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Squares, powers and square-free words

A word u is a square if there exists a word v such that u = v · v .

;
kth power if there exists a word v such that u = vk ;
power if u is a kth power for some integer k ⩾ 2.

Examples: 01 · 01 and 010101 · 010101

are squares;
01 · 01 · 01 and 0101 · 0101 · 0101 are cubes;
01 · 01 · 01 · 01 · 01 is a power.

Counter-examples: 0110, 010101 and 01201

are not squares;
0110 and 0101, 01201 are not cubes;
0110 and 01201 are not powers.

A word u is square-free if none of its non-empty (contiguous) factors is a square (or a power).

Examples: 010, 0102010 and 01020120210 are square-free.
Counter-examples: 0101, 0110 and binary words u of length |u| ⩾ 4 are not square-free.
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Why studying squares, powers and square-free words?

“ A problem that is easy to state, yet difficult to solve, should be studied primarily for its
own sake, even if it does not yet have concrete applications.” Axel Thue, 1912

Squares, powers and square-free words arise in many areas:
group theory;
bio-informatics;
compression algorithms;
automata theory;
. . .

Some questions of interest:
Given a finite alphabet An = {0, 1, . . . , n− 1},

how difficult is it to check whether a word u ∈ A∗
n is a square? a k

th power? a power?
how difficult is it to check whether a word u ∈ A∗

n is square-free?

are there arbitrarily long square-free words in A∗
n?

infinite square-free words in Aω
n ?
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Are there infinite square-free or kth-power-free words? (1/2)

Lemma (Folklore): Square-free words over the alphabet A2 = {0, 1} are ε, 0, 01, 010, 1, 10, 101.

Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of
themorphism of monoids TM defined by TM(0) = 01 and TM(1) = 10, and starting with 0:

0 · 1 · 10 · 1001 · 10010110 · 1001011001101001 · · ·

Proof: Assume that there is a shortest cube-free word w for which TM(w) has a factor x3:

if TM(w) = x3, |x| is even, and there exists a word u such that TM(u) = x and w = u3;
if TM(w) = λ · x3 or TM(w) = x3 · λ for some letter λ ∈ A2,

1λ=0 ≡ 3|x|0 + 1λ=0 ≡ |TM(w)|0 ≡ |TM(w)|1 ≡ 3|x|1 + 1λ=1 ≡ 1λ=1 (mod 3);

if TM(w) = λ · x3 · µ for some letters λ ∈ A2 and µ ∈ A2, |x| is even, and we can factor x as
x = a · y · b, where |y| is even; then, TM(w) = λa · y · ba · y · ba · y · bµ: there exists a word
u such that TM(u) = y , and TM(λ) = λa = TM(b) = bµ, so that w = λ · u · λ · u · λ · u · λ.

In conclusion, the Thue-Morse morphism TM is cube-free: if w is cube-free, so is TM(w)!
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Are there infinite square-free or kth-power-free words? (2/2)

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.

Open question: Can we decide whether a given ℓ-uniform morphism is cube-free?

Corollary (Thue, 1906; Leech, 1957): The Leech morphism L defined by

L(0) = 0121021201210 L(1) = 1202102012021 L(2) = 2010210120102

is square-free. Thus, the infinite fixed-point of L starting with 0 is square-free.
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Are there many square-free or kth-power-free words? (1/3)

How many square-free words of length n over the alphabet Aℓ = {0, 1, . . . , ℓ− 1} are there?

Analytic approach when ℓ ⩾ 4:
1 For all square-free words w ∈ An

ℓ and letters λ ∈ Aℓ, the word w · λ has a factorisation
w · λ = p · s · s, where p · s is square-free: knowing p · s determines w and λ.

