i9, j2) of G, form
—a crossing if 11 < 1o < J1 < Jo
—a nesting if 11 < o < Jo < J1

e We define cr(7) [resp. ne(7)] to be number of crossings
(resp. nestings) in m

e Write |r| = k for the number of blocks in 7

e Now define the three-variable polynomial
Bn<x7 p7 q) — Z 3:-|7T|pcr(7r)qne(7r)
welly,
with the convention By(z,p,q) =1

e B,(z,0,1) = B,(z,1,0) = N,(x) and B,(z,1,1) = B,(z),
so this polynomial generalizes the Narayana and Bell polynomials.

e Kasraoui and Zeng (2006) have constructed an involution on
[T, that preserves the number of blocks (as well as some other
properties) and exchanges the numbers of crossings and nestings;

thus By, (v, p,q) = Bu(r,q,p).

oo
e Define ordinary generating function B(t, z, p, q) = >_ t" B,(z, p, q)
n=0

21



Interpolating between Narayana and Bell (continued)

e Kasraoui and Zeng (2006) have expressed B(t, z,p, q) as a
J-type continued fraction

e Can be transformed to an S-type continued fraction

> 1
Ztn Bn(ﬂf,p, Q) — Tt
n=0 1 —
N
| xt
N
1 _ .
with coefficients agp—1 = =, aor = [k], 4, Where
B Pk — gk
klpg = ——
pP—4q

Conclusions:

1. The sequence B = (By(x, p, q))n>o of three-variable polynomials
is coeflicientwise Hankel-totally positive. The minor A;;(B)
counts families of disjoint Dyck paths as specified by Viennot
1983, with weights cop—1 = =, o = [K]p4.

2. The first Hankel determinants AJ" (B) are

n

n—1
AO(B) = &2 ]l
=1

n—1
A(l)(B) = xn(nﬂ)/QH{i]p,q!
i=1

where

nlpg! = H[j]p,q (0.1)

22



Example 4: Eulerian polynomials

n

") =+ of permutations of [n] with & descents

e Kulerian number <

e Convention <2> = 00

e They obviously refine factorials: ) <Z> =n/
k=0

n

e Define Eulerian polynomials A,(z) = > (}) 2"

k=0

e Define ordinary generating function A(t, x) = > t" A, ()
n=0

e Flajolet (1980) expressed A(t, x) as a J-type continued fraction

e Can be transformed to an S-type continued fraction

St A(r) = -
n=0

with coefficients a1 = k, agp = k.

23



Eulerian polynomials (continued)

Conclusions:

1. The sequence A = (A,(x)),>0 of Eulerian polynomials is
coefficientwise Hankel-totally positive. The minor Aj;(A) counts
families of disjoint Dyck paths as specified by Viennot 1983, with
weights aor_1 = k, a9 = kx.

2. The first Hankel determinants Ay (A) are

n—1
A(O)<B) _ xn(n—l)/Q H 2'2
1=1
n—1
A<1)<B) _ qun(n—i—l)/Z H i!2
1=1

Remarks:

1. The (strong) log-convexity was known previously (Liu—Wang
2007, Zhu 2013).

2. The formula for A (A) was also known (Sivasubramanian 2010),
by an explicit bijective argument.

3. Shin and Zeng (2012) have a p, g-generalization of this S-type
continued fraction = their polynomials A,(z,p,q) form a
coefficientwise (in z, p, ¢) Hankel-totally positive sequence.

24



Some cases | am unable (as yet) to prove . ..

There are many cases where I find empirically that a sequence
(Pn())n>0 is coefficientwise Hankel-totally positive, but I am unable
to prove it because there is no S-type continued fraction in the ring
of polynomaals:

e Narayana polynomials of type B
e Egecioglu-Redmond-Ryavec polynomials
e [nversion enumerators for trees

e Reduced binomial discriminant polynomials

25



Narayana polynomials of type B

The polynomials

arise as
e Coordinator polynomial of the classical root lattice A,

e Rank generating function of the lattice of noncrossing partitions
of type B on [n]

[ follow Chen-Tang—Wang—Yang 2010 in calling them the Narayana
polynomials of type B.

e Empirically the sequence (W,,(x)),>0 seems to be coeflicientwise
Hankel-totally positive. I have checked this through the 12 x 12
Hankel matrix.

e There is no S-type continued fraction in the ring of polynomaials:
we have

2 1422 z4+22 1+2° z+2° 14+ 24
ay,Qo, ... = 1+ZE,1+ :
T

e However, there is a nice J-type continued fraction: v, = 1 + =,
0 =2z, B, = x for n > 2.

e Maybe I can use the J-type continued fraction to prove Hankel-
total positivity. (I only discovered this 2 days ago!)

