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Definition: Network = a graph = nodes/points, some pairs of 
nodes are connected by edges. 

Examples: Facebook friendships. People buying DVDs on 
Amazon. Authors citing other authors. 

Networks
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The problem: Given the graph, divide nodes into groups such 
that nodes in one group have similar pattern of connections 
to nodes in other groups. E.g. nodes in one groups are much 
more connected among themselves then to the other nodes.

One of the basic methods in data processing. Dimensionality 
reduction, coarse-grained representation of the data. 

Organization in groups/
modules based on 
similarity = one of the 
basic structures data can 
have. 

Clustering networks
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Hundreds of different methods - for a review e.g.     
S. Fortunato, Physics Reports, 2010. 

Spectral clustering - the state of art clustering 
method in machine learning. Associate a matrix to the 
network (adjacency, random walk, Laplacian, etc.), 
compute its top eigenvalues. The corresponding 
eigenvectors encode the clusters in a “visible” way.  

Modularity maximization (Newman’06) - most popular 
among people studying complex networks. 

Q =
X

(ij)


Aij �

didj
2M

�
�si,sj

Algorithms for clustering networks
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Optimal algorithms?
What is a good criteria for optimality? 

Best performance of real data is tricky to 
evaluate. 
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Optimal algorithms?

Alternatively: Consider a simple and natural 
model to generate clustered networks. Cluster 
the generated networks and compare to the 
“true clustering”. 

Optimal algorithm is the such that maximizes 
the number of correctly labeled nodes.  

What is a good criteria for optimality? 

Best performance of real data is tricky to 
evaluate. 
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Stochastic block model
q groups, N nodes

     proportion of nodes in group 

               probability that an edge present 
between node from group a and another 
from group b 

na a = 1, . . . , q

Generate a random network as follows: 

pab =
cab

N

n1 = 7/12 n2 = 5/12

p11 = p22 = 0.39

p12 = p21 = 0.14
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Goal in clustering

Given the graph, find back the assignment to groups. 
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In which limit do we work?
N ! 1

na =
Na

N
= ⇥(1)

q = ⇥(1)

pabN = cab = ⇥(1)

Large graphs:

Fixed number of large groups:
(crucial for our method and results to be valid) 

(because this is the algorithmically challenging case, our 
results hold but are not very interesting for the denser case) 

Sparse graphs:
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Signal - assignment of nodes into groups           
with     fraction of nodes in each group. 

Measurement - the adjacency matrix A, with 
being the ‘affinity’ of group a to group b. 

pab

na

Includes ALL available information about the signal

(when parameters of the model known) 

si 2 {1, . . . , q}

P ({si}) =
NY

i=1

nsi
P (Aij |{si}) =

Y

i 6=j

pAij
sisj (1� psisj )

1�Aij

P ({si}|Aij) =
1

Z
P ({si})P (Aij |{si})

Bayes-optimal algorithm
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Bayes-optimal algorithm

Maximize number of correctly assigned nodes 

Marginal probabilities

µ(si) ⌘
X

{sj}j 6=i

P ({sj}j 6=i, si|Aij)

s⇤i = argmaxsiµ(si)

P ({si}|Aij) =
1

Z
P ({si})P (Aij |{si})

Posterior probability distribution
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Bayes-optimal algorithm

Trouble: Takes time exponential in N to evaluate. 

Maximize number of correctly assigned nodes 

Marginal probabilities

µ(si) ⌘
X

{sj}j 6=i

P ({sj}j 6=i, si|Aij)

s⇤i = argmaxsiµ(si)

P ({si}|Aij) =
1

Z
P ({si})P (Aij |{si})

Posterior probability distribution
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Why not maximum-likelihood? 

In sparse graphs only O(1) edges per node = 
measurements per signal component. 

Curse of dimensionality: max likelihood over-fits 
and finds “good” costs even in a random graph. 

Random 3-regular graph has bi-partitions of nodes 
with only 11% of edges in between the two parts.

max

{si}
P ({si}|Aij)ML:

marginalize: 
µ(si) ⌘

X

{sj}j 6=i

P ({sj}j 6=i, si|Aij)

s⇤i = argmaxsiµ(si) ✓

✗
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How to compute the marginals?

