Coefficientwise total positivity (via continued fractions) for some Hankel matrices of combinatorial polynomials

Alan Sokal
New York University / University College London

Séminaire de combinatoire Philippe Flajolet
5 June 2014

Key references:

1. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32, 125-161 (1980).
2. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux (UQAM, 1983).

Positive semidefiniteness vs. total positivity

Compare the following two properties for matrices $A \in \mathbb{R}^{m \times n}$:

- A is called positive semidefinite if it is square ($m=n$), symmetric, and all its principal minors are nonnegative (i.e. $\operatorname{det} A_{I I} \geq 0$ for all $I \subseteq[n])$.
- A is called totally positive if all its minors are nonnegative (i.e. $\operatorname{det} A_{I J} \geq 0$ for all $I \subseteq[m]$ and $J \subseteq[n]$).

From the point of view of general linear algebra:

- Positive semidefiniteness is natural: it is equivalent to the positive semidefiniteness of a quadratic form on a vector space, and hence is basis-independent.
- Total positivity is unnatural: it is grossly basis-dependent.

This talk is about the "unnatural" property of total positivity.

Positive semidefiniteness vs. total positivity

Compare the following two properties for matrices $A \in \mathbb{R}^{m \times n}$:

- A is called positive semidefinite if it is square ($m=n$), symmetric, and all its principal minors are nonnegative (i.e. $\operatorname{det} A_{I I} \geq 0$ for all $I \subseteq[n]$).
- A is called totally positive if all its minors are nonnegative (i.e. $\operatorname{det} A_{I J} \geq 0$ for all $I \subseteq[m]$ and $J \subseteq[n]$).

From the point of view of general linear algebra:

- Positive semidefiniteness is natural: it is equivalent to the positive semidefiniteness of a quadratic form on a vector space, and hence is basis-independent.
- Total positivity is unnatural: it is grossly basis-dependent.

This talk is about the "unnatural" property of total positivity.

What total positivity is really about:

Functions $F: S \times T \rightarrow R$ where

- S and T are totally ordered sets, and
- R is a partially ordered commutative ring (traditionally $R=\mathbb{R}$, but we will generalize this)

Some references on total positivity

The classics:

1. Gantmakher and Krein, Sur les matrices complètement non négatives et oscillatoires, Compositio Math. 4, 445-476 (1937).
2. Gantmakher and Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (2nd Russian edition, 1950; English translation by AMS, 2002).
3. Karlin, Total Positivity (Stanford UP, 1968).
4. Ando, Totally positive matrices, Lin. Alg. Appl. 90, 165-219 (1987).

Two recent books:

1. Pinkus, Totally Positive Matrices (Cambridge UP, 2010).
2. Fallat and Johnson, Totally Nonnegative Matrices (Princeton UP, 2011).

Applications to combinatorics:

1. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Memoirs AMS 81, no. 413 (1989).
2. Brenti, The applications of total positivity to combinatorics, and conversely. In: Total Positivity and its Applications (1996).
3. Skandera, Introductory notes on total positivity (2003).

Log-concavity and log-convexity in combinatorics

A sequence $\left(a_{i}\right)_{i \in I}$ of nonnegative real numbers (indexed by an interval $I \subset \mathbb{Z}$) is called

- log-concave if $a_{n-1} a_{n+1} \leq a_{n}^{2}$ for all n
- log-convex if $a_{n-1} a_{n+1} \geq a_{n}^{2}$ for all n

Many important combinatorial sequences are log-concave (cf. Stanley 1989 review article) or log-convex.

For a triangular array $T_{n, k}(0 \leq k \leq n)$, typically:

- "Horizontal sequences" (n fixed, k varying) are log-concave.
- "Vertical" sequence of row sums is log-convex.

Examples: Binomial coefficients, Stirling numbers of both kinds, Eulerian numbers, ...

Proofs can be combinatorial or analytic.

Strengthenings of log-concavity and log-convexity:
Toeplitz- and Hankel-total positivity
To each two-sided-infinite sequence $\boldsymbol{a}=\left(a_{k}\right)_{k \in \mathbb{Z}}$ we associate the Toeplitz matrix

$$
T_{\infty}(\boldsymbol{a})=\left(a_{j-i}\right)_{i, j \geq 0}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{-1} & a_{0} & a_{1} & \cdots \\
a_{-2} & a_{-1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

If \boldsymbol{a} is one-sided infinite (a_{0}, a_{1}, \ldots) or finite ($a_{0}, a_{1}, \ldots, a_{n}$), set all "missing" entries to zero.

- We say that the sequence \boldsymbol{a} is Toeplitz-totally positive if the Toeplitz matrix $T_{\infty}(\boldsymbol{a})$ is totally positive. [Also called "Pólya frequency sequence".]
- This implies that the sequence is log-concave, but is much stronger.

To each one-sided-infinite sequence $\boldsymbol{a}=\left(a_{k}\right)_{k \geq 0}$ we associate the Hankel matrix

$$
H_{\infty}(\boldsymbol{a})=\left(a_{i+j}\right)_{i, j \geq 0}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- We say that the sequence \boldsymbol{a} is Hankel-totally positive if the Hankel matrix $H_{\infty}(\boldsymbol{a})$ is totally positive.
- This implies that the sequence is log-convex, but is much stronger.

Characterization of Toeplitz-total positivity

Aissen-Schoenberg-Whitney-Edrei theorem (1952-53):

1. Finite sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is Toeplitz-TP iff the polynomial $P(z)=\sum_{k=0}^{n} a_{k} z^{k}$ has all its zeros in $(-\infty, 0]$.
2. One-sided infinite sequence (a_{0}, a_{1}, \ldots) is Toeplitz-TP iff

$$
\sum_{k=0}^{\infty} a_{k} z^{k}=e^{\gamma z} \frac{\prod_{i=1}^{\infty}\left(1+\alpha_{i} z\right)}{\prod_{i=1}^{\infty}\left(1-\beta_{i} z\right)}
$$

in some neighborhood of $z=0$, with $\alpha_{i}, \beta_{i} \geq 0$ and $\sum_{i} \alpha_{i}, \sum_{i} \beta_{i}<\infty$.
3. Similar but more complicated representation for two-sided-infinite sequences.

