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Three Random Tiling Problems

O(1) Dense Loop Model
XXZ Quantum Spin Chain at ∆ = −1

2
Potts Model at edge-percolation
–
Fully-Packed Loops (FPL) in a square
Alternating Sign Matrices (ASM)
Six-Vertex Model at ∆ = + 1

2 (Ice Model)
“Gog” triangles
–
TSSCPP (Plane Partitions)
Dimer coverings / Lozenge tilings
NILP (Non-intersecting Lattice Paths)
“Magog” triangles
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Link patterns

A link pattern π ∈ LP (n) is a pairing of {1, 2, . . . , 2n}
having no pairs (a, c), (b, d) such that a < b < c < d
(i.e., the drawing consists of n non-crossing arcs).

1 2

3

4

5

67

8

9

10
1 2 3 4 5 6 7 8 9 10

They are Cn = 1
n+1

(2n
n

)
(the n-th Catalan number),

are in easy bijection with Dyck Paths of length 2n
and with non-crossing partitions of n elements.

...and many other things...
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Link patterns in the Dense Loop Model

To a dense-loop configuration on a semi-infinite cylinder,
a link pattern π is naturally associated,
as the connectivity pattern for the points on the boundary.
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Link patterns in Fully-Packed Loops

To a Fully-Packed Loop configuration,
a link pattern π is naturally associated,
from connectivities among the black terminations on the boundary.
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The Razumov-Stroganov correspondence
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Ψ̃n(π) : probability of π
in the O(1) Dense Loop Model
in the {1, ..., 2n} × N cylinder

Ψn(π) : probability of π
for FPL with uniform measure

in the n × n square

Razumov-Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Ψ̃n(π) = Ψn(π)
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Dihedral symmetry of FPL

A corollary of the Razumov-Stroganov correspondence. . .
(. . . that was known before the Razumov-Stroganov conjecture)

call R the operator that rotates a link pattern by one position

Dihedral symmetry of FPL (proof: Wieland, 2000)

Ψn(π) = Ψn(Rπ)
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A scheme of the proof

(O(1) DLM) Ψ̃
?
= Ψ (FPL)

Temperley-Lieb Algebra in the O(1) Dense Loop Model.
Use of Yang-Baxter =⇒ HΨ =

∑
j(ej − 1)Ψ = ~0.

Produce a generalized Wieland gyration for refined domains

HΨ = (1 + R + R2 + · · ·+ R2n−1)ejΨ.
Break Ψ = Ψ(a,j) + Ψ(c,j).

A recursion using gyration gives
ejΨ

(a,j) = Rej−1Ψ(a,j−1) + (· · · )Ψ(c,j).

What remains is
∑

j(1 + R + R2 + · · ·+ R2n−1)(ej − 1)Ψ(c,j).
Summands are separately zero, from a lemma on gyration orbits.

�
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Integer Partitions and Plane Partitions

Take a 2D quadrant N2,
Pile squares (subject to “gravity” along the (1, 1) axis).
That is, produce subsets π ⊂ N2 such that, if (x , y) ∈ π, then
{(x ′, y ′)}1≤x ′≤x

1≤y ′≤y

⊆ π

Call |π| the number of squares in π

Related to partitions of an integer:
|π| = a1 + a2 + . . .+ ak

with a1 ≥ a2 ≥ . . . ≥ ak ,
and thus with a long history
(Euler, Sylvester, Frobenius, Hardy-Ramanujan,...)

Generating function:
∑
π

q|π| =
∏
j≥1

1

1− qj
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Unrestricted Plane Partitions

Take the 3D octant N3.
Pile cubes (subject to “gravity” along the (1, 1, 1) axis).
That is, produce subsets π ⊂ N3 such that, if (x , y , z) ∈ π, then
{(x ′, y ′, z ′)}1≤x ′≤x

1≤y ′≤y
1≤z ′≤z

⊆ π

Call |π| the number of cubes in π

Generating fn.: (MacMahon, 1912)∑
π

q|π| =
∏
j≥1

1

(1− qj)j

Meaningful for q ∈ C, |q| < 1

Can be sliced into a string of integer partitions,
ordered w.r.t. inclusion
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On factorization of Unrestricted Plane Partitions