26
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Egecioglu-Redmond—Ryavec polynomials

e A noncrossing graph is a graph whose vertices are points on a
circle and whose edges are non-crossing line segments.

e Noy (1998) showed that the number of noncrossing trees on n+-2
vertices in which a specified vertex (say, vertex 1) has degree k + 1 is

k+1/3n—k+1 B 2k + 2 3n—k+2
n+1 n—k  3n—k+2 n—k

T(n,k) =
e Egecioglu, Redmond and Ryavec (2001) introduced the polynomials

ERR,(z) = Zn:T(n, k)"
k=0

e They showed that, surprisingly, the Hankel determinant AW (FERR)
is independent of x:

A(O) E _ - (62.2;2)
V(ERR) = | | 2<4i—1)
1=1 21

This is the number of (2n+41) X (2n+1) alternating sign matrices
that are invariant under vertical reflection.

e Empirically I find that the sequence (ERR,(x)),>0 is coeffi-
cientwise Hankel-totally positive. I have checked this through
the 13 x 13 Hankel matrix.

e There is no S-type continued fraction in the ring of polynomials:

we have
3 114+ 10x 52 + 26x

2+ 2 6+3xr  33+30x

e However, there seems to be a J-type continued fraction where

al, g, ... = 24+,

Yo = 2+ x and all the other coefficients are numbers.

e Maybe I can use the J-type continued fraction to prove Hankel-
total positivity. (I only discovered this 2 days ago too!)
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Generating polynomials of connected graphs
e Let ¢, = # of connected simple graphs on vertex set [n] having
m edges

e Define the generating polynomial of connected graphs
(5)
Ch(v) = Z Cpm V"

m=n—1
= 02" 4+ v(g)

e No useful explicit formula for the polynomials C,(v) or their
coefficients is known.

e But they have the well-known exponential generating function

z" I S n(n—1)/2
n! Ch(v) = log; S (1+v)

o0

n=1

e Make change of variables y = 1+v and define C,,(y) = C,,(y — 1):

00 ZEn— 00 LE’n .
zac’n(y) = 1Og;ﬁy( Hrz

e These formulae can be considered either as identities for formal
power series or as analytic statements valid when |1 + v| < 1

(resp. [y < 1).
e In particular we have
Co(=1) = Ca(0) = (=1)"(n—1)
e Of course we also have
C,0) = Cp,(1) =0 forn>2
since C),(v) [resp. Cn(y)] has an (n—1)-fold zero at v = 0 [resp. y = 1].
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Inversion enumerator for trees

e Let T' be a tree with vertex set [n], rooted at the vertex 1.

e An inversion of T is an ordered pair (7, k) of vertices such that
j >k > 1 and the path from 1 to k passes through j.

e Let i, denote the number of trees on |n| having ¢ inversions.

e Define the tnversion enumerator for trees
(")
L(y) = > ined'
(=0

= n—1!+ ... +y<n51)

e The polynomial I,(y) turns out to be related to Cy(v) by the
beautiful formula

Co(v) = v" 1 I,(14+0)
or equivalently
Caly) = (y— 1" Lu(y)
e This shows in particular that I,,(0) = (n—1)! and I,,(1) = n"2.

e It is useful to define the normalized polynomials

1,(y)
(n—1)!

Ii(y) =

which have nonnegative rational coefficients and constant term 1.
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[nversion enumerator for trees (continued)

Fact 1. I,(y) has strictly positive coefficients.

e Nonnegativity is obvious; strict positivity takes a bit of work.

Fact 2. I,(y) has log-concave coefficients.

e Special case of a deep result of Huh, arXiv:1201.2915, on the
log-concavity of the h-vector of the independent-set complex for
matroids representable over a field of characteristic 0: apply it

to M*(K,).

e Open problem: Find an elementary direct proof.

Now form the sequence I = (I,,11(y))n>0.
Conjecture 1. The sequence I is coefficientwise Hankel-totally
positive.

e | have checked this through the 8 x 8 Hankel matrix.

e [ven the log-convexity I, 11,11 > L?L seems to be an open problem!

Conjecture 2. The 2 x 2 minors I, 11,11 — Ind, (1 <m <n)
have coeflicients that are log-concave.

e | have checked this through n = 137.

e [t is false for minors of size 3 x 3 and higher.
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[nversion enumerator for trees (continued)
Now look at the normalized polynomials I* = (I}, ;(y))n>o0.

Conjecture 3. The sequence I* is coefficientwise Hankel-totally
positive.

e | have checked this through the 8 x 8 Hankel matrix.

e The analogous result for fixed real y € [0, 1] can be proven by
using a result of Laguerre on the real-rootedness of the “deformed
exponential function”

(0. 9] n

L nin—
Pla,y) =)  —y""

n=0

This is what led me to conjecture the coefficientwise Hankel-
total positivity.

e [ believe the result for I implies the one for I, by virtue of a
general fact about Hadamard products; but I need to check this
more carefully!