2 Let W n
ℓ be the set of square-free words in An

ℓ : |W n
ℓ | |Aℓ| ⩽ |W 0

ℓ |+ |W 1
ℓ |+ · · ·+ |W n+1

ℓ |.
3 We prove by induction that |W n+1

ℓ | ⩾ (ℓ− 2) |W n
ℓ |, so that |W n

ℓ | ⩾ (ℓ− 2)n:

|W n+1
ℓ |

|W n
ℓ |

⩾ (ℓ− 1)−
∑
k⩾1

|W n−k
ℓ |

|W n
ℓ |

⩾ (ℓ− 1)−
∑
k⩾1

1
(ℓ− 2)k

= (ℓ− 2) +
ℓ− 4
ℓ− 3

⩾ ℓ− 2.
square-free part

if s ̸= ε:

w λ

p s s

Corollaries (Folklore): |W n
ℓ | ⩾ (ℓ− 2)n when ℓ ⩾ 4.

Corollaries (Folklore): There are infinite square-free words in Aω
ℓ when ℓ ⩾ 4

;

Corollaries (Folklore): There are infinite

" Non-constructive

cube-free words in Aω
ℓ when ℓ ⩾ 3;

Corollaries (Folklore): There are infinite

existence results!

5th-power-free words in Aω
ℓ when ℓ ⩾ 2.
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Are there many square-free words? (2/3)

Theorem (Brandenburg, 1983; Brinkhuis, 1983; Kolpakov, 2006; Shur, 2009): |W n
3 | ⩾ (5/4)n.

Proof that |W n
3 | ⩾ 2n/72 ≈ 1.01n: If w = 1201021, the A4-to-A3 morphism φ defined by

φ(0) = L(01020) · w φ(2) = L(01210) · w
φ(1) = L(02010) · w φ(3) = L(02120) · w

is square-free.

Thus, there are at least 2n square-free words x ∈ W n
4 ⊆ An

4 ,
at least 2n square-free words φ(x) ∈ W 72n

3 , and

|W n
3 |72 ⩾ |W 72n

3 | ⩾ 2n.
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Are there many square-free words? (3/3)

Finer analytic approach towards proving that |W n
3 | ⩾ (5/4)n:

1 Let W n
3 (w) be the set of words x ∈ W n

3 that end with w , for all w ∈ W k
3 (for a given k):

Find linear inequalities that connect |W n
3 (w)| to terms |Wm

3 (w
′)| when m ⩽ n− 1.

Examples:

|W n
3 (0121)| ⩾ |W n−1

3 (

?1

012)|

+ |W n−1
3 (2012)|+ 1n=4 −

∑
i⩾4 |W

n−i
3 (0102)|;

|W n
3 (020102)| ⩾ |W n−1

3 (102010)|+ 1n=6.

−
∑

i⩾6 |W
n−i
3 (020102)| − |W n−

42

3 (

?0?1

0

12

0

21

)|.

square-free part

?1/20 1 2 10 1 2 110 2 0 1 0 2 0 0 1 2 10 2 0 2

n− i in− i in− i in− 4 4n− 2 2

2 Group the terms |W n
3 (w)| in a vector Wn

3 , and then in a power seriesW3(z) =
∑

n⩾0W
n
3z

n:
Inequalities about |W n

3 (w)| rewrite asM(z)W3(z) ⩾ (1− z)zk1, whereM(z) is polynomial.
3 For k = 23 and z = 4/5, there exists a non-zero vector v ⩾ 0 such that vM(z) ⩽ 0, hence

vM(z)W3(z) ⩽ 0 < (1− z)zkv1, hence W3(z) is divergent and lim sup |W n
3 |1/n ⩾ 5/4.

4 The sequence (log |W n
3 |)n⩾0 is sub-additive, hence |W n

3 | ⩾ (5/4)n for all n ⩾ 0.
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0

21

)|.
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?

1/2

0 1 2 1

0 1 2 1
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0 1 2 1

0 2 0 2

n− i i

n− i i

n− i in− 4 4n− 2 2

2 Group the terms |W n
3 (w)| in a vector Wn

3 , and then in a power seriesW3(z) =
∑
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Shuffles

A shuffle of two words u and v is a word w obtained by merging u and v from left to right,
choosing the next symbol arbitrarily from u or from v : we write w ∈ u� v .