Unrestricted Integer Partitions Unrestricted Plane Partitions

Generating function: Generating function:∑
π

q|π| =
∏
j≥1

1

1− qj

∑
π

q|π| =
∏
j≥1

1

(1− qj)j
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On factorization of Unrestricted Plane Partitions

General form:
∑
π

q|π| =
∏
j≥1

1

(1− qj)b(j)

Is there a hidden structure of
graded Unique Factorization Domain? (combinatorial prefab)

I.e., do we have “prime” objects {pj ,α}j≥1 ; 1≤α≤b(j) and

a =
∏
j≥1

1≤α≤b(j)

p
ν(j ,α)
j ,α (w.r.t. some notion of “product”?)

z-w Bender and Knuth, Enumeration of Plane Partitions, 1972

z-w I. Pak, Hook length formula and geometric combinatorics, 2001
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The Pak Algorithm

N operation A: X → X + max(N,E );
W X E operation B: X → −X + max(N,E ) + min(S ,W );

S C(x , y): apply A at (x , y), and B at (x + z , y + z)z≥1

1. the input is your ν = {ν(x , y)}.
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The Pak Algorithm

N operation A: X → X + max(N,E );
W X E operation B: X → −X + max(N,E ) + min(S ,W );

S C(x , y): apply A at (x , y), and B at (x + z , y + z)z≥1

2. take S ⊂ N2, convex and containing all positive ν’s.
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The Pak Algorithm

N operation A: X → X + max(N,E );
W X E operation B: X → −X + max(N,E ) + min(S ,W );

S C(x , y): apply A at (x , y), and B at (x + z , y + z)z≥1

4. the result is your h = {h(x , y)}.
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Plane Partitions in a box

In a compact box, can push q to the “combinatorial point” q = 1

No symmetry:
P.A. MacMahon (1915)

Ma,b,c =
∏

0≤ i<a
0≤ j<b
0≤ k<c

i + j + k + 2

i + j + k + 1
=

∏
0≤ j<c

j!(j + a + b)!

(j + a)!(j + b)!

a

b

c

. . . various symmetry classes. . .

Maximally symmetric (TSSCPP):
G. Andrews (1994)

An =
∏

0≤ j<n

(3j + 1)!

(n + j)!
=

∏
0≤ j<n

j! (3j + 1)!

(2j)!(2j + 1)!

n
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

a× b × c boxed Plane Partition are counted by a determinant:

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c
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a× b × c boxed Plane Partition are counted by a determinant:

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

We have c directed paths on the
square lattice, connecting top and
bottom sides, which do not intersect
(NILP)
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

a× b × c boxed Plane Partition are counted by a determinant:

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

If it weren’t for the non-intersecting
constraint, the number of path con-
figs would just be

(a+b
a

)c
, that is....
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a× b × c boxed Plane Partition are counted by a determinant:

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

If it weren’t for the non-intersecting
constraint, the number of path con-
figs would just be

(a+b
a

)c
, that is....

det


(a+b

a

)
0 0 0

0
(a+b

a

)
0 0

0 0
(a+b

a

)
0

0 0 0
(a+b

a

)
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

a× b × c boxed Plane Partition are counted by a determinant:

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

The non-intersecting constraint,
through a magic cancellation com-
ing from configs with “the wrong
pairing”, leads to the formula...
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

a× b × c boxed Plane Partition are counted by a determinant:

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

The non-intersecting constraint,
through a magic cancellation com-
ing from configs with “the wrong
pairing”, leads to the formula...

det


(a+b

a

) (a+b
a+1

) (a+b
a+2

) (a+b
a+3

)(a+b
a−1

) (a+b
a

) (a+b
a+1

) (a+b
a+2

)(a+b
a−2

) (a+b
a−1

) (a+b
a

) (a+b
a+1

)(a+b
a−3

) (a+b
a−2

) (a+b
a−1

) (a+b
a

)
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Plane Partitions and Fully-Packed Loops

# TSSCPP in a hexagon of side 2n = # FPL in a square of side n

(Proof: Zeilberger 1996, with generating functions and much more;
Kuperberg 1996, specializing results from the Six-vertex model)

We have no bijectional clue of why this is true
We have no TSSCPP candidate for link pattern classes