Proofs of \#2 and \#3 rely on Nevanlinna theory of meromorphic functions.

Open problem: Find a more elementary proof.

See Brenti for many combinatorial applications of Toeplitz-total positivity.

Characterization of Hankel-total positivity

For a sequence $\boldsymbol{a}=\left(a_{k}\right)_{k \geq 0}$, define also the m-shifted Hankel matrix

$$
H_{\infty}^{(m)}(\boldsymbol{a})=\left(a_{i+j+m}\right)_{i, j \geq 0}=\left(\begin{array}{ccccc}
a_{m} & a_{m+1} & a_{m+2} & \cdots & \\
a_{m+1} & a_{m+2} & a_{m+3} & \cdots & \\
a_{m+2} & a_{m+3} & a_{m+4} & \cdots & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Recall that the sequence \boldsymbol{a} is Hankel-totally positive in case the Hankel matrix $H_{\infty}^{(0)}(\boldsymbol{a})$ is totally positive.

Fundamental result (Stieltjes 1894, Gantmakher-Krein 1937, ...):
For a sequence $\boldsymbol{a}=\left(a_{k}\right)_{k=0}^{\infty}$ of real numbers, the following are equivalent:
(a) $H_{\infty}^{(0)}(\boldsymbol{a})$ is totally positive.
(b) Both $H_{\infty}^{(0)}(\boldsymbol{a})$ and $H_{\infty}^{(1)}(\boldsymbol{a})$ are positive-semidefinite.
(c) There exists a positive measure μ on $[0, \infty)$ such that $a_{k}=\int x^{k} d \mu(x)$ for all $k \geq 0$.
[That is, $\left(a_{k}\right)_{k \geq 0}$ is a Stieltjes moment sequence.]
(d) There exist numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
\sum_{k=0}^{\infty} a_{k} t^{k}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

in the sense of formal power series.
[Steltjes-type continued fraction with nonnegative coefficients]

From numbers to polynomials
[or, From counting to counting-with-weights]

Some simple examples:

1. Counting subsets of $[n]: \quad a_{n}=2^{n}$

Counting subsets of $[n]$ by cardinality: $P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}$
2. Counting partitions of $[n]: a_{n}=B_{n}$ (Bell number)

Counting partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} \quad \text { (Bell polynomial) }
$$

3. Counting non-crossing partitions of $[n]: a_{n}=C_{n}$ (Catalan number) Counting non-crossing partitions of $[n]$ by number of blocks:

$$
P_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k} \quad \text { (Narayana polynomial) }
$$

4. Counting permutations of $[n]: a_{n}=n!$

Counting permutations of $[n$] by number of cycles:

$$
P_{n}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}
$$

Counting permutations of $[n]$ by number of descents:

$$
P_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k} \quad \text { (Eulerian polynomial) }
$$

An industry in combinatorics: q-Narayana polynomials, p, q-Bell polynomials, ...

Sequences and matrices of polynomials

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.
- $P \succeq 0$ means that P has nonnegative coefficients. ("coefficientwise partial order on the ring $\mathbb{R}[\mathbf{x}]$ ")
- More generally, consider sequences and matrices with entries in a partially ordered commutative ring R.

We say that a sequence $\left(a_{i}\right)_{i \in I}$ of nonnegative elements of R is

- log-concave if $a_{n-1} a_{n+1}-a_{n}^{2} \leq 0$ for all n
- strongly log-concave if $a_{k-1} a_{l+1}-a_{k} a_{l} \leq 0$ for all $k \leq l$
- log-convex if $a_{n-1} a_{n+1}-a_{n}^{2} \geq 0$ for all n
- strongly log-convex if $a_{k-1} a_{l+1}-a_{k} a_{l} \geq 0$ for all $k \leq l$

For sequences of real numbers,

- Strongly log-concave \Longleftrightarrow log-concave with no internal zeros.
- Strongly log-convex \Longleftrightarrow log-convex.

But on $\mathbb{R}[x]$ this is not so:
Example: The sequence $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ with

$$
\begin{aligned}
& a_{0}=a_{3}=2+x+3 x^{2} \\
& a_{1}=a_{2}=1+2 x+2 x^{2}
\end{aligned}
$$

is log-convex but not strongly log-convex.
We say that a matrix with entries in R is totally positive if every minor is nonnegative (in R).

Toeplitz (resp. Hankel) total positivity implies the strong log-concavity (resp. strong log-convexity).

Coefficientwise Hankel-total positivity for sequences of polynomials

Many interesting sequences of polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise (strongly) log-convex:

- Binomials $\sum_{k=0}^{n}\binom{n}{k} x^{k}=(1+x)^{n} \quad$ [trivial]
- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$ (Liu-Wang 2007, Chen-Wang-Yang 2011)
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$ (Chen-Wang-Yang 2010)
- Narayana polynomials of type B: $W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}$ (Chen-Tang-Wang-Yang 2010)
- Eulerian polynomials $A_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}$ (Liu-Wang 2007, Zhu 2013)

Might these sequences actually be coefficientwise Hankel-totally positive?

- In many cases I can prove that the answer is yes, by using the Flajolet-Viennot method of continued fractions.
- In several other cases I have strong empirical evidence that the answer is yes, but no proof.
- The continued-fraction approach gives a sufficient but not necessary condition for coefficientwise Hankel-total positivity.

