Symmetries of triangulations

Philipp Sprüssel

TU Graz

February 12, 2015,
Séminaire Philippe Flajolet,
Institut Henri Poincaré
Joint work with Mihyun Kang

Labelled planar graphs

- Asymptotic number of labelled planar graphs

$$
|\mathcal{P}(n)| \sim c \cdot n^{-\frac{7}{2}} \gamma^{n} n!, \quad \gamma \approx 27.2
$$

- Component structure of a random labelled planar graph
- Critical behaviour of a random labelled planar graph

Labelled planar graphs

- Asymptotic number of labelled planar graphs

$$
|\mathcal{P}(n)| \sim c \cdot n^{-\frac{7}{2}} \gamma^{n} n!, \quad \gamma \approx 27.2
$$

- Component structure of a random labelled planar graph
- Critical behaviour of a random labelled planar graph

Question

What about unlabelled graphs?

- Asymptotic number of unlabelled planar graphs

$$
|\mathcal{P}(n)| \sim ? ? ?
$$

- Component structure of a random unlabelled planar graph
- Critical behaviour of a random unlabelled planar graph

Component structure of random graphs

$L_{i}(m):=\#$ vertices in the i-th largest comp. in a random graph with $n v x$'s and m edges, where $m=n / 2+s, \quad s=o(n)$.

Component structure of random graphs

$L_{i}(m):=\#$ vertices in the i-th largest comp. in a random graph with $n v x$'s and m edges, where $m=n / 2+s, s=o(n)$.

Theorem (Bollobás 84; Łuczak 90)

- If $s n^{-2 / 3} \rightarrow-\infty, w h p \quad L_{1}(m) \sim \frac{n^{2}}{2 s^{2}} \log \frac{|s|^{3}}{n^{2}}=O\left(n^{2 / 3}\right)$
- If $s n^{-2 / 3} \rightarrow \lambda \in(-\infty, \infty)$, whp $\quad L_{1}(m)=\Theta\left(n^{2 / 3}\right)$
- If $s n^{-2 / 3} \rightarrow+\infty, w h p \quad L_{1}(m) \sim 4 s \gg n^{2 / 3}$,

$$
L_{2}(m) \sim \frac{n^{2}}{2 s^{2}} \log \frac{|s|^{3}}{n^{2}}=O\left(n^{2 / 3}\right)
$$

Component structure of random planar graphs

$L_{i}(m):=\# \mathrm{vx}$'s in the i-th largest comp. in a random planar graph with $n v x$'s and m edges, where $m=n / 2+s, s=o(n)$.

Component structure of random planar graphs

$L_{i}(m):=\#$ vx's in the i-th largest comp. in a random planar graph with $n v x$'s and m edges, where $m=n / 2+s, s=o(n)$.

Theorem (Kang \& Łuczak 12)

- If $s n^{-2 / 3} \rightarrow-\infty$, whp

$$
L_{1}(m) \sim \frac{n^{2}}{2 s^{2}} \log \frac{|s|^{3}}{n^{2}}=o\left(n^{2 / 3}\right)
$$

- If $s n^{-2 / 3} \rightarrow \lambda \in(-\infty, \infty)$, whp $L_{1}(m)=\Theta\left(n^{2 / 3}\right)$
- If $s n^{-2 / 3} \rightarrow+\infty$, whp

$$
\begin{array}{r}
L_{1}(m) \sim 2 s \gg n^{2 / 3} \\
L_{2}(m)=\Theta\left(n^{2 / 3}\right)
\end{array}
$$

Component structure of random planar graphs

$R(m):=$ \# vx's outside the giant component in a random planar graph with $n \mathrm{vx}$'s and m edges, $m=n+t, t=o(n)$.

Component structure of random planar graphs

$R(m):=$ \# vx's outside the giant component in a random planar graph with $n \mathrm{vx}$'s and m edges, $m=n+t, t=o(n)$.