But a natural τ -enumeration for TSSCPP
is also natural for the O(1) Dense Loop Model
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Arrows on lines : The 6-Vertex Model

l you have a degree-4 graph G,

l variables are edge-orientations,

l weights are on the vertices,

it is Yang-Baxter–integrable
if weights depend on positions
through spectral parameters
attached to the lines,
and a global parameter q

a = zq − w/q︷ ︸︸ ︷ b = z − w︷ ︸︸ ︷ c = (1/q − q)
√

zw︷ ︸︸ ︷
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Arrows on lines : The 6-Vertex Model

z

w

l you have a degree-4 graph G,

l variables are edge-orientations,

l weights are on the vertices,

it is Yang-Baxter–integrable
if weights depend on positions
through spectral parameters
attached to the lines,
and a global parameter q
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√
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Arrows on lines : The 6-Vertex Model

z

w

l you have a degree-4 graph G,

l variables are edge-orientations,

l weights are on the vertices,

it is Yang-Baxter–integrable
if weights depend on positions
through spectral parameters
attached to the lines,
and a global parameter q

a = zq − w/q︷ ︸︸ ︷ b = z − w︷ ︸︸ ︷ c = (1/q − q)
√

zw︷ ︸︸ ︷
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Arrows on lines : The 6-Vertex Model

∆ =
a2 + b2 − c2

2ab
=

1

2

(
q +

1

q

)

l you have a degree-4 graph G,

l variables are edge-orientations,

l weights are on the vertices,

it is Yang-Baxter–integrable
if weights depend on positions
through spectral parameters
attached to the lines,
and a global parameter q

a = zq − w/q︷ ︸︸ ︷ b = z − w︷ ︸︸ ︷ c = (1/q − q)
√

zw︷ ︸︸ ︷
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0

0 0 +1 0 0 0

+1−1 0 +1 0 0

0 +1 0 0 0 0
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

• or • according
to parity;
• • → •−I−•
• • → •−J−•
Forget parity;

0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0

0 0 +1 0 0 0

+1−1 0 +1 0 0

0 +1 0 0 0 0
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

• or • according
to parity;
• • → •−I−•
• • → •−J−•
Forget parity;

6-vertex
config
(DWBC)

0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

• or • according
to parity;
• • → •−I−•
• • → •−J−•
Forget parity;

6-vertex
config
(DWBC)

Arrow directions
along rows/cols
get flipped at •, •
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

• or • according
to parity;
• • → •−I−•
• • → •−J−•
Forget parity;

6-vertex
config
(DWBC)

Arrow directions
along rows/cols
get flipped at •, •

ASM config
0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0

0 0 +1 0 0 0

+1−1 0 +1 0 0

0 +1 0 0 0 0

Andrea Sportiello Around the Razumov-Stroganov correspondence



6VM ý permutation, height function, monotone triangle
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6VM ý permutation, height function, monotone triangle
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6VM ý permutation, height function, monotone triangle

mark east- and
north-bound

arrows...

...you see a
permutation of

row/column-indices
(crossings count the
inversion number)
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6VM ý permutation, height function, monotone triangle

mark east- and
north-bound

arrows...

...or directed
non-crossing paths,

which are not of
Gessel-Viennot

type...
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6VM ý permutation, height function, monotone triangle

mark south-bound
arrows, and read

column positions...

6
4 8

4 7 8
2 4 7 9

1 4 5 7 9
1 2 4 6 8 9

1 2 4 5 7 8 10
1 2 3 5 6 8 9 10

1 2 3 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

...you get a
monotone triangle,

base = (1, 2, . . . , n),
strict horizontally

and weak elsewhere
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6VM ý permutation, height function, monotone triangle

draw a line for a
coherent flow...

...you get an
Eulerian graph,
regions can be

2-coloured resp.
boundaries
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6VM ý permutation, height function, monotone triangle

draw a line for a
coherent flow...

0 1 2 3 4 5 6 7 8 9 10
9
8
7
6
5
4
3
2
1
012345678910

9
8
7
6
5
4
3
2
1

...they’re also
level lines of a

height function,
with ±1-slope b.c.
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...in summary...