The combinatorics of continued fractions (Flajolet 1980)

Let $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ be a sequence of elements in a commutative ring R. We associate to \boldsymbol{a} the formal power series

$$
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \in R[[t]]
$$

We now consider two types of continued fractions:

- Continued fractions of Stieltjes type (S-type):

$$
f(t)=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\frac{\alpha_{3} t}{1-\cdots}}}},
$$

which we denote by $S(t ; \boldsymbol{\alpha})$ where $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n \geq 1}$.

- Continued fractions of Jacobi type (J-type):

$$
f(t)=\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{1-\gamma_{3} t-\cdots}}},}
$$

which we denote by $J(t ; \boldsymbol{\beta}, \boldsymbol{\gamma})$ where $\boldsymbol{\beta}=\left(\beta_{n}\right)_{n \geq 1}$ and $\boldsymbol{\gamma}=\left(\gamma_{n}\right)_{n \geq 0}$.

The combinatorics of continued fractions (continued)

Theorem (Flajolet 1980): As an identity in $\mathbb{Z}[\boldsymbol{\alpha}][[t]]$, we have

$$
\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}=\sum_{n=0}^{\infty} S_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) t^{n}
$$

where $S_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the generating polynomial for Dyck paths of length $2 n$ in which each fall starting at height i gets weight α_{i}.
$S_{n}(\boldsymbol{\alpha})$ is called the Stieltjes-Rogers polynomial of order n.

Theorem (Flajolet 1980): As an identity in $\mathbb{Z}[\boldsymbol{\beta}, \boldsymbol{\gamma}][[t]]$, we have

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\cdots}}}=\sum_{n=0}^{\infty} J_{n}(\boldsymbol{\beta}, \boldsymbol{\gamma}) t^{n}
$$

where $J_{n}(\boldsymbol{\beta}, \gamma)$ is the generating polynomial for Motzkin paths of length n in which each level step at height i gets weight γ_{i} and each fall starting at height i gets weight β_{i}.
$J_{n}(\boldsymbol{\beta}, \boldsymbol{\gamma})$ is called the Jacobi-Rogers polynomial of order n.

Hankel matrix of Stieltjes-Rogers polynomials

Now form the infinite Hankel matrix corresponding to the sequence $\boldsymbol{S}=\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of Stieltjes-Rogers polynomials:

$$
H_{\infty}(\boldsymbol{S})=\left(S_{i+j}(\boldsymbol{\alpha})\right)_{i, j \geq 0}
$$

And consider any minor of $H_{\infty}(\boldsymbol{S})$:

$$
\Delta_{I J}(\boldsymbol{S})=\operatorname{det} H_{I J}(\boldsymbol{S})
$$

where $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ with $0 \leq i_{1}<i_{2}<\ldots<i_{k}$ and $J=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ with $0 \leq j_{1}<j_{2}<\ldots<j_{k}$

Theorem (Viennot 1983): The minor $\Delta_{I J}(\boldsymbol{S})$ is the generating polynomial for families of disjoint Dyck paths P_{1}, \ldots, P_{k} where path P_{r} starts at $\left(-2 i_{r}, 0\right)$ and ends at $\left(2 j_{r}, 0\right)$, in which each fall starting at height i gets weight α_{i}.

The proof uses the Karlin-McGregor-Lindström-Gessel-Viennot lemma on families of nonintersecting paths.

Corollary: The sequence $\boldsymbol{S}=\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is a Hankel-totally positive sequence in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$ equipped with the coefficientwise partial order.

Now specialize $\boldsymbol{\alpha}$ to nonnegative elements in any partially ordered commutative ring:

Corollary: Let $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n \geq 0}$ be a sequence of nonnegative elements in a partially ordered commutative ring R. Then $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is a Hankel-totally positive sequence in R.

Hankel matrix of Stieltjes-Rogers polynomials (continued)

Can also get explicit formulae for the Hankel determinants $\Delta_{n}^{(m)}(\boldsymbol{S})=\operatorname{det} H_{n}^{(m)}(\boldsymbol{S})$ for small m :

Theorem:

$$
\begin{aligned}
\Delta_{n}^{(0)}(\boldsymbol{S}) & =\left(\alpha_{1} \alpha_{2}\right)^{n-1}\left(\alpha_{3} \alpha_{4}\right)^{n-2} \cdots\left(\alpha_{2 n-3} \alpha_{2 n-2}\right) \\
\Delta_{n}^{(1)}(\boldsymbol{S}) & =\alpha_{1}^{n}\left(\alpha_{2} \alpha_{3}\right)^{n-1}\left(\alpha_{4} \alpha_{5}\right)^{n-2} \cdots\left(\alpha_{2 n-2} \alpha_{2 n-1}\right)
\end{aligned}
$$

These formulae are classical in the theory of continued fractions, but Viennot 1983 gives a beautiful combinatorial interpretation.

See also Ishikawa-Tagawa-Zeng 2009 for extensions to $m=2,3$.

Finding Hankel-totally positive sequences of polynomials

A general strategy:

1. Start from a sequence $\left(c_{n}\right)_{n \geq 0}$ of positive real numbers that is a Stieltjes moment sequence, i.e. is Hankel-totally positive.
[This property is easy to test empirically: just expand the generating series $\sum_{n=0}^{\infty} c_{n} t^{n}$ as an S-type continued fraction and test whether all coefficients α_{i} are ≥ 0.]
2. Refine this sequence somehow to a triangular array $\left(c_{n, k}\right)_{0 \leq k \leq k_{\max }(n)}$ satisfying $\sum_{k=0}^{k_{\max }(n)} c_{n, k}=c_{n}$;
then define the polynomials $P_{n}(x)=\sum_{k=0}^{k_{\max }(n)} c_{n, k} x^{k}$.
3. By construction, the sequence $\left(P_{n}(1)\right)_{n \geq 0}$ is Hankel-totally positive; and if we are lucky, we will find that two successively stronger properties of Hankel-total positivity also hold:
(a) For each real number $x \geq 0$, the sequence $\left(P_{n}(x)\right)_{n \geq 0}$ of real numbers is Hankel-totally positive (i.e. is a Stieltjes moment sequence).
(b) The sequence $\left(P_{n}(x)\right)_{n \geq 0}$ of polynomials is coefficientwise Hankel-totally positive.