Examples: 0123, 0213, 0231, 2013, 2031 and 2301 are the shuffles of 01 and 23;
0101 = 0101 and 0011 = 0011 = 0011 = 0011 are the shuffles of 01 and 01.

Counter-examples: 1023 and 0122 are not shuffles of 01 and 23.

Playing Single-thread Message
cards concurrent execution synchronisation

Process/message A

Interleaving

Process/message B

A0

B0

A1

B1

A2

B2

A3

B3

B0 A0 A1 A2 B1 A3 B2 B3
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Shuffled squares and powers
A word u is a shuffled square if there exists a word v such that u ∈ v � v .

;
shuffled kth power if there exists a word v such that u ∈ v � · · ·� v (with k vs);
shuffled power if u is a shuffled kth power for some integer k ⩾ 2.

Examples: 0101 and 0011

are shuffled squares;
010101, 010011, 001101, 001011 and 000111 are shuffled cubes;
000001111101 is a shuffled power.

Counter-examples: 0110, 010101 and 000001111101

are not shuffled squares;
0101 and 010110, 000001111101 are not shuffled cubes;
0110, 010110 and 000001111110 are not shuffled powers.

A word u is shuffled-square-free if none of its non-empty factors is a shuffled square.
shuffled-power-free if none of its non-empty factors is a shuffled power.

Examples: 010, 0102010 and 01202102012 are shuffled-square-free.
Counter-examples: 010212 and 2010201202 are not shuffled-square-free;

Ternary words u of length |u| ⩾ 12 are not shuffled-square-free.
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Being □-free vs being�2-free

Lemma (Folklore): One can check whether u is a □ in time O(|u|).
Theorem (Buss & Soltys, 2013; Rizzi & Vialette, 2013; Bulteau & Vialette, 2020):
Checking whether u is a�2 is NP-hard, even if |A| = 2.

Theorem (Crochemore, 1983): If A is fixed, one can check whether u is □-free in time O(|u|).
Theorem (Bulteau, Jugé & Vialette, 2023): Checking whether u is�2-free is NP-hard.

Lemma (Folklore): When k divides ℓ, every ℓth power is a kth power.
Lemma (Folklore): 0102013231023123 is a shuffled 4th power of 0123 but is�2-free.

Theorem: There are infinite □-free words in Aω if and only if |A| ⩾ 3.

Open question: For which alphabets A are there infinite�2-free words in Aω?
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When does Aω
ℓ contain infinite�2-free words? (1/3)

Lemma: When ℓ ⩽ 3, it does not.
Conjecture: When ℓ ⩾ 4, it does.

Theorem (Currie, 2014; Müller, 2015; Guégan & Ochem, 2016; Bulteau, Jugé & Vialette, 2023):
When ℓ ⩾ 6, it does.
Proof relying on an analytic approach when ℓ is large enough:

1 For all�2-free words w ∈ An
ℓ and all letters λ ∈ Aℓ, the word w · λ is�2-free or has a

factorisation w · λ = x · y , where x is�2-free and y ∈ u� u for some word u.
2 Let W n

ℓ be the set of�2-free words in An
ℓ . Once the length k = |u| is fixed, there are

|W n+1−2k
ℓ | choices for x , ℓk choices for u and up to 22k choices for y :
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ℓ |+ |W n−1
ℓ | (4ℓ) + · · ·+ |W n+1−2k
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ℓ | ⩾ 2ℓ|W n
ℓ |/3 when ℓ ⩾ 27, so thatW n

ℓ ̸= ∅:

|W n+1
ℓ |
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⩾ ℓ−
∑
k⩾1

|W n+1−2k
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3

+
ℓ(ℓ− 27)
3ℓ− 27
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2ℓ
3
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When does Aω
ℓ contain infinite�2-free words? (2/3)

Theorem: When ℓ ⩾ 6, it does.
Proof relying on a finer analytic approach when ℓ is not so large:

1 For all�2-free words w ∈ An
ℓ and all letters λ ∈ Aℓ, the word w · λ is�2-free or has a

factorisation w · λ = x · y , where x is�2-free and y ∈ u� u for some word u. Moreover,

▶ either u = λ or |u| ⩾ 2 and x · y0 · y1 is�2-free;
▶ the suffix y can be chosenminimal: no strict factor of y is a�2.