MCMC (Monte Carlo Markov chain, Gibbs 
sampling) general for discrete variables, issues 
with large equilibration time

Variational mean field approximation - fast but 
often very wrong. 

Belief propagation, fast, in general better than 
mean field, and exact for large networks 
generated by the stochastic block model.
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BP in physics:
• Bethe, Peierls, Onsager’35
• Thouless-Anderson-Palmer’76
• Mezard, Parisi, Zecchina’02 BP in computer science:

• LDPC: Gallager’60
• Bayes inference: Pearl’82
• many generalizations .... 

Belief Propagation

= message passing algorithm to find the clustering

= analysis tool (cavity method in physics) of the 
Bayes-optimal clustering in the limit of large networks
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O(cq2N)BP runs in linear time

BP asymptotically exact here (the relevant part of 
the factor graph is tree-like). Remains to be 
proven rigorously 

Belief Propagation for SBM
 i!j
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from Decelle, Krzakala, Moore, Zdeborova’11
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logZBP(q, {na}, {cab}) =
X

i

logZi �
X

(i,j)2E

logZij
+

cN

2

Zij =
X

a<b

cab( 
i!j
a  j!i

b +  i!j
b  j!i

a ) +
X

a

caa 
i!j
a  j!i

a

Zi =
X

ti

ntie
�hti

Y

j2@i

X

tj

ctjti 
k!i
tj

Bethe log-likelihood

-> model selection
-> expectation-maximization-like learning
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How to use BP to analyze the 
Bayes optimal inference? 

Iterate BP from two different initializations:

(1) Random 

(2) Planted:

If you find two different fixed points, take the one 
with larger Bethe likelihoods.                          
This is what Bayes-optimal sampling would do. 

Holds for arbitrary q, na, cab, N ! 1

 i!j

 i!j
s 6=s⇤ = 0  i!j

s⇤ = 1
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Results
Overlap of the optimal 
estimation with the 
true labeling.

(from Decelle, Krzakala, 
Moore, Zdeborova’11)

Q = max

⇡

PN
i=1 �⇡(ti),s⇤i /N � 1/q

1� 1/q
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Equilibration time
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Locating the phase transition
When average degree in every group is the same: 
Stability of the uniform BP fixed point             . 

Study the influence of a message change along a chain, 
one step: 

Take largest eigenvalue of T. Variance of a message-
change on the root due to changed boundary 
Stability            .   BP stays at the trivial fixed point.

Special case of groups of equal sizes, and only in/out 
probabilities different: 

T ab ⌘ @ 
ki
a

@ 
ki+1
b

���
 t=nt

= na

�
cab
c � 1

�

var ⇡ cd�2d

1 > c�2

|c
in

� c
out

| < q
p
c

 i!j
a = na

(Thouless’86, critical temperature on Bethe-lattice spin glass,
Kesten-Stigum’66 bound for Galton-Watson processes)
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Proof of the phase transition for q=2

The undetectable regime (Mossel, Neeman, Sly’12), SBM 
contiguous to Erdos-Renyi random graph. 

The detectable regime (Massoulie’13, Mossel, Neeman, Sly’13). 
Both proofs use a constructive but not very 
practical (polynomial) algorithm.  
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1st order phase transitions  
even more interesting 
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Algorithmic consequences
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The hard-easy phase transition
Spinodal line of the 1st order phase transition. MCMC 
equilibration time and BP convergence time diverge. 

Algorithmic barrier in many inference problems: planted 
clique, compressed sensing, error correcting codes, planted 
constraint satisfaction, sparse PCA, matrix factorization,... 

Conjecture: Algorithmic barrier for a large class of 
algorithms. Including BP, Gibbs sampling (MCMC), spectral, 
stochastic local search. NOT including Gauss elimination.

Open problem: Establish formal connections between this 
phase transition and performance of (some class of) 
polynomial algorithms. 

Tuesday, June 7, 16



Back to the optimal algorithms
BP asymptotically optimal in the SBM and linear in N. 

Quadratic in the number of clusters

Needs to know the parameters of the graph or learn 
them via iterative method full of local optima. 

Bothered by small loops in graphs. 

BUT

Is there a method that keeps the advantages and  
does not have these disadvantages? 
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Spectral clustering
Compute q largest eigenvalues and their eigenvectors 
for a matrix associated to the graph. 