Theorem (Kang \& Łuczak 12)

- If $t n^{-3 / 5} \rightarrow-\infty$, whp

$$
R(m)=(2+o(1))|t| \gg n^{3 / 5}
$$

- If $t n^{-3 / 5} \rightarrow \lambda \in(-\infty, \infty)$, whp $\quad R(m)=\Theta\left(n^{3 / 5}\right)$
- If $t n^{-3 / 5} \rightarrow+\infty$, whp $R(m)=\Theta\left((n / t)^{3 / 2}\right) \ll n^{3 / 5}$

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

$$
K(x, y)
$$

Kernel

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

$$
K(x, y)
$$

Kernel

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

$$
\begin{aligned}
& K(x, y) \\
& \quad \text { Kernel } \\
& C(x, y)=K(x, P(x, y)) \\
& \text { Core }
\end{aligned}
$$

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

$$
\begin{aligned}
& K(x, y) \\
& \quad \text { Kernel } \\
& C(x, y)=\underset{\text { Core }}{K(x, P(x, y))}
\end{aligned}
$$

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

$$
\begin{aligned}
& K(x, y) \\
& \quad \text { Kernel } \\
& C(x, y)=K(x, P(x, y)) \\
& \text { Core }
\end{aligned}
$$

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

$$
\begin{aligned}
& K(x, y) \\
& \quad \text { Kernel } \\
& C(x, y)=K(x, P(x, y)) \\
& \quad \text { Core } \\
& G(x, y)=C(T(x, y), y) \\
& \text { Planar conn. graph }
\end{aligned}
$$

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

$$
\begin{aligned}
& K(x, y) \\
& \text { Kernel } \\
& C(x, y)=K(x, P(x, y)) \\
& \quad \text { Core } \\
& G(x, y)=C(T(x, y), y) \\
& \text { Planar conn. graph }
\end{aligned}
$$

Constructions for labelled planar graphs

- Planar graphs \longrightarrow Planar kernels (Decomposition)
- Constructive: Generating functions

$$
\begin{aligned}
& K(x, y) \\
& \text { Kernel } \\
& C(x, y)=K(x, P(x, y)) \\
& \quad \text { Core } \\
& G(x, y)=C(T(x, y), y) \\
& \text { Planar conn. graph }
\end{aligned}
$$

- Planar graphs

Unlabelled planar graphs

Problem: Indistinguishable vertices/edges

Solution: Cycle index sums

Unlabelled planar graphs

Problem: Indistinguishable vertices/edges

Solution: Cycle index sums
Building blocks $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots y_{1}^{b_{1}} y_{2}^{b_{2}} \cdots$
Information about sizes of orbits $\forall f \in \operatorname{Aut}(G)$

Unlabelled planar graphs

Problem: Indistinguishable vertices/edges

Solution: Cycle index sums
Building blocks $x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots y_{1}^{b_{1}} y_{2}^{b_{2}} \cdots$
Information about sizes of orbits $\forall f \in \operatorname{Aut}(G)$ Replacements similar to GFs

Unlabelled planar graphs

With cycle index sums:
Unlabelled planar graphs

\longleftrightarrow
Triangulations

Unlabelled planar graphs

With cycle index sums:
Unlabelled planar graphs

Triangulations
But: different factors depending on symmetries.

Unlabelled planar graphs

With cycle index sums:
Unlabelled planar graphs $\longleftrightarrow \cdots \quad$ Triangulations
But: different factors depending on symmetries.

Problem

Describe the triangulations with a given set of symmetries.

Unlabelled Triangulations

Notation

- Cells of dim 0,1,2: vertices, edges, and faces
- Aut(c, T): all automorphisms of T that fix a given cell c

Unlabelled Triangulations

Notation

- Cells of dim 0,1,2: vertices, edges, and faces
- Aut(c, T): all automorphisms of T that fix a given cell c

Properties of automorphisms

- $\varphi \in \operatorname{Aut}(c, T)$: uniquely determined by its action on the cells incident with c
- Aut (c, T) is isomorphic to a subgroup of the dihedral group $D_{\operatorname{deg}(c)}$

Unlabelled triangulations

Two types of non-trivial automorphisms:

Reflections
(two invariant cells opp. at c)

Unlabelled triangulations

Symmetries of triangulations (Kang \& Sprüssel 15+)

- If $\operatorname{Aut}(c, T)$ contains a reflection but no rotation, then it is isomorphic to the 2-element group \mathbb{Z}_{2}.
- If $\operatorname{Aut}(c, T)$ contains $k \geq 1$ rotations but no reflection, then it is isomorphic to the cyclic group \mathbb{Z}_{k+1}.
- If $\operatorname{Aut}(c, T)$ contains both reflections and rotations, then it is isomorphic to a dihedral group D_{m} with $m \mid \operatorname{deg}(c)$.