2 Let Skℓ be the set of minimal�2 of length 2k: once the length k = |u| and the word y ∈ Skℓ
are fixed, there are |W n+3−2k

ℓ |/ℓ(ℓ− 1) choices for x · y0 · y1:

|W n
ℓ | ℓ ⩽ |W n+1

ℓ |+ |W n
ℓ |+

|W n−1
ℓ | |S2ℓ |+ |W n−3

ℓ | |S3ℓ |+ · · ·+ |W n+3−2k
ℓ | |Skℓ |+ · · ·

ℓ(ℓ− 1)

3 We can prove that |Skℓ | ⩽ ℓ(ℓ− 1)k−1 Cat(k − 1).
4 We can prove by induction that |W n+1

ℓ | ⩾ 37
√
ℓ− 1|W n

ℓ |/16 when ℓ ⩾ 7, so that W n
ℓ ̸= ∅.
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Intermezzo: counting minimal�2 words and�2-free words

When choosing a word y ∈ u� u whose strict factors are�2-free, with |u| = k:
each letter ui+1 precedes the letter ui : Cat(k − 1) = 1

k

(2k−2
k−1

)
interleavings are possible;

each letter ui+1 must be distinct from its predecessor in y : given an interleaving, there are
up to ℓ(ℓ− 1)k−1 choices for u. Hence, |Skℓ | ⩽ ℓ(ℓ− 1)k−1 Cat(k − 1).

The generating series C(z) =
∑

k⩾0 Cat(k)z
k satisfies the equation C(z) = 1+ zC(z)2.

, hence

C(z) = 2
1+

√
1− 4z

when |z| < 1
4
.

= ⊔

C(z) = 1 + z × C(z) × 1 × C(z)

We prove now by induction that |W n+1
ℓ | ⩾ λ|W n

ℓ | when ℓ ⩾ 7, where λ = 37
√
ℓ− 1/16 ⩾ 5.65:

|W n+1
ℓ |

|W n
ℓ |

⩾ (ℓ− 1)− 1
ℓ(ℓ− 1)

∑
k⩾2

λ3−2k |Skℓ | ⩾ (ℓ− 1)− λ

ℓ− 1

(
C
(ℓ− 1

λ2

)
− 1

)

= λ+
P(λ)
λ

,

where P is an explicit polynomial such that P(x) > 0 whenever x ⩾ 5.65.

�
2 prefix �

2 suffix

u0

u1 u0 u2 u1

u2 u3 u3

size-3 Dyck path

ℓ
choices

⩽ ℓ− 1
choices

⩽ ℓ− 1
choices

⩽ ℓ− 1
choices

u0

1

u1

2

u0

1

u2

0

u3

1

u1

2

u2

0

u3

1
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When does Aω
ℓ contain infinite�2-free words? (3/3)

Theorem: When ℓ ⩾ 6, it does.
Proof relying on finer upper bounds on |Skℓ | when ℓ = 6:

When a letter ui is placed just before a peak, it can take at most ℓ− 2 values (unless i = 2):
if ub = uc , then ui ̸= ua and ui ̸= ub;
if ub ̸= uc , then ui ̸= ub and ui ̸= uc . a, b, c < i

ua ub
ui uc

Remark (Narayana, 1959): There are Cat(k, p) = 1
k

(k
p

)( k
p−1

)
size-k Dyck trees with p peaks.

