Symmetries of triangulations

Philipp Sprüssel TU Graz

February 12, 2015, Séminaire Philippe Flajolet, Institut Henri Poincaré

Joint work with Mihyun Kang

- Asymptotic number of labelled planar graphs $|\mathcal{P}(n)| \sim c \cdot n^{-\frac{7}{2}} \gamma^n n!, \qquad \gamma \approx 27.2$
- Component structure of a random labelled planar graph
- Critical behaviour of a random labelled planar graph
- . . .

- Asymptotic number of labelled planar graphs $|\mathcal{P}(n)| \sim c \cdot n^{-\frac{7}{2}} \gamma^n n!, \qquad \gamma \approx 27.2$
- Component structure of a random labelled planar graph
- Critical behaviour of a random labelled planar graph
- . . .

Question

What about unlabelled graphs?

- Asymptotic number of unlabelled planar graphs $|\mathcal{P}(n)| \sim ???$
- Component structure of a random unlabelled planar graph
- Critical behaviour of a random unlabelled planar graph
- . . .

Component structure of random graphs

 $L_i(m) := \#$ vertices in the *i*-th largest comp. in a random graph with *n* vx's and *m* edges, where m = n/2 + s, s = o(n).

Component structure of random graphs

 $L_i(m) := \#$ vertices in the *i*-th largest comp. in a random graph with *n* vx's and *m* edges, where m = n/2 + s, s = o(n).

Theorem (Bollobás 84; Łuczak 90)

 $\begin{array}{ll} \bullet \ \ If \ s \ n^{-2/3} \to -\infty, \ whp & L_1(m) \sim \frac{n^2}{2s^2} \log \frac{|s|^3}{n^2} = o(n^{2/3}) \\ \bullet \ \ If \ s \ n^{-2/3} \to \lambda \in (-\infty, \infty), \ whp & L_1(m) = \Theta(n^{2/3}) \\ \bullet \ \ If \ s \ n^{-2/3} \to +\infty, \ whp & L_1(m) \sim 4s \gg n^{2/3}, \\ L_2(m) \sim \frac{n^2}{2s^2} \log \frac{|s|^3}{n^2} = o(n^{2/3}) \end{array}$

Component structure of random planar graphs

 $L_i(m) := \#$ vx's in the *i*-th largest comp. in a random planar graph with *n* vx's and *m* edges, where m = n/2 + s, s = o(n).

Component structure of random planar graphs

 $L_i(m) := \#$ vx's in the *i*-th largest comp. in a random planar graph with *n* vx's and *m* edges, where m = n/2 + s, s = o(n).

 L_1

Theorem (Kang & Łuczak 12)

• If
$$s n^{-2/3} \rightarrow -\infty$$
, whp

• If
$$s n^{-2/3}
ightarrow \lambda \in (-\infty,\infty)$$
, whe

• If
$$s n^{-2/3} \rightarrow +\infty$$
, whp

$$\begin{array}{l} (m) \sim \frac{n^2}{2s^2} \log \frac{|s|^3}{n^2} = o(n^{2/3}) \\ D & L_1(m) = \Theta(n^{2/3}) \\ L_1(m) \sim 2 \, s \gg n^{2/3} \\ L_2(m) = \Theta(n^{2/3}) \end{array}$$

R(m) := # vx's outside the giant component in a random planar graph with *n* vx's and *m* edges, m = n + t, t = o(n).

Component structure of random planar graphs

R(m) := # vx's outside the giant component in a random planar graph with *n* vx's and *m* edges, m = n + t, t = o(n).

Theorem (Kang & Łuczak 12)

• If $t n^{-3/5} \to -\infty$, whp $R(m) = (2 + o(1))|t| \gg n^{3/5}$ • If $t n^{-3/5} \to \lambda \in (-\infty, \infty)$, whp $R(m) = \Theta(n^{3/5})$ • If $t n^{-3/5} \to +\infty$, whp $R(m) = \Theta((n/t)^{3/2}) \ll n^{3/5}$

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

1

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

K(x, y)Kernel

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

K(x, y)Kernel C(x, y) = K(x, P(x, y))Core

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

K(x, y)Kernel C(x, y) = K(x, P(x, y))Core

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

K(x, y)Kernel C(x, y) = K(x, P(x, y))Core

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

K(x, y) Kernel C(x, y) = K(x, P(x, y)) Core G(x, y) = C(T(x, y), y)Planar conn. graph

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

K(x, y) Kernel C(x, y) = K(x, P(x, y)) Core G(x, y) = C(T(x, y), y)Planar conn. graph