- Usually $\left(c_{n}\right)_{n \geq 0}$ will usually be a sequence of positive integers having some combinatorial interpretation, i.e. as the cardinality of some "naturally occurring" set \mathcal{S}_{n}.
- Then the $c_{n, k}$ will arise from the partition of \mathcal{S}_{n} into disjoint subsets $\mathcal{S}_{n, k}$ according to some "natural" statistic $\kappa: \mathcal{S}_{n} \rightarrow \mathbb{N}$.

Some examples of combinatorial Stieltjes moment sequences

	n								Continued fraction	
	0	1	2	3	4	5	6	$\alpha_{2 k-1}$	$\alpha_{2 k}$	
Catalan numbers C_{n}	1	1	2	5	14	42	132	1	1	
Central binomials $\binom{2 n}{n}$	1	2	6	20	70	252	924	$\alpha_{1}=2$, all others 1	1	
								1	k	
Bell numbers B_{n}	1	1	2	5	15	52	203	1	k	
Irreducible Bell numbers $I B_{n+1}$	1	1	2	6	22	92	426	k	1	
Factorials $n!$	1	1	2	6	24	120	720	k	k	
Ordered Bell numbers $O B_{n}$	1	1	3	13	75	541	4683	k	$2 k$	
Odd semifactorials $(2 n-1)!!$	1	1	3	15	105	945	10395	$2 k-1$	$2 k$	
Even semifactorials $(2 n)!!$	1	2	8	48	384	3840	46080	$2 k$	$2 k$	
Genocchi medians $H_{2 n+1}$	1	1	2	8	56	608	9440	k^{2}	k^{2}	
Genocchi numbers $G_{2 n+2}$	1	1	3	17	155	2073	38227	k^{2}	$k(k+1)$	
Secant numbers $E_{2 n}$	1	1	5	61	1385	50521	2702765	$(2 k-1)^{2}$	$(2 k)^{2}$	
Tangent numbers $E_{2 n+1}$	1	2	16	272	7936	353792	22368256	$(2 k-1)(2 k)$	$(2 k)(2 k+1)$	

So our polynomial examples will divide naturally into "families": the Catalan family, the Bell family, the factorial family, etc.

Can also pursue this strategy in reverse:

- Find the S-type continued fraction for the generating series $\sum_{n=0}^{\infty} c_{n} t^{n}$.
- Generalize it by inserting one or more indeterminates \mathbf{x}.
- Try to compute the corresponding polynomials $P_{n}(\mathbf{x})$ and/or find a combinatorial interpretation for them.

Caveat:

- There also exist important combinatorial Stieltjes moment sequences that do not seem to have nice continued fractions.
- Some of them have polynomial refinements that are empirically Hankel-totally positive; but new methods will be needed to prove it!

Example 1: Narayana polynomials

- Narayana numbers $N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$ for $n \geq k \geq 1$ with convention $N(0, k)=\delta_{k 0}$
- They refine Catalan numbers: $\sum_{k=0}^{n} N(n, k)=C_{n}$
- They count numerous objects of combinatorial interest:
- Dyck paths of length $2 n$ with k peaks
- Non-crossing partitions of $[n]$ with k blocks
- Non-nesting partitions of $[n]$ with k blocks
- Define Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$
- Define ordinary generating function $\mathcal{N}(t, x)=\sum_{n=0}^{\infty} t^{n} N_{n}(x)$
- Elementary "renewal" argument on Dyck paths implies

$$
\mathcal{N}=\frac{1}{1-t x-t(\mathcal{N}-1)}
$$

which can be rewritten as

$$
\mathcal{N}=\frac{1}{1-\frac{x t}{1-t \mathcal{N}}}
$$

- Leads immediately to S-type continued fraction

$$
\sum_{n=0}^{\infty} t^{n} N_{n}(x)=\frac{1}{1-\frac{x t}{1-\frac{t}{1-\frac{x t}{1-\frac{t}{1-\cdots}}}}}
$$

with coefficients $\alpha_{2 k-1}=x, \alpha_{2 k}=1$.

Narayana polynomials (continued)

Conclusions:

1. The sequence $\boldsymbol{N}=\left(N_{n}(x)\right)_{n \geq 0}$ of Narayana polynomials is coefficientwise Hankel-totally positive. The minor $\Delta_{I J}(\boldsymbol{N})$ counts families of disjoint Dyck paths as specified by Viennot 1983, with weights $\alpha_{2 k-1}=x, \alpha_{2 k}=1$.
2. The first Hankel determinants $\Delta_{n}^{(m)}(\boldsymbol{N})$ are

$$
\begin{aligned}
\Delta_{n}^{(0)}(\boldsymbol{N}) & =x^{n(n-1) / 2} \\
\Delta_{n}^{(1)}(\boldsymbol{N}) & =x^{n(n+1) / 2}
\end{aligned}
$$

Remarks:

1. The strong log-convexity was known previously (Chen-WangYang 2010), but with a much more difficult proof.
2. The formula for $\Delta_{n}^{(0)}(\boldsymbol{N})$ was also known (Sivasubramanian 2010), by an explicit bijective argument.