Unlabelled triangulations

Symmetries of triangulations (Kang \& Sprüssel 15+)

- If $\operatorname{Aut}(c, T)$ contains a reflection but no rotation, then it is isomorphic to the 2-element group \mathbb{Z}_{2}.
- If $\operatorname{Aut}(c, T)$ contains $k \geq 1$ rotations but no reflection, then it is isomorphic to the cyclic group \mathbb{Z}_{k+1}.
- If $\operatorname{Aut}(c, T)$ contains both reflections and rotations, then it is isomorphic to a dihedral group D_{m} with $m \mid \operatorname{deg}(c)$.

Triangulations with reflective symmetries

Theorem (Tutte 62)

The invariant cells of a reflection are the elements of a cyclic sequence $C=\left(c_{1}, \ldots, c_{\ell}\right)$ s.t. for each cell c_{i}, its predecessor and its successor in C lie opposite at c_{i}.

Triangulations with reflective symmetries

Theorem (Tutte 62)

The invariant cells of a reflection are the elements of a cyclic sequence $C=\left(c_{1}, \ldots, c_{\ell}\right)$ s.t. for each cell c_{i}, its predecessor and its successor in C lie opposite at c_{i}.

Definition
Girdle G: all vx's \& edges in C and on the b'daries of faces in C

Triangulations with reflective symmetries

Theorem (Tutte 62)

The invariant cells of a reflection are the elements of a cyclic sequence $C=\left(c_{1}, \ldots, c_{\ell}\right)$ s.t. for each cell c_{i}, its predecessor and its successor in C lie opposite at c_{i}.

Definition
Girdle G: all vx's \& edges in C and on the b'daries of faces in C
\Longrightarrow induces two near-triangulations ρ

Triangulations with reflective symmetries

Theorem (K-S 15+)

The triangulations with a reflective but no rotative symmetry are precisely the ones obtained by choosing

- a girdle G and
- a near-triangulation ρ with forbidden chords and attaching a copy of ρ into both sides of G. This is a 2-to-1 correspondence.

Triangulations with reflective symmetries

Theorem (K-S 15+)

The triangulations with a reflective but no rotative symmetry are precisely the ones obtained by choosing

- a girdle G and
- a near-triangulation ρ with forbidden chords and attaching a copy of ρ into both sides of G. This is a 2-to-1 correspondence.

Triangulations with rotative symmetries

Lemma (Tutte 62)
Every rotative automorphism φ has precisely one invariant cell $c^{\prime} \neq c$.

Triangulations with rotative symmetries

Lemma (Tutte 62)

Every rotative automorphism φ has precisely one invariant cell $c^{\prime} \neq c$.

Definition

Spindle S : union of paths $P, \varphi(P), \ldots, \varphi^{m-1}(P)$ (m order of φ)

Triangulations with rotative symmetries

Lemma (Tutte 62)

Every rotative automorphism φ has precisely one invariant cell $c^{\prime} \neq c$.

Definition

Spindle S : union of paths $P, \varphi(P), \ldots, \varphi^{m-1}(P)$ (m order of φ)
\Longrightarrow induces m isomorphic near-triangulations ρ

Triangulations with rotative symmetries

Theorem (K-S 15+)

The triangulations with a rotative symmetry are precisely the ones obtained by choosing

- a spindle S and
- a near-triangulation ρ and attaching a copy of ρ into each segment of S.

Triangulations with rotative symmetries

Theorem (K-S 15+)

The triangulations with a rotative symmetry are precisely the ones obtained by choosing

- a spindle S and
- a near-triangulation ρ and attaching a copy of ρ into each segment of S.

But: Every triangulation corresponds to a different number of spindles and near-triangulations.