- Planar graphs → Planar kernels (Decomposition)
- Constructive: Generating functions

$$K(x, y)$$
Kernel
$$C(x, y) = K(x, P(x, y))$$
Core
$$G(x, y) = C(T(x, y), y)$$
Planar conn. graph

- Planar graphs ↔ Whitney Dual
- 3-conn. cubic planar graphs3-conn. cubic mapsSimple plane triangulations

Problem: Indistinguishable vertices/edges

Problem: Indistinguishable vertices/edges

Problem: Indistinguishable vertices/edges

Problem: Indistinguishable vertices/edges

Solution: Cycle index sums

Problem: Indistinguishable vertices/edges

Solution: Cycle index sums Building blocks $x_1^{a_1}x_2^{a_2}\cdots y_1^{b_1}y_2^{b_2}\cdots$ Information about sizes of orbits $\forall f \in Aut(G)$

Problem: Indistinguishable vertices/edges

Solution: Cycle index sums Building blocks $x_1^{a_1}x_2^{a_2}\cdots y_1^{b_1}y_2^{b_2}\cdots$ Information about sizes of orbits $\forall f \in Aut(G)$ Replacements similar to GFs With cycle index sums:

Unlabelled planar graphs $\longleftrightarrow \cdots \longleftrightarrow$ Triangulations

With cycle index sums:

Unlabelled planar graphs $\longleftrightarrow \cdots \longleftrightarrow$ Triangulations

But: different factors depending on symmetries.

With cycle index sums:

Unlabelled planar graphs $\longleftrightarrow \cdots \longleftrightarrow$ Triangulations

But: different factors depending on symmetries.

Problem

Describe the triangulations with a given set of symmetries.

Notation

- Cells of dim 0,1,2: vertices, edges, and faces
- Aut(c, T): all automorphisms of T that fix a given cell c

Notation

- Cells of dim 0,1,2: vertices, edges, and faces
- Aut(*c*, *T*): all automorphisms of *T* that fix a given cell *c*

Properties of automorphisms

- φ ∈ Aut(c, T): uniquely determined by its action on the cells incident with c
- Aut(c, T) is isomorphic to a subgroup of the dihedral group $D_{\text{deg}(c)}$

Two types of non-trivial automorphisms:

Unlabelled triangulations

Symmetries of triangulations (Kang & Sprüssel 15+)

- If Aut(c, T) contains a reflection but no rotation, then it is isomorphic to the 2-element group Z₂.
- If Aut(c, T) contains k ≥ 1 rotations but no reflection, then it is isomorphic to the cyclic group Z_{k+1}.
- If Aut(c, T) contains both reflections and rotations, then it is isomorphic to a dihedral group D_m with m | deg(c).

Unlabelled triangulations

Symmetries of triangulations (Kang & Sprüssel 15+)

- If Aut(c, T) contains a reflection but no rotation, then it is isomorphic to the 2-element group Z₂.
- If Aut(c, T) contains k ≥ 1 rotations but no reflection, then it is isomorphic to the cyclic group Z_{k+1}.
- If Aut(c, T) contains both reflections and rotations, then it is isomorphic to a dihedral group D_m with m | deg(c).

Theorem (Tutte 62)

The invariant cells of a reflection are the elements of a cyclic sequence $C = (c_1, ..., c_\ell)$ s.t. for each cell c_i , its predecessor and its successor in C lie opposite at c_i .

Theorem (Tutte 62)

The invariant cells of a reflection are the elements of a cyclic sequence $C = (c_1, ..., c_\ell)$ s.t. for each cell c_i , its predecessor and its successor in C lie opposite at c_i .

Definition

Girdle G: all vx's & edges in C and on the b'daries of faces in C

Theorem (Tutte 62)

The invariant cells of a reflection are the elements of a cyclic sequence $C = (c_1, ..., c_\ell)$ s.t. for each cell c_i , its predecessor and its successor in C lie opposite at c_i .

Definition

Girdle G: all vx's & edges in C and on the b'daries of faces in C

 \implies induces two near-triangulations ρ

Philipp Sprüssel, TU Graz Symmetries of triangulations

Theorem (K-S 15+)

The triangulations with a reflective but no rotative symmetry are precisely the ones obtained by choosing

- a girdle G and
- a near-triangulation ρ with forbidden chords

and attaching a copy of ρ into both sides of G. This is a 2-to-1 correspondence.

Theorem (K-S 15+)

The triangulations with a reflective but no rotative symmetry are precisely the ones obtained by choosing

- a girdle G and
- a near-triangulation ρ with forbidden chords

and attaching a copy of ρ into both sides of G. This is a 2-to-1 correspondence.