Example 2: Bell polynomials

- Stirling number $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\#$ of partitions of $[n]$ with k blocks
- Convention $\left\{\begin{array}{l}0 \\ k\end{array}\right\}=\delta_{k 0}$
- They refine Bell numbers: $\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}=B_{n}$
- Define Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
- Define ordinary generating function $\mathcal{B}(t, x)=\sum_{n=0}^{\infty} t^{n} B_{n}(x)$
- Flajolet (1980) expressed $\mathcal{B}(t, x)$ as a J-type continued fraction
- Can be transformed to an S-type continued fraction

$$
\sum_{n=0}^{\infty} t^{n} B_{n}(x)=\frac{1}{1-\frac{x t}{1-\frac{1 t}{1-\frac{x t}{1-\frac{2 t}{1-\cdots}}}}}
$$

with coefficients $\alpha_{2 k-1}=x, \alpha_{2 k}=k$.

Bell polynomials (continued)

Conclusions:

1. The sequence $\boldsymbol{B}=\left(B_{n}(x)\right)_{n \geq 0}$ of Bell polynomials is coefficientwise Hankel-totally positive. The minor $\Delta_{I J}(\boldsymbol{B})$ counts families of disjoint Dyck paths as specified by Viennot 1983, with weights $\alpha_{2 k-1}=x, \alpha_{2 k}=k$.
2. The first Hankel determinants $\Delta_{n}^{(m)}(\boldsymbol{B})$ are

$$
\begin{aligned}
& \Delta_{n}^{(0)}(\boldsymbol{B})=x^{n(n-1) / 2} \prod_{i=1}^{n-1} i! \\
& \Delta_{n}^{(1)}(\boldsymbol{B})=x^{n(n+1) / 2} \prod_{i=1}^{n-1} i!
\end{aligned}
$$

Remarks:

1. The strong log-convexity was known previously (Chen-WangYang 2011).
2. The formula for $\Delta_{n}^{(0)}(\boldsymbol{B})$ has also been known for a long time (Radoux 1979, Ehrenborg 2000).
3. For each real number $x \geq 0$, the sequence $\left(B_{n}(x)\right)_{n=0}^{\infty}$ is the moment sequence for the Poisson distribution of expected value x :

$$
B_{n}(x)=\sum_{k=0}^{\infty} k^{n}\left(e^{-x} \frac{x^{k}}{k!}\right)
$$

Hence $\left(B_{n}(x)\right)_{n=0}^{\infty}$ is a Hankel-totally positive sequence of real numbers. But the weights $e^{-x} x^{k} / k$! here are not nonnegative elements of $\mathbb{R}[x]$ or $\mathbb{R}[[x]]$, so this approach cannot be used to prove the coefficientwise total positivity.

Example 3: Interpolating between Narayana and Bell

- Let $\pi=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ be a partition of $[n]$
- Associate to π a graph \mathcal{G}_{π} with vertex set $[n]$ such that i, j are joined by an edge iff they are consecutive elements within the same block
- Always write an edge e of \mathcal{G}_{π} as a pair (i, j) with $i<j$
- We say that edges $e_{1}=\left(i_{1}, j_{1}\right)$ and $e_{2}=\left(i_{2}, j_{2}\right)$ of \mathcal{G}_{π} form
- a crossing if $i_{1}<i_{2}<j_{1}<j_{2}$
- a nesting if $i_{1}<i_{2}<j_{2}<j_{1}$
- We define $\operatorname{cr}(\pi)[$ resp. ne $(\pi)]$ to be number of crossings (resp. nestings) in π
- Write $|\pi|=k$ for the number of blocks in π
- Now define the three-variable polynomial

$$
B_{n}(x, p, q)=\sum_{\pi \in \Pi_{n}} x^{|\pi|} p^{\operatorname{cr}(\pi)} q^{\operatorname{ne}(\pi)}
$$

with the convention $B_{0}(x, p, q)=1$

- $B_{n}(x, 0,1)=B_{n}(x, 1,0)=N_{n}(x)$ and $B_{n}(x, 1,1)=B_{n}(x)$,
so this polynomial generalizes the Narayana and Bell polynomials.
- Kasraoui and Zeng (2006) have constructed an involution on Π_{n} that preserves the number of blocks (as well as some other properties) and exchanges the numbers of crossings and nestings; thus $B_{n}(x, p, q)=B_{n}(x, q, p)$.
- Define ordinary generating function $\mathcal{B}(t, x, p, q)=\sum_{n=0}^{\infty} t^{n} B_{n}(x, p, q)$

Interpolating between Narayana and Bell (continued)

- Kasraoui and Zeng (2006) have expressed $\mathcal{B}(t, x, p, q)$ as a J-type continued fraction
- Can be transformed to an S-type continued fraction

$$
\sum_{n=0}^{\infty} t^{n} B_{n}(x, p, q)=\frac{1}{1-\frac{x t}{1-\frac{[1]_{p, q} t}{1-\frac{x t}{1-\frac{[2]_{p, q} t}{1-\cdots}}}}}
$$

with coefficients $\alpha_{2 k-1}=x, \alpha_{2 k}=[k]_{p, q}$, where

$$
[k]_{p, q}=\frac{p^{k}-q^{k}}{p-q}
$$

Conclusions:

1. The sequence $\boldsymbol{B}=\left(B_{n}(x, p, q)\right)_{n \geq 0}$ of three-variable polynomials is coefficientwise Hankel-totally positive. The minor $\Delta_{I J}(\boldsymbol{B})$ counts families of disjoint Dyck paths as specified by Viennot 1983 , with weights $\alpha_{2 k-1}=x, \quad \alpha_{2 k}=[k]_{p, q}$.
2. The first Hankel determinants $\Delta_{n}^{(m)}(\boldsymbol{B})$ are

$$
\begin{aligned}
& \Delta_{n}^{(0)}(\boldsymbol{B})=x^{n(n-1) / 2} \prod_{i=1}^{n-1}[i]_{p, q}! \\
& \Delta_{n}^{(1)}(\boldsymbol{B})=x^{n(n+1) / 2} \prod_{i=1}^{n-1}[i]_{p, q}!
\end{aligned}
$$

where

$$
\begin{equation*}
[n]_{p, q}!=\prod_{j=1}^{n}[j]_{p, q} \tag{0.1}
\end{equation*}
$$