Triangulations with rotative symmetries

Different spindles \& near-triangulations for the same triangulation:

Triangulations with rotative symmetries

Different spindles \& near-triangulations for the same triangulation:

Triangulations with rotative symmetries

Idea: Eliminate the element of choice in the construction of the spindle.

Triangulations with rotative symmetries

Idea: Eliminate the element of choice in the construction of the spindle.

Construct spindle S from north to south:

- Take all edges going out of c;
- Take the leftmost edge for each path;
- Go right as far as possible;
- Iterate until you reach c^{\prime}.

Triangulations with rotative symmetries

Definition (K-S 15+)
Extended spindle S : Defined iteratively from north to south.

Triangulations with rotative symmetries

Definition (K-S 15+)
Extended spindle S : Defined iteratively from north to south.
Extended spindle might have "bubbles".

Triangulations with rotative symmetries

Definition (K-S 15+)

Extended spindle S : Defined iteratively from north to south.
Extended spindle might have "bubbles".
\Longrightarrow induces sets of \boldsymbol{m} isomorphic near-triangulations ρ, β, \ldots

Triangulations with rotative symmetries

Theorem (K-S 15+)

The triangulations with a rotative symmetry are precisely the ones obtained by choosing

- an extended spindle S,
- a near-triangulation ρ with additional structure, and
- near-triangulations $\beta_{1}, \ldots, \beta_{\ell}$
and attaching copies of ρ into each segment of S and copies of $\beta_{1}, \ldots, \beta_{\ell}$ into each bubble of S. This is a 1-1 correspondence.

Reflective and rotative symmetries

Reminder

- If there are both reflections and rotations, then $\operatorname{Aut}(c, T)$ is isomorphic to a dihedral group D_{k} with $k \mid \operatorname{deg}(c)$.
- D_{k} contains k reflections and $k-1$ rotations.
- Every reflection has a girdle.
- For every rotation \exists a unique invariant cell $c^{\prime} \neq c$.

Reflective and rotative symmetries

Reminder

- If there are both reflections and rotations, then $\operatorname{Aut}(c, T)$ is isomorphic to a dihedral group D_{k} with $k \mid \operatorname{deg}(c)$.
- D_{k} contains k reflections and $k-1$ rotations.
- Every reflection has a girdle.
- For every rotation \exists a unique invariant cell $c^{\prime} \neq c$.
- c^{\prime} is the same for all rotations.
- Girdles intersect only in c and c^{\prime}.
- Every second girdle is isomorphic.

Reflective and rotative symmetries

Definition (K-S 15+)
 Skeleton S : union of the k girdles

Reflective and rotative symmetries

Definition (K-S 15+)

Skeleton S : union of the k girdles

\Longrightarrow induces isomorphic near-triangulations ρ

Reflective and rotative symmetries

Definition (K-S 15+)

Skeleton S : union of the k girdles

\Longrightarrow induces isomorphic near-triangulations ρ

Reflective and rotative symmetries

Girdles can touch:

Girdles can touch:

isomorphic near-triangulations p near-triangulations $\rho_{1}, \ldots, \rho_{\ell}$, each appearing $2 k$ times

Reflective and rotative symmetries

Theorem (K-S 15+)

The triangulations with reflective and rotative symmetry are precisely the ones obtained by choosing

- a skeleton S and
- near-triangulations $\rho_{1}, \ldots, \rho_{\ell}$ with forbidden chords and attaching copies of $\rho_{1}, \ldots, \rho_{\ell}$ into each segment of S. This is a 2-1 correspondence.

Summary

Characterization of symmetries of triangulations

- Reflective:

Girdle

- Rotative:
(Extended) spindle
- Reflective \& rotative: Skeleton

Summary and Outlook

Details:

- Cycle index sums for girdles, spindles, and skeletons;
- Decomposition scheme for near-triangulations;
- Cycle index sums for near-triangulations.

Summary and Outlook

Details:

- Cycle index sums for girdles, spindles, and skeletons;
- Decomposition scheme for near-triangulations;
- Cycle index sums for near-triangulations.

Outlook:

- Transfer cycle index sums to cubic 3-conn. maps
- 3-conn. cubic maps \longrightarrow 3-conn. cubic planar graphs
\longrightarrow Unlabelled planar graphs
- Asymptotic numbers

The end