Conjecture 4. All the Hankel minors of I'* have coefficients that
are log-concave.

e [ have checked this through the 8 x 8 Hankel matrix.

e For the 2 x 2 minors, I have checked it for 1 < m <n < 137.
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Binomial discriminant polynomials

e Define F(z,y) = Z (Z) gk gy E=1)/2
k=0

e Can be considered as a “y-deformation” of the binomial (14 x)".
It is also the Jensen polynomial of the deformed exponential function.

e Now define the binomial discriminant polynomaial

Dn(y) = disc; Fu(z,y)

e D,(y) is a polynomial with integer coefficients

e It has degree n(n — 1)?/2 and has first and last terms

D nin=4){n= n(n— n, n(n—1)=
D,(y) = biy( Dn=2)/3 4 4 (_1)( 1)/2ny( 1)2/2

where .
n—1 n H kk

. ny Q%k—1-n __ k=1

=1 () = T = 5

k=1

(does this sequence have any standard name?)

e The first few D, (y) are:

Eo(y) =1

El(y) =1

E2(y) = 4—-4y

Ds(y) = 8ly* — 216y° 4 162y* + 0y° — 274/

Dy(y) = 9216y° — 44032y" + 76032y" — 46080y — 15360y"*

+27648y" — 4608y — 3072y + 0y* + 0y'7 + 256y'°
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Reduced binomial discriminant polynomials

e D, (y) has a factor y""=N("=2)/3 and also a factor (1 —y)"=1/2
[coming from the fact that the n roots of F,(x,y) all coalesce as
y — 1].

e So define the reduced binomial discriminant polynomaial

B Dy(y)
Jn(y> - yn(n—l)(n—Q)/?) (1 — y>n(n—1)/2

e J,(y) is a polynomial with integer coefficients
e [t has degree (g) and has first and last terms
Jo(y) = bi + ...+ n”y@
o J,(1)= T k* (hyperfactorials)
—1

k—
o The first few J,(y) are:
Jo(y) = 1
Jily) =1
Jo(y) = 4
Ji3(y) = 81+ 27Ty
July) = 9216 + 11264y + 5376y* 4 1536y° + 256y

Conjecture 1. The coefficients of J,(y) are nonnegative (in fact,
strictly positive).

Conjecture 2. The coefficients of J,(y) are log-concave (in fact,
strictly log-concave).

e | have checked these conjectures for n < 40.
e What are the coefficients of J,(y) counting?

e Might these coefficients be the h-vector for some matroid???

33



Reduced binomial discriminant polynomials (continued)
Now form the sequence J = (J,,(y))n>0.

Conjecture 3. The sequence J is coeflicientwise Hankel-totally
positive.

e In fact, all the Hankel minors of J seem to have coefficients that
are strictly positive.

e | have checked this through the 8 x 8 Hankel matrix.

Conjecture 4. All the Hankel minors of J have coefficients that
are log-concave (in fact, strictly log-concave).

e | have checked this through the 8 x 8 Hankel matrix.

e For the 2 x 2 minors, I have checked it for 1 < m <n < 39.

Now look at the normalized polynomials J* = (J*(y))n>0-

Conjecture 5. The sequence J* is coefficientwise strongly log-
conver: that is, all the 2 x 2 minors J;,_,J;.; — J},J; have non-
negative coefficients.

e [ have checked this for 1 < m <n < 39.

e The 3% 3 and higher minors do not have nonnegative coefficients.

Conjecture 6. All the 2x2minors J);,_,J; . —JJ;, have coeflicients
that are log-concave (in fact, strictly log-concave except when m=n=1).

e [ have checked this for 1 < m < n < 39.
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(Tentative) Conclusion

e Many interesting sequences (P,(x)),>0 of combinatorial polynomials
are (or appear to be) coefficientwise Hankel-totally positive.

e In some cases this can be proven by the Flajolet—Viennot method
of continued fractions.

— Flajolet and Viennot emphasized J-type continued fractions
because they are more general.

— But S-type continued fractions, when they exist, often have
simpler coefficients; and they are the most direct tool for
proving Hankel-total positivity:.

— Roughly speaking;:
J-type c.f. <= general orthogonal polynomials <= Hamburger moment problem

S-type c.f. <= orthogonal polynomials on [0, 00) <= Stieltjes moment problem
<= Hankel-total positivity

e For the other cases, new methods of proof will be needed.
e Deepest cases seem to be I,(y) and J,(y):

— For I,,(y), even the log-convexity I, 11,1 = I? is an open
problem. (Bijective proof??)

— For J,(y), even the nonnegativity J,, = 0 is an open problem!
We really need to know what J,(y) is counting!

Dédié a la mémorre de Philippe Flajolet
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