Example 4: Eulerian polynomials

- Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=\#$ of permutations of $[n]$ with k descents
- Convention $\left\langle\begin{array}{l}0 \\ k\end{array}\right\rangle=\delta_{k 0}$
- They obviously refine factorials: $\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=n$!
- Define Eulerian polynomials $A_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}$
- Define ordinary generating function $\mathcal{A}(t, x)=\sum_{n=0}^{\infty} t^{n} A_{n}(x)$
- Flajolet (1980) expressed $\mathcal{A}(t, x)$ as a J-type continued fraction
- Can be transformed to an S-type continued fraction

$$
\sum_{n=0}^{\infty} t^{n} A_{n}(x)=\frac{1}{1-\frac{t}{1-\frac{x t}{1-\frac{2 t}{1-\frac{2 x t}{1-\cdots}}}}}
$$

with coefficients $\alpha_{2 k-1}=k, \alpha_{2 k}=k x$.

Eulerian polynomials (continued)

Conclusions:

1. The sequence $\boldsymbol{A}=\left(A_{n}(x)\right)_{n \geq 0}$ of Eulerian polynomials is coefficientwise Hankel-totally positive. The minor $\Delta_{I J}(\boldsymbol{A})$ counts families of disjoint Dyck paths as specified by Viennot 1983, with weights $\alpha_{2 k-1}=k, \alpha_{2 k}=k x$.
2. The first Hankel determinants $\Delta_{n}^{(m)}(\boldsymbol{A})$ are

$$
\begin{aligned}
& \Delta_{n}^{(0)}(\boldsymbol{B})=x^{n(n-1) / 2} \prod_{i=1}^{n-1} i!^{2} \\
& \Delta_{n}^{(1)}(\boldsymbol{B})=x^{n(n+1) / 2} \prod_{i=1}^{n-1} i!^{2}
\end{aligned}
$$

Remarks:

1. The (strong) log-convexity was known previously (Liu-Wang 2007, Zhu 2013).
2. The formula for $\Delta_{n}^{(0)}(\boldsymbol{A})$ was also known (Sivasubramanian 2010), by an explicit bijective argument.
3. Shin and Zeng (2012) have a p, q-generalization of this S-type continued fraction \Longrightarrow their polynomials $A_{n}(x, p, q)$ form a coefficientwise (in x, p, q) Hankel-totally positive sequence.

Some cases I am unable (as yet) to prove ...
There are many cases where I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-totally positive, but I am unable to prove it because there is no S-type continued fraction in the ring of polynomials:

- Narayana polynomials of type B
- Eğecioğlu-Redmond-Ryavec polynomials
- Inversion enumerators for trees
- Reduced binomial discriminant polynomials

Narayana polynomials of type B

The polynomials

$$
W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}
$$

arise as

- Coordinator polynomial of the classical root lattice A_{n}
- Rank generating function of the lattice of noncrossing partitions of type B on $[n]$

I follow Chen-Tang-Wang-Yang 2010 in calling them the Narayana polynomials of type B.

- Empirically the sequence $\left(W_{n}(x)\right)_{n \geq 0}$ seems to be coefficientwise Hankel-totally positive. I have checked this through the 12×12 Hankel matrix.
- There is no S-type continued fraction in the ring of polynomials: we have
$\alpha_{1}, \alpha_{2}, \ldots=1+x, \frac{2 x}{1+x}, \frac{1+x^{2}}{1+x}, \frac{x+x^{2}}{1+x^{2}}, \frac{1+x^{3}}{1+x^{2}}, \frac{x+x^{3}}{1+x^{3}}, \frac{1+x^{4}}{1+x^{3}}, \ldots$
- However, there is a nice J-type continued fraction: $\gamma_{n}=1+x$, $\beta_{1}=2 x, \beta_{n}=x$ for $n \geq 2$.
- Maybe I can use the J-type continued fraction to prove Hankeltotal positivity. (I only discovered this 2 days ago!)

Egecioğlu-Redmond-Ryavec polynomials

- A noncrossing graph is a graph whose vertices are points on a circle and whose edges are non-crossing line segments.
- Noy (1998) showed that the number of noncrossing trees on $n+2$ vertices in which a specified vertex (say, vertex 1) has degree $k+1$ is

$$
T(n, k)=\frac{k+1}{n+1}\binom{3 n-k+1}{n-k}=\frac{2 k+2}{3 n-k+2}\binom{3 n-k+2}{n-k}
$$

- Eğecioğlu, Redmond and Ryavec (2001) introduced the polynomials

$$
\operatorname{ERR}_{n}(x)=\sum_{k=0}^{n} T(n, k) x^{k}
$$

- They showed that, surprisingly, the Hankel determinant $\Delta_{n}^{(0)}(\boldsymbol{E R R})$ is independent of x :

$$
\Delta_{n}^{(0)}(\boldsymbol{E R R})=\prod_{i=1}^{n} \frac{\binom{6 i-2}{2 i}}{2\binom{4 i-1}{2 i}}
$$

This is the number of $(2 n+1) \times(2 n+1)$ alternating sign matrices that are invariant under vertical reflection.