FPL 6-vertex ASM

0 1 2 3 4 5 6 7 8 9 10
9
8
7
6
5
4
3
2
1
012345678910

9
8
7
6
5
4
3
2
1

6
4 8

4 7 8
2 4 7 9

1 4 5 7 9
1 2 4 6 8 9

1 2 4 5 7 8 10
1 2 3 5 6 8 9 10

1 2 3 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

height function quasi-NILP monotone triangle
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Alternating Sign Matrices: some history

Alternating Sign Matrices arose in combinatorics
through the work of Mills, Robbins and Rumsey (’80s). . .
they took the old Dodgson Condensation Algorithm (1866)

det M =
det M1,1 det Mn,n − det M1,n det Mn,1

det M1n,1n

and defined a λ-determinant algorithmically, as

detλM =
detλM1,1detλMn,n − λ detλM1,ndetλMn,1

detλM1n,1n

The result is (surprisingly) a Laurent polynomial in entries mij :
“old” permutations take a λk factor, “new” terms are the
non-trivial ASM, and have also (1− λ)h factors. . .
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...a 3× 3 example:

det M = m11m22m33 + m12m23m31 + m13m21m32

− m11m23m32 − m12m21m33 − m13m22m31

z-w J. Propp: Lambda-determinants and Domino Tilings, 2005
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...a 3× 3 example:

detλM = m11m22m33 + λ2m12m23m31 + λ2m13m21m32

−λm11m23m32 − λm12m21m33 − λ3m13m22m31

−λ(1− λ)
m12m21m23m32

m22

z-w J. Propp: Lambda-determinants and Domino Tilings, 2005
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λ-determinants, years later...

. . . Now this Laurent phenomenon, i.e. the λ-determinant being a
Laurent polynomial in matrix entries, is well understood in the
wider frame of Fomin-Zelevinsky Cluster Algebras

z-w S. Fomin, A. Zelevinsky: The Laurent Phenomenon, 2002

z-w Ph. Di Francesco, R. Kedem: Q-system, Cluster Algebras, Paths

and Total Positivity, 2010

...and the λ-determinant is a DWBC 6-Vertex partition function
(with “electric fields”), integrable, at a fermionic point

a = −λ a′ = 1 b = 1 b′ = 1 c = mij
c ′ =

1− λ
mij

a′/a = −λ; b′/b = 1; ∆ =
aa′ + bb′ − cc ′

2
√

aa′bb′
= 0; t =

√
bb′

aa′
=
√
−λ.
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The Razumov-Stroganov correspondence:
in a few words

Digression on contextual combinatorial objects
Integer and Plane Partitions

Lindström–Gessel-Viennot NILP
The ASM-TSSCPP Theorem

6-Vertex Model and the many faces of ASM
The Laurent Phenomenon

The Razumov-Stroganov correspondence:
a proof

An application: FPL on the three-bundle domain
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The Razumov-Stroganov correspondence... a reminder

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20
1

2 3 4
5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Ψ̃n(π) : probability of π
in the O(1) Dense Loop Model
in the {1, ..., 2n} × N cylinder

Ψn(π) : probability of π
for FPL with uniform measure

in the n × n square

Razumov-Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Ψ̃n(π) = Ψn(π)
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Dihedral symmetry of FPL: Ψn(π) = Ψn(Rπ)

1 2
3

4

5

67
8

9

10

1 2
3

4

5

67
8

9

10

# TSSCPP in a hexagon of side 2n = # FPL in a square of side n
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FPL in fancy domains...

We considered so far FPL in the n × n square domain, with
alternating boundary conditions,

i.e. consistent fillings of this:

into things like this:

b c

a

b

22 21 20 19 18
17

16

15

14

a

c

b

a

23

24

25

26

1

2

3

4

c

b

c

a

5
6

7
8

9

13

12

11

10
...what about
domains like this?...
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Plane Partitions and Fully-Packed Loops

# TSSCPP in a hexagon of side 2n = # FPL in a square of side n

...maybe generalize Razumov-Stroganov before proving it?...
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...maybe generalize Razumov-Stroganov before proving it?...
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The Temperley-Lieb(1) monoid

Consider the graphical action over link patterns π ∈ LP (n)
(throw away detached cycles)

R :
1 2 3 ··· 2n

ej :
1 2 3 ··· j j+1 ···2n

··· ···

The maps {ej}1≤ j≤2n and R±1 generate a semigroup
Example:

e1(π) :
1 2 3 4 5 6 7 8 9 10

=
1 2 3 4 5 6 7 8 9 10

e2(π) :
1 2 3 4 5 6 7 8 9 10

=
1 2 3 4 5 6 7 8 9 10

Consider the linear space CLP(n), linear span of basis vectors |π〉.
Operators ej and R±1 are linear operators over CLP(n)
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O(1) dense loop model: the Markov Chain over LP (n)

A config with t − 1 layers.