Lemma: The generating series C(x, y) =
∑

k,p⩾0 Cat(k, p)x
kyp satisfies the relation

C(x, y) = 1+ xyC(x, y) + x(C(x, y)− 1)C(x, y).

Corollary: We can prove that |W n+1
ℓ | ⩾ λ|W n

ℓ |, where λ ≈ 4.56594 is the largest root of

P(X) = X 5 − 5X 4 + 18X 3 − 210X 2 + 626X − 5.
= ⊔ ⊔

\

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 15



When does Aω
ℓ contain infinite�2-free words? (3/3)

Theorem: When ℓ ⩾ 6, it does.
Proof relying on finer upper bounds on |Skℓ | when ℓ = 6:

When a letter ui is placed just before a peak, it can take at most ℓ− 2 values (unless i = 2):
if ub = uc , then ui ̸= ua and ui ̸= ub;
if ub ̸= uc , then ui ̸= ub and ui ̸= uc . a, b, c < i

ua ub
ui uc

Remark (Narayana, 1959): There are Cat(k, p) = 1
k

(k
p

)( k
p−1

)
size-k Dyck trees with p peaks.

Lemma: The generating series C(x, y) =
∑

k,p⩾0 Cat(k, p)x
kyp satisfies the relation

C(x, y) = 1+ xyC(x, y) + x(C(x, y)− 1)C(x, y).

Corollary: We can prove that |W n+1
ℓ | ⩾ λ|W n

ℓ |, where λ ≈ 4.56594 is the largest root of

P(X) = X 5 − 5X 4 + 18X 3 − 210X 2 + 626X − 5.
= ⊔ ⊔

\

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 15



When does Aω
ℓ contain infinite�2-free words? (3/3)

Theorem: When ℓ ⩾ 6, it does.
Proof relying on finer upper bounds on |Skℓ | when ℓ = 6:

When a letter ui is placed just before a peak, it can take at most ℓ− 2 values (unless i = 2):
if ub = uc , then ui ̸= ua and ui ̸= ub;
if ub ̸= uc , then ui ̸= ub and ui ̸= uc . a, b, c < i

ua ub
ui uc

Remark (Narayana, 1959): There are Cat(k, p) = 1
k

(k
p

)( k
p−1

)
size-k Dyck trees with p peaks.

Lemma: The generating series C(x, y) =
∑

k,p⩾0 Cat(k, p)x
kyp satisfies the relation

C(x, y) = 1+ xyC(x, y) + x(C(x, y)− 1)C(x, y).

Corollary: We can prove that |W n+1
ℓ | ⩾ λ|W n

ℓ |, where λ ≈ 4.56594 is the largest root of

P(X) = X 5 − 5X 4 + 18X 3 − 210X 2 + 626X − 5.

= ⊔ ⊔

\

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 15



When does Aω
ℓ contain infinite�2-free words? (3/3)

Theorem: When ℓ ⩾ 6, it does.
Proof relying on finer upper bounds on |Skℓ | when ℓ = 6:

When a letter ui is placed just before a peak, it can take at most ℓ− 2 values (unless i = 2):
if ub = uc , then ui ̸= ua and ui ̸= ub;
if ub ̸= uc , then ui ̸= ub and ui ̸= uc . a, b, c < i

ua ub
ui uc

Remark (Narayana, 1959): There are Cat(k, p) = 1
k

(k
p

)( k
p−1

)
size-k Dyck trees with p peaks.

Lemma: The generating series C(x, y) =
∑

k,p⩾0 Cat(k, p)x
kyp satisfies the relation

C(x, y) = 1+ xyC(x, y) + x(C(x, y)− 1)C(x, y).

Corollary: We can prove that |W n+1
ℓ | ⩾ λ|W n

ℓ |, where λ ≈ 4.56594 is the largest root of

P(X) = X 5 − 5X 4 + 18X 3 − 210X 2 + 626X − 5.