- Empirically I find that the sequence $\left(\operatorname{ERR}_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-totally positive. I have checked this through the 13×13 Hankel matrix.
- There is no S-type continued fraction in the ring of polynomials: we have

$$
\alpha_{1}, \alpha_{2}, \ldots=2+x, \frac{3}{2+x}, \frac{11+10 x}{6+3 x}, \frac{52+26 x}{33+30 x}, \ldots
$$

- However, there seems to be a J-type continued fraction where $\gamma_{0}=2+x$ and all the other coefficients are numbers.
- Maybe I can use the J-type continued fraction to prove Hankeltotal positivity. (I only discovered this 2 days ago too!)

Generating polynomials of connected graphs

- Let $c_{n, m}=\#$ of connected simple graphs on vertex set $[n]$ having m edges
- Define the generating polynomial of connected graphs

$$
\begin{aligned}
C_{n}(v) & =\sum_{m=n-1}^{\binom{n}{2}} c_{n, m} v^{m} \\
& =n^{n-2} v^{n-1}+\ldots+v^{\binom{n}{2}}
\end{aligned}
$$

- No useful explicit formula for the polynomials $C_{n}(v)$ or their coefficients is known.
- But they have the well-known exponential generating function

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n!} C_{n}(v)=\log \sum_{n=0}^{\infty} \frac{x^{n}}{n!}(1+v)^{n(n-1) / 2}
$$

- Make change of variables $y=1+v$ and define $\bar{C}_{n}(y)=C_{n}(y-1)$:

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \bar{C}_{n}(y)=\log \sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}
$$

- These formulae can be considered either as identities for formal power series or as analytic statements valid when $|1+v| \leq 1$ (resp. $|y| \leq 1$).
- In particular we have

$$
C_{n}(-1)=\bar{C}_{n}(0)=(-1)^{n-1}(n-1)!
$$

- Of course we also have

$$
C_{n}(0)=\bar{C}_{n}(1)=0 \quad \text { for } n \geq 2
$$

since $C_{n}(v)\left[\right.$ resp. $\left.\bar{C}_{n}(y)\right]$ has an $(n-1)$-fold zero at $v=0[$ resp. $y=1]$.

Inversion enumerator for trees

- Let T be a tree with vertex set $[n]$, rooted at the vertex 1 .
- An inversion of T is an ordered pair (j, k) of vertices such that $j>k>1$ and the path from 1 to k passes through j.
- Let $i_{n, \ell}$ denote the number of trees on $[n]$ having ℓ inversions.
- Define the inversion enumerator for trees

$$
\begin{aligned}
I_{n}(y) & =\sum_{\ell=0}^{\binom{n-1}{2}} i_{n, \ell} y^{\ell} \\
& =(n-1)!+\ldots+y^{\binom{n-1}{2}}
\end{aligned}
$$

- The polynomial $I_{n}(y)$ turns out to be related to $C_{n}(v)$ by the beautiful formula

$$
C_{n}(v)=v^{n-1} I_{n}(1+v)
$$

or equivalently

$$
\bar{C}_{n}(y)=(y-1)^{n-1} I_{n}(y)
$$

- This shows in particular that $I_{n}(0)=(n-1)$! and $I_{n}(1)=n^{n-2}$.
- It is useful to define the normalized polynomials

$$
I_{n}^{\star}(y)=\frac{I_{n}(y)}{(n-1)!}
$$

which have nonnegative rational coefficients and constant term 1.

Inversion enumerator for trees (continued)
Fact $1 . I_{n}(y)$ has strictly positive coefficients.

- Nonnegativity is obvious; strict positivity takes a bit of work.

Fact 2. $I_{n}(y)$ has log-concave coefficients.

- Special case of a deep result of Huh, arXiv:1201.2915, on the log-concavity of the h-vector of the independent-set complex for matroids representable over a field of characteristic 0: apply it to $M^{*}\left(K_{n}\right)$.
- Open problem: Find an elementary direct proof.

Now form the sequence $\boldsymbol{I}=\left(I_{n+1}(y)\right)_{n \geq 0}$.
Conjecture 1. The sequence \boldsymbol{I} is coefficientwise Hankel-totally positive.

- I have checked this through the 8×8 Hankel matrix.
- Even the log-convexity $I_{n-1} I_{n+1} \succeq I_{n}^{2}$ seems to be an open problem!

Conjecture 2. The 2×2 minors $I_{m-1} I_{n+1}-I_{m} I_{n}(1 \leq m \leq n)$ have coefficients that are log-concave.

- I have checked this through $n=137$.
- It is false for minors of size 3×3 and higher.

Inversion enumerator for trees (continued)
Now look at the normalized polynomials $\boldsymbol{I}^{\star}=\left(I_{n+1}^{\star}(y)\right)_{n \geq 0}$.

Conjecture 3. The sequence \boldsymbol{I}^{\star} is coefficientwise Hankel-totally positive.

- I have checked this through the 8×8 Hankel matrix.
- The analogous result for fixed real $y \in[0,1]$ can be proven by using a result of Laguerre on the real-rootedness of the "deformed exponential function"

$$
F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}
$$

This is what led me to conjecture the coefficientwise Hankeltotal positivity.

- I believe the result for \boldsymbol{I}^{\star} implies the one for \boldsymbol{I}, by virtue of a general fact about Hadamard products; but I need to check this more carefully!

Conjecture 4. All the Hankel minors of \boldsymbol{I}^{\star} have coefficients that are log-concave.

- I have checked this through the 8×8 Hankel matrix.
- For the 2×2 minors, I have checked it for $1 \leq m \leq n \leq 137$.

Binomial discriminant polynomials

- Define $F_{n}(x, y)=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{k(k-1) / 2}$
- Can be considered as a " y-deformation" of the binomial $(1+x)^{n}$.

It is also the Jensen polynomial of the deformed exponential function.