Cluster components of these eigenvectors, e.g. using 
k-means. For 2 groups - signs of the 2nd eigenvector.  

Matrices: 

Adjacency 

Laplacian

Random walk

Modularity

Qij =
Aij

di
Mij = Aij �

didj
2M

Lij = di�i,j �Aij

Aij
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Trouble with sparse graphs

The edge of the spectrum of sparse graphs is 
spoiled by nodes of large degree. 

ER graphs, largest degree ~ log(N)/log(log(N)). 

How to correct this? Remove largest degrees? 
Not good enough - loosing information. 

P (�) =
1

2⇡c

p
4c� �2

Wigner not good for sparse G 
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Properties of the spectrum
for large random sparse graphs

Largest eigenvalue       is the average excess 
degree, bulk inside circle of radius 

For graphs generated by the stochastic block model: 
If every group the same average degree then q-1 
real eigenvalues          , where                   
eigenvalue of

µ = c⌫

Tab = na

⇣cab
c

� 1
⌘⌫ 6= 0

�
max p

�
max

Rigorous proof:
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Spectrum of the non-backtracking matrix 
as            decreases (fixed N, c)c

in

/c
out
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Spectra of some real networks
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Phase transitions in inference are significant for 
algorithmic average hardness impossible/possible or 
hard/easy. The same pattern in many problems.

Design of new algorithms. Message passing, non-
backtracking for clustering of sparse networks ....  

Precise conjectures waiting for proofs.

Statistical physics of inference problems.

✓
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This talk is based on:
A. Decelle, F. Krzakala, C. Moore, LZ, Phase transition in the 
detection of modules in sparse networks, Phys. Rev. Lett. 107, 
065701 (2011).

A. Decelle, F. Krzakala, C. Moore, LZ, Asymptotic analysis of the 
stochastic block model for modular networks and its algorithmic 
applications, Phys. Rev. E 84, 066106 (2011).

F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, LZ, P. Zhang, 
Spectral clustering of Sparse Networks, PNAS 110, 20935 (2013).

Implementations available at: http://mode_net.krzakala.org/
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      Thank you for your attention!
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O(cq2N)

µ

i(qi) =  

i
qi + o(1)

BP runs in linear time

BP asymptotically exact here (the relevant part of 
the factor graph is tree-like and no RSB for 
optimal Bayesian inference.) 

Belief Propagation for SBM
Z =

X

{qi}

NY

i=1

nqi

Y

i 6=j

pAij
qiqj (1� pqiqj )

1�Aij

from Decelle, Krzakala, Moore, Zdeborova’11
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Belief Propagation for SBM

BP iteration equations

 i!j
qi =

1

Zi!j
nqi

Y

k 6=i,j

"
X

qk

pAik
qiqk (1� pqiqk)

1�Aik  k!i
qk

#

Z =
X

{qi}

NY

i=1

nqi

Y

i 6=j

pAij
qiqj (1� pqiqj )

1�Aij

Little problems: 
Factor graph is fully connected = many short loops. 
BP runs in N^2 steps - not good for N= 1 million. 

from Decelle, Krzakala, Moore, Zdeborova’11
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pab =
cab
N

N ! 1, c = O(1)

Beliefs on non-edges (A_ij=0) do not depend 
in the leading order on the target-node. 
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Final BP for SBM
�i⇥j
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µ
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i
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BP runs in linear time

BP asymptotically exact here (the relevant part 
of the factor graph is tree-like and no RSB for 
optimal Bayesian inference.) 
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Learning parameters
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Given the graph, what is the best estimate for 
{na, pab}

P (G, {qi}|{na, pab}) =
N�

i=1

nqi

�

ij

pAij
qiqj

(1� pqiqj )
1�Aij

Maximize Z to learn {na, pab}

Learning

1
N

�
⇤

i

�a,qi

⇥
= na

1
N2

�
⇤

(ij)�E

�a,qi�b,qi

⇥
= pabnanb

Stationarity conditions 
(expectation maximization learning):

P ({na, pab}|G) ' Z({na, pab}) =
X

{qi}

P (G, {qi}|{na, pab})
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EM learning with BP
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 i
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