= ⊔ ⊔

\

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 15



Open questions

1 When A is fixed, how hard is recognising�2-free words?

2 Can we extend our analytic proof to the cases |A| = 4? |A| = 5?
3 Can we decide whether a given word is a factor of an infinite�2-free word?
4 A morphism of monoids φ : A∗ → B∗ is □-free if φ(x) is □-free whenever x is □-free.

Can we meaningfully generalise this notion to�2-free morphisms?
5 What about shuffled-cube-free or shuffled-power-free words?

Does there exist an infinite shuffled-power-free word on a finite alphabet? in Aω
4 ?

QTUHEASNTKIYOONUS!?
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Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.

Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!
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. . .

. . . . . . . . .
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φ(s0) φ(s1) φ(s2) . . . . . . . . .
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t t• v• v
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t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.

Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!

φ(w0) φ(w1)

φ(wk)

φ(wt−1)

. . .

. . . . . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) v

t t• v• v

φ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.

Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!

φ(w0) φ(w1)

φ(wk)

φ(wt−1)

. . .

. . . . . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) v

t t• v• v

φ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.

Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!

φ(w0)

φ(w1)

φ(wk) φ(wt−1). . .

. . .

. . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) v

t t• v• v

φ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).

Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) v

t t• v• v

φ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).

Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0)

φ(s1) φ(s2)

. . . . . . . . .

t φ(u) v

t

t• v•

vφ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).

Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0)

φ(s1) φ(s2)

. . . . . . . . .

t φ(u) v

t t• v• v

φ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).

Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0)

φ(s1) φ(s2)

. . . . . . . . .

t φ(u) v

t t• v• v

φ(u)

φ(u)

φ(u) φ(s2)

φ(s1) φ(u)

t• v• v• v

t t• t• v•

u = s2, because

u = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).

Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0)

φ(s1) φ(s2)

. . . . . . . . .

t φ(u) v

t t• v• v

φ(u)

φ(u)

φ(u) φ(s2)

φ(s1) φ(u)

t• v• v• v

t t• t• v•

u = s2, because

u = s1, because

square-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) vt t• v• vφ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)φ(?) φ(?) φ(?)

ε ε εφ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) vt t• v• vφ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free wordsquare-free word

a c e c e b

φ(d) φ(d)

φ(?) φ(?) φ(?)

ε ε ε

φ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) vt t• v• vφ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, because

square-free word

square-free wordsquare-free word

a c e c e b

φ(d) φ(d)

φ(?) φ(?) φ(?)ε ε ε

φ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1

λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) vt t• v• vφ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free word

square-free word

square-free word

a c e c e b

φ(d) φ(d)

φ(?) φ(?) φ(?)ε ε ε

φ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1

λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



Is this morphism square-free?

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if φ(w) is
square-free whenever |w| ⩽ 3 and w is square-free.
Proof: Assume that there is a shortest square-free word w = w0w1 · · ·wt−1, of length |w| ⩾ 4,
for which φ(w) has a factorisation φ(w) = a · x2 · b where 0 ⩽ |a| < ℓ, x ̸= ε and 0 ⩽ |b| < ℓ.
Claim #0: φ is injective.
Claim #1: x has a factorisation x = c · φ(d) · e, where 0 ⩽ |c| < ℓ, d ̸= ε and 0 ⩽ |e| < ℓ.
Claim #2: in each factorisation of the form φ(s) = t · φ(u) · v where s is square-free and u ̸= ε,
there exist words t and v such that t = φ(t) and v = φ(v).
Conclusion: w is not minimal!