- Now define the binomial discriminant polynomial

$$
\bar{D}_{n}(y)=\operatorname{disc}_{x} F_{n}(x, y)
$$

- $\bar{D}_{n}(y)$ is a polynomial with integer coefficients
- It has degree $n(n-1)^{2} / 2$ and has first and last terms

$$
\bar{D}_{n}(y)=b_{n}^{2} y^{n(n-1)(n-2) / 3}+\ldots+(-1)^{n(n-1) / 2} n^{n} y^{n(n-1)^{2} / 2}
$$

where

$$
b_{n}=\prod_{k=1}^{n-1}\binom{n}{k}=\prod_{k=1}^{n} k^{2 k-1-n}=\frac{\prod_{k=1}^{n} k^{k}}{\prod_{k=1}^{n} k!}
$$

(does this sequence have any standard name?)

- The first few $\bar{D}_{n}(y)$ are:

$$
\begin{aligned}
& \bar{D}_{0}(y)=1 \\
& \bar{D}_{1}(y)=1 \\
& \bar{D}_{2}(y)=4-4 y \\
& \bar{D}_{3}(y)=81 y^{2}-216 y^{3}+162 y^{4}+0 y^{5}-27 y^{6} \\
& \bar{D}_{4}(y)=9216 y^{8}-44032 y^{9}+76032 y^{10}-46080 y^{11}-15360 y^{12} \\
& \quad \quad \quad+27648 y^{13}-4608 y^{14}-3072 y^{15}+0 y^{16}+0 y^{17}+256 y^{18}
\end{aligned}
$$

Reduced binomial discriminant polynomials

- $\bar{D}_{n}(y)$ has a factor $y^{n(n-1)(n-2) / 3}$ and also a factor $(1-y)^{n(n-1) / 2}$ [coming from the fact that the n roots of $F_{n}(x, y)$ all coalesce as $y \rightarrow 1$].
- So define the reduced binomial discriminant polynomial

$$
J_{n}(y)=\frac{\bar{D}_{n}(y)}{y^{n(n-1)(n-2) / 3}(1-y)^{n(n-1) / 2}}
$$

- $J_{n}(y)$ is a polynomial with integer coefficients
- It has degree $\binom{n}{3}$ and has first and last terms

$$
J_{n}(y)=b_{n}^{2}+\ldots+n^{n} y^{\left(\frac{n}{3}\right)}
$$

- $J_{n}(1)=\prod_{k=1}^{n} k^{k}$ (hyperfactorials)
- The first few $J_{n}(y)$ are:

$$
\begin{aligned}
& J_{0}(y)=1 \\
& J_{1}(y)=1 \\
& J_{2}(y)=4 \\
& J_{3}(y)=81+27 y \\
& J_{4}(y)=9216+11264 y+5376 y^{2}+1536 y^{3}+256 y^{4}
\end{aligned}
$$

Conjecture 1. The coefficients of $J_{n}(y)$ are nonnegative (in fact, strictly positive).
Conjecture 2. The coefficients of $J_{n}(y)$ are log-concave (in fact, strictly log-concave).

- I have checked these conjectures for $n \leq 40$.
- What are the coefficients of $J_{n}(y)$ counting?
- Might these coefficients be the h-vector for some matroid???

Reduced binomial discriminant polynomials (continued)
Now form the sequence $\boldsymbol{J}=\left(J_{n}(y)\right)_{n \geq 0}$.

Conjecture 3. The sequence \boldsymbol{J} is coefficientwise Hankel-totally positive.

- In fact, all the Hankel minors of \boldsymbol{J} seem to have coefficients that are strictly positive.
- I have checked this through the 8×8 Hankel matrix.

Conjecture 4. All the Hankel minors of \boldsymbol{J} have coefficients that are log-concave (in fact, strictly log-concave).

- I have checked this through the 8×8 Hankel matrix.
- For the 2×2 minors, I have checked it for $1 \leq m \leq n \leq 39$.

Now look at the normalized polynomials $\boldsymbol{J}^{\star}=\left(J_{n}^{\star}(y)\right)_{n \geq 0}$.
Conjecture 5. The sequence \boldsymbol{J}^{\star} is coefficientwise strongly logconvex: that is, all the 2×2 minors $J_{m-1}^{\star} J_{n+1}^{\star}-J_{m}^{\star} J_{n}^{\star}$ have nonnegative coefficients.

- I have checked this for $1 \leq m \leq n \leq 39$.
- The 3×3 and higher minors do not have nonnegative coefficients.

Conjecture 6. All the 2×2 minors $J_{m-1}^{\star} J_{n+1}^{\star}-J_{m}^{\star} J_{n}^{\star}$ have coefficients that are log-concave (in fact, strictly log-concave except when $m=n=1$).

- I have checked this for $1 \leq m \leq n \leq 39$.

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- Flajolet and Viennot emphasized J-type continued fractions because they are more general.
- But S-type continued fractions, when they exist, often have simpler coefficients; and they are the most direct tool for proving Hankel-total positivity.
- Roughly speaking:

J-type c.f. \Longleftrightarrow general orthogonal polynomials \Longleftrightarrow Hamburger moment problem
S-type c.f. \Longleftrightarrow orthogonal polynomials on $[0, \infty) \Longleftrightarrow$ Stieltjes moment problem
\Longleftrightarrow Hankel-total positivity

- For the other cases, new methods of proof will be needed.
- Deepest cases seem to be $I_{n}(y)$ and $J_{n}(y)$:
- For $I_{n}(y)$, even the log-convexity $I_{n-1} I_{n+1} \succeq I_{n}^{2}$ is an open problem. (Bijective proof??)
- For $J_{n}(y)$, even the nonnegativity $J_{n} \succeq 0$ is an open problem! We really need to know what $J_{n}(y)$ is counting!

Dédié à la mémoire de Philippe Flajolet