Add a new layer, of i.i.d. tiles,
with prob. p = 1/2...

Some loops get detached from
the boundary. You have a con-
fig with t layers, and a new link
pattern.

Rates Tp=1/2(π, π′)
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O(1) dense loop model: the Markov Chain over LP (n)

A config with t − 1 layers.

Add a new layer, of i.i.d. tiles,
with prob. p = 1/2...

Some loops get detached from
the boundary. You have a con-
fig with t layers, and a new link
pattern.

Rates Tp=1/2(π, π′)
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O(1) dense loop model: an example at work

Now repeat the game...

...but add i.i.d. tiles, with prob.
p → 0 ...

For most of the layers you just
rotate. From time to time, you
have a single non-trivial tile.

Rates Tp→0(π, π′)

Non-trivial layers look like
operators R ej
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Rates Tp→0(π, π′)
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Integrability: commutation of Transfer Matrices

Call Tp(π, π′) the matrix of transition rates
(on the space of link patterns CLP(n))

for tiling one layer using probability p.

Trivial: Ψ̃p(π), the steady state, is the unique eigenstate of
Tp(π, π′) with all positive entries

A magic application of Yang-Baxter: [Tp,Tp′ ] = 0

Consequence: Ψ̃p(π) ≡ Ψ̃p′(π) and we can get Ψ̃(π) := Ψ̃1/2(π)
from the study of the easier Tp→0(π, π′)

Call Hn =
2n∑
i=1

(ei − 1) and |s̃n〉 =
∑

π Ψ̃(π)|π〉.

Realize R−1Tp = I + pH +O(p2). We thus have

Hn|s̃n〉 = 0
linear-algebra characterization of Ψ̃(π)
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Integrability: commutation of Transfer Matrices

...said with a picture...
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|s̃n〉 :=
∑

π∈LP(n)

Ψ̃n(π)|π〉

(Tn − 1)|s̃n〉 = 0

|s̃n〉 :=
∑

π∈LP(n)

Ψ̃n(π)|π〉

Hn|s̃n〉 = 0

the two linear equations for |s̃n〉 are equivalent!
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The Razumov-Stroganov correspondence: reloaded
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|s̃n〉 :=
∑

π∈LP(n)

Ψ̃n(π)|π〉

Hn|s̃n〉 = 0

|sn〉 =
∑

φ∈Fpl (n)

|π(φ)〉

Fpl (n) = {FPL in n× n square }

Razumov-Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Hn|sn〉 = 0
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Wieland gyration: how it works
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Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5

6

7

8

9

10
1112131415

16

17

18

19

20

FPL config
...and its conjugate,
exchanging black and white
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Wieland gyration: how it works
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Wieland gyration: how it works
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Wieland gyration: how it works
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...and, on the conjugate
of the intermediate step...

Andrea Sportiello Around the Razumov-Stroganov correspondence



Wieland gyration: how it works
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An unnoticed lemma on gyration orbits

Call O(φ) the orbit of φ under Wieland gyration.
For a face α, say

Nα(φ) =

{ +1 if you have

−1 if you have
0 otherwise

A lemma on Nα
∀ FPL φ, face α

∑
φ′∈O(φ)

Nα(φ′) = 0
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Wieland gyration: why it works

Easier to visualize the ⇔ exchange on the few , faces...
...but better use the conjugate config at intermediate step,

and think that , are the only faces fixed in the transformation

This inverts degblack(v)↔ degwhite(v),
and preserves connectivity of open-path endpoints
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Easier to visualize the ⇔ exchange on the few , faces...
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and think that , are the only faces fixed in the transformation

This inverts degblack(v)↔ degwhite(v),
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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A configuration on (Λ, τ+)
(i.e., first leg is black)
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The construction of G+,
pairing (2j − 1, 2j) legs
(plaquettes are in yellow)

mark in red and
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The result of map H+
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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Split auxiliary vertices
to recover the (Λ, τ−)
geometry
(i.e., first leg is white)
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The construction of G−,
pairing (2j , 2j + 1) legs

mark in blue and
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The result of map H−
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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Split auxiliary vertices
to recover the (Λ, τ+)
original geometry
(with a rotated
link pattern). . .
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Wieland gyration: where it works