φ(w0) φ(w1) φ(wk) φ(wt−1)

. . . . . . . . . . . .

a x x b

c φ(d) e

φ(s0) φ(s1) φ(s2) . . . . . . . . .

t φ(u) vt t• v• vφ(u)

φ(u)

φ(u) φ(s2)φ(s1) φ(u)

t• v• v• vt t• t• v•

u = s2, becauseu = s1, becausesquare-free wordsquare-free word

square-free word

a c e c e b

φ(d) φ(d)

φ(?) φ(?) φ(?)ε ε ε

φ(λ0) φ(λ1) φ(λ2)

λ0 ̸=λ1

λ0 ̸=λ1 ̸=λ2

L. Bulteau, V. Jugé & S. Vialette Words whose factors are not shuffled squares 18



The vector v
By identifing isomorphic words w to let them start with 01 and ordering coordinates w ofWn

3 in
lexicographic order, we can choose v as the inverse of
770 980 732 826 744 640 662 790 580 1380 892 719 1164 1226 688 1198 962 926 1154 600 1148 530 694 1346 598 856 920 1000 1120 678 ∞ ∞ 614
1208 666 702 1116 1258 814 946 602 780 1236 686 1564 932 1208 956 740 820 692 572 988 1264 798 ∞ ∞ 1122 936 802 1006 1494 632 580 784 934
986 564 732 580 1042 954 1578 ∞ 826 1034 1188 520 946 1206 676 846 1174 1110 ∞ 952 752 934 706 702 692 1790 1070 744 1140 616 700 1184 716
0 ∞ 912 720 526 636 794 982 540 640 1146 680 754 538 1042 918 860 672 896 ∞ ∞ ∞ 694 1004 1126 698 712 808 712 1012 600 1068 1120
748 986 696 1188 1074 668 904 1198 554 974 1170 956 1140 1736 740 1244 684 589 1098 896 768 1028 766 814 682 873 624 1996 880 1626 870 828 ∞
536 810 930 569 720 ∞ 607 738 892 ∞ 758 658 1228 922 722 904 718 660 810 658 756 772 808 980 878 568 1110 776 2822 940 734 576 934
854 1086 902 ∞ 816 585 758 834 ∞ 546 938 716 ∞ 644 896 764 572 764 1072 604 666 ∞ 872 1572 1022 726 1552 1094 874 1230 680 684 726
688 ∞ 1072 642 742 946 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 553 1550 778 ∞ 872 750 ∞ 538 790
1030 598 866 774 784 856 1550 ∞ 626 938 740 710 928 ∞ 744 1020 846 ∞ 870 994 1072 540 764 752 572 683 874 712 1382 590 814 1158 1492
822 950 758 1670 1012 626 574 498 ∞ 944 562 728 2628 860 922 1354 620 720 3068 1164 1066 706 564 714 950 ∞ 956 1092 714 724 1760 894 866
1040 728 938 716 ∞ 660 564 980 878 604 1144 770 1542 1160 730 696 838 896 2144 840 698 725 1160 1544 734 1144 619 846 980 576 648 552 738
938 728 1118 856 894 1762 694 ∞ 1096 956 ∞ 952 714 560 702 1068 1164 1776 720 624 1542 912 860 2182 728 566 942 1548 502 586 626 1086 1642
760 952 822 ∞ ∞ ∞ ∞ ∞ ∞ 764 540 1088 978 888 ∞ 832 1020 742 700 928 732 740 906 626 ∞ 1554 858 784 802 868 580 1056 782
538 ∞ 764 872 ∞ 804 1554 553 574 878 1310 964 530 694 1344 582 2008 922 966 1130 678 696 838 ∞ 586 798 946 742 642 ∞ ∞ 628 722
683 676 1236 872 1092 1546 752 1020 1564 870 ∞ 678 588 1128 754 572 ∞ 990 674 862 920 1042 538 748 680 1044 646 540 982 820 618 526 730
876 ∞ 1552 714 1182 710 846 676 1196 950 524 1092 1030 828 ∞ ∞ 954 1042 576 732 560 1016 934 828 584 632 1492 1004 836 936 1146 676 1212
790 1316 984 582 676 ∞ 740 956 1200 982 1562 686 1148 800 606 944 862 1256 1154 672 665 1200 608 1094 874 678 1138 970 920 858 584 1346 694
538 1070 616 1154 898 1018 1198 702 1224 1082 720 892 1386 576 790 674 646 758 830 732 978 593 738 554 740 ∞ 848 550 2086 626 1574 864 1374
958 796 902 828 544 1146 729 1064 896 874 692 1198 730 589 786 1270 1490 1116 738 565 1688 762 1022 668 1050 708 806 664 1246 950 ∞ 1362 694
564 726 1276 982 1048 716 1142 1132 886 1194 900 563 1064 1098 650 696 ∞ 1074 738 502 880 2572 760 998 886 1056 538 738 ∞ 914 1594 752 582
1564 860 798 1006 776 762 946 564 874 692 572 792 590 683 1706 1490 1236 774 1388 540 852 824 ∞ 1064 960 698 926 756 1018 688 886 798 794
584 864 892 1088 982 1228 774 1204 910 866 1156 572 978 570 694 1344 826 ∞ 696 566 842 567 ∞ 926 928 1224 678 872 1092 1568 862 1220 670
642 1066 2038 756 944 618 732 1046 714 ∞ ∞ 1012 748 572 658 575 778 622 ∞ 870 726 1156 1080 896 954 852 609 524 938 764 976 613 714
1110 724 4094 938 568 822 978 1220 641 808 740 924 718 732 846 798 928 ∞ 656 920 1224 986 696 678 1108 1122 554 ∞ 1200 956 1254 914 840
1118 1784 942 760 968 738 497 808 1010 710 1118 1000 808 580 712 668 694 ∞ ∞ 1128 968 548 ∞ 724 ∞ 860 824 738 580 1072 940 536 830
1384 884 888 1594 2010 626 950 ∞ 840 978 1174 928 746 612 738 1134 558 ∞ 1070 690 578 640 497 1050 1004 758 881 1604 890 954 918 946 696
0 894 828 966 716 538 1042 678 1358 1546 1166 714 750 868 526 732 632 1042 1044 ∞ 864 974 960 908 606 1060 850 516 932 678 848 1154 984
890 1210 722 930 1076 1024 754 1078 742 575 636 ∞
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Missing computational details