Lemma (Tutte 62)

Every rotative automorphism φ has precisely one invariant cell $c' \neq c$.

Lemma (Tutte 62)

Every rotative automorphism φ has precisely one invariant cell $c' \neq c$.

Definition

Spindle S: union of paths $P, \varphi(P), \ldots, \varphi^{m-1}(P)$ (*m* order of φ)

Lemma (Tutte 62)

Every rotative automorphism φ has precisely one invariant cell $c' \neq c$.

Definition

Spindle S: union of paths $P, \varphi(P), \ldots, \varphi^{m-1}(P)$ (*m* order of φ)

 \implies induces *m* isomorphic near-triangulations ρ

Theorem (K-S 15+)

The triangulations with a rotative symmetry are precisely the ones obtained by choosing

- a spindle S and
- a near-triangulation ρ

and attaching a copy of ρ into each segment of *S*.

Theorem (K-S 15+)

The triangulations with a rotative symmetry are precisely the ones obtained by choosing

- a spindle S and
- a near-triangulation ρ

and attaching a copy of ρ into each segment of S.

But: Every triangulation corresponds to a different number of spindles and near-triangulations.

Different spindles & near-triangulations for the same triangulation:

Different spindles & near-triangulations for the same triangulation:

Idea: Eliminate the element of choice in the construction of the spindle.

Idea: Eliminate the element of choice in the construction of the spindle.

Construct spindle *S* from north to south:

- Take all edges going out of c;
- Take the leftmost edge for each path;
- Go right as far as possible;
- Iterate until you reach c'.

Definition (K-S 15+)

Extended spindle S: Defined iteratively from north to south.

Definition (K-S 15+)

Extended spindle *S*: Defined iteratively from north to south.

Extended spindle might have "bubbles".

Definition (K-S 15+)

Extended spindle *S*: Defined iteratively from north to south.

Extended spindle might have "bubbles". \implies induces sets of *m* isomorphic near-triangulations ρ, β, \dots

Theorem (K-S 15+)

The triangulations with a rotative symmetry are precisely the ones obtained by choosing

- an extended spindle S,
- a near-triangulation ρ with additional structure, and
- near-triangulations $\beta_1, \ldots, \beta_\ell$

and attaching copies of ρ into each segment of *S* and copies of $\beta_1, \ldots, \beta_\ell$ into each bubble of *S*. This is a 1-1 correspondence.

Reminder

- If there are both reflections and rotations, then Aut(c, T) is isomorphic to a dihedral group D_k with k | deg(c).
- D_k contains k reflections and k 1 rotations.
- Every reflection has a girdle.
- For every rotation \exists a unique invariant cell $c' \neq c$.

Reminder

- If there are both reflections and rotations, then Aut(c, T) is isomorphic to a dihedral group D_k with k | deg(c).
- D_k contains k reflections and k 1 rotations.
- Every reflection has a girdle.
- For every rotation \exists a unique invariant cell $c' \neq c$.
- c' is the same for all rotations.
- Girdles intersect only in *c* and *c*'.
- Every second girdle is isomorphic.

Definition (K-S 15+)

Skeleton S: union of the k girdles

Definition (K-S 15+)

Skeleton S: union of the k girdles

 \implies induces isomorphic near-triangulations ρ

Definition (K-S 15+)

Skeleton S: union of the k girdles

 \implies induces isomorphic near-triangulations ρ

Girdles can touch:

Girdles can touch:

isomorphic near-triangulations ρ near-triangulations $\rho_1, \ldots, \rho_\ell$, each appearing 2*k* times

Theorem (K-S 15+)

The triangulations with reflective and rotative symmetry are precisely the ones obtained by choosing

- a skeleton S and
- near-triangulations $\rho_1, \ldots, \rho_\ell$ with forbidden chords

and attaching copies of $\rho_1, \ldots, \rho_\ell$ into each segment of *S*. This is a 2-1 correspondence.

Summary

Characterization of symmetries of triangulations

 Reflective: Girdle

 Rotative: (Extended) spindle

• Reflective & rotative: Skeleton

Details:

- Cycle index sums for girdles, spindles, and skeletons;
- Decomposition scheme for near-triangulations;
- Cycle index sums for near-triangulations.

Details:

- Cycle index sums for girdles, spindles, and skeletons;
- Decomposition scheme for near-triangulations;
- Cycle index sums for near-triangulations.

Outlook:

• Transfer cycle index sums to cubic 3-conn. maps

. . .

- 3-conn. cubic maps \longrightarrow 3-conn. cubic planar graphs
 - \longrightarrow Unlabelled planar graphs
- Asymptotic numbers

Philipp Sprüssel, TU Graz Symmetries of triangulations