So, the trick is:
• invert degblack(v)↔ degwhite(v)
• preserve connectivity of open paths

• Works with the Wieland recipe, on faces ` = 4

• Works with just complementation, on faces ` = 1, 2, 3

• Can’t work at all on faces ` ≥ 5

• At boundaries, pair external legs to produce triangles

A single move exists on plenty of graphs...
then, rotation comes from two moves

...many more domains than just n × n squares have this property!
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Wieland gyration: where it works

An example of our “convex planar quadrangulations, and up to 4
triangles” general domains...
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(bottom line: an elementary generalization of Wieland strategy
gives rotational symmetry for FPL enumerations above)
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The Razumov-Stroganov correspondence: generalised

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20
1

2 3 4
5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5 6 7

8

9

10

1112131415

16

17

18

19

20

|s̃n〉 :=
∑

π∈LP(n)

Ψ̃n(π)|π〉

Hn|s̃n〉 = 0

|sΛ〉 =
∑

φ∈Fpl (Λ)

|π(φ)〉

Fpl (Λ) = {FPL in domain Λ}

Razumov-Stroganov correspondence on Wieland domains
(proof: AS Cantini, 2010)

Ψ̃n(π) = ΨΛ(π) i.e. Hn|sΛ〉 = 0
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Yet one word on gyration... the boundary conditions

We have seen how to generalise the domain,
using black/white alternating boundary conditions

What does it happen if we generalise on boundary conditions?

Pairing consecutive legs with the same colour produces arcs,
and “loses link-pattern information”: gyration holds for
linear combinations of Ψ(π), instead of component-wise.

These linear combinations, induced by arcs, are well-described by
Temperley-Lieb operators.

This fact suggested us that gyration on domains
with a “defect” in the boundary conditions was related to
Razumov-Stroganov (in its “linear-algebra formulation”...)
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An example with generic boundary conditions

Example: the state |sc
j 〉 (that we define in the next slide) satisfies

(R ej−1 − ej)|sc
j 〉 = 0
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The structure of the proof

Rewrite the starting H|s〉 = 0 as S(ej − 1)|s〉 = 0
S := 1 + R + · · ·+ R2n−1

Write “|s〉 = |sa
j 〉+ |sb

j 〉+ |sc
j 〉”,

i.e., marginalise w.r.t. a single matrix entry (on the boundary).

|s〉 = = + +

= + +

= |sa
j 〉 + |sb

j 〉 + |sc
j 〉
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The structure of the proof

Combining recursion relations with the new gyration relations gives

S(ej − 1)|sa
j 〉 = S(ej+1 − 1)(|sa

j+1〉+ |sc
j+1〉)

S(ej − 1)|sb
j 〉 = S(ej−1 − 1)(|sb

j−1〉+ |sc
j−1〉)

Recursion end up at the corners of the domain, and you get

H|s〉 =
∑

j

S(ej − 1)|sc
j 〉

Note: we have “(ejj − 1)|sc
jj 〉” terms, not “(ejj − 1)|sc

kk〉”
and a double sum, as in the näıve approach!

The summands are separately zero, as seen using the lemma on Nα
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The Razumov-Stroganov correspondence:
in a few words

Digression on contextual combinatorial objects
Integer and Plane Partitions

Lindström–Gessel-Viennot NILP
The ASM-TSSCPP Theorem

6-Vertex Model and the many faces of ASM
The Laurent Phenomenon

The Razumov-Stroganov correspondence:
a proof

An application: FPL on the three-bundle domain
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An example of our generalized ASM–TSSCPP Theorem

From Zeilberger / Kuperberg, we know that # TSSCPP of size 2n
equals An, i.e. # FPL of size n.

From Razumov-Stroganov on a
domain Λ (with 2n black legs),
we know that

AΛ = AnK (Λ) K (Λ) ∈ N

These numbers K (Λ) are to be
determined. We now do this for
“three bundles”, proving

Aa,b,c = Aa+b+cMa,b,c

b c
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b
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(where Ma,b,c is the number of Plane Partitions in the a× b × c
box, MacMahon 1915 formula)
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11Aa,b,c = Aa+b+cMa,b,c
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