1 For all k ⩾ 2, |Sk | ⩾ Σk , where

Σk =
∑
p⩾1

ℓ(ℓ− 1)k−p−1(ℓ− 2)pCat(k − 1, p) + ℓ(ℓ− 1)k−p−1(ℓ− 2)p−1Cat(k − 2, p− 1).

2 The generating series C(x, y) =
∑

k,p⩾0 Cat(k, p)x
kyp coincides with

C(x, y) =
1+ x − xy −

√
(1+ x − xy)2 − 4x
2x

.

3 We prove by induction that |Wk+1| ⩾ λ|Wk |:

|Wn+1|
|Wn|

⩾ (ℓ−1)− 1
ℓ(ℓ− 1)

∑
k⩾2

λ3−2kΣk = (ℓ−1)+
λ

ℓ− 1
− λ2 + 1
λ(ℓ− 1)

C
(ℓ− 1

λ2 ,
ℓ− 2
ℓ− 1

)
= λ.
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Going to |A| = 4 or |A| = 5: a (too) optimistic view?

If there are |W n
ℓ | ≈ αn

�
2-free words in An

ℓ , we roughly estimate |Skℓ | as follows: there are
1 some words y ∈ Skℓ with multiple decompositions: 010201320232 = 010201320232;

2 Cat(k − 1) ≈ 22k/k3/2 possible interleavings;
3 ℓk ways of choosing u;
4 a probability (α/ℓ)2k not to get�2 factors, because ui and ui are ≈

√
k steps apart;

thus,

|W n+3−2k
ℓ | |Skℓ | ≈ αn(4/ℓ)kk−3/2,

and we obtain a converging series for ℓ = 4 and ℓ = 5. Next, we control its sum by working on
setsW n

ℓ (w), i.e., considering separately suffixes of x , w and y and prefixes of y .

In practice, experiments suggest that |Skℓ | ≈ βk for some β < α2. . .
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