Words whose factors are not shuffled squares

Laurent Bulteau, Vincent Jugé \& Stéphane Vialette

LIGM - Université Gustave Eiffel \& CNRS
Séminaire Flajolet
02/02/2023

Squares, powers and square-free words
A word u is a square if there exists a word v such that $u=v \cdot v$.

Examples: $01 \cdot 01$ and $010101 \cdot 010101$

Counter-examples: 0110, 010101 and 01201

Squares, powers and square-free words

A word u is a square if there exists a word v such that $u=v \cdot v$;
$k^{\text {th }}$ power if there exists a word v such that $u=v^{k}$;
power if u is a $k^{\text {th }}$ power for some integer $k \geqslant 2$.
Examples: $01 \cdot 01$ and $010101 \cdot 010101$
$01 \cdot 01 \cdot 01$ and $0101 \cdot 0101 \cdot 0101$
$01 \cdot 01 \cdot 01 \cdot 01 \cdot 01$
Counter-examples: 0110, 010101 and 01201
0110 and 0101, 01201
0110 and 01201
are squares;
are cubes;
is a power.
are not squares; are not cubes; are not powers.

Squares, powers and square-free words

A word u is a square if there exists a word v such that $u=v \cdot v$;
$k^{\text {th }}$ power if there exists a word v such that $u=v^{k}$;
power if u is a $k^{\text {th }}$ power for some integer $k \geqslant 2$.
Examples: $01 \cdot 01$ and $010101 \cdot 010101$
$01 \cdot 01 \cdot 01$ and $0101 \cdot 0101 \cdot 0101$
$01 \cdot 01 \cdot 01 \cdot 01 \cdot 01$
Counter-examples: 0110, 010101 and 01201
0110 and 0101, 01201
0110 and 01201
are squares; are cubes; is a power. are not squares; are not cubes; are not powers.

A word u is square-free if none of its non-empty (contiguous) factors is a square (or a power).
Examples: 010, 0102010 and 01020120210
are square-free.
Counter-examples: 0101, 0110 and binary words u of length $|u| \geqslant 4$ are not square-free.

Why studying squares, powers and square-free words?

66 A problem that is easy to state, yet difficult to solve, should be studied primarily for its own sake, even if it does not yet have concrete applications.99 Axel Thue, 1912

Why studying squares, powers and square-free words?
66 A problem that is easy to state, yet difficult to solve, should be studied primarily for its own sake, even if it does not yet have concrete applications. 99 Axel Thue, 1912

Squares, powers and square-free words arise in many areas:

- group theory;
- bio-informatics;
- compression algorithms;
- automata theory;
- ...

Why studying squares, powers and square-free words?

66 A problem that is easy to state, yet difficult to solve, should be studied primarily for its own sake, even if it does not yet have concrete applications. 99

Axel Thue, 1912
Squares, powers and square-free words arise in many areas:

- group theory;
- bio-informatics;
- compression algorithms;
- automata theory;
- ...

Some questions of interest:

Given a finite alphabet $A_{n}=\{0,1, \ldots, n-1\}$,

- how difficult is it to check whether a word $u \in A_{n}^{*}$ is a square? a $k^{\text {th }}$ power? a power?
- how difficult is it to check whether a word $u \in A_{n}^{*}$ is square-free?

Why studying squares, powers and square-free words?

66 A problem that is easy to state, yet difficult to solve, should be studied primarily for its own sake, even if it does not yet have concrete applications. 99

Axel Thue, 1912
Squares, powers and square-free words arise in many areas:

- group theory;
- bio-informatics;
- compression algorithms;
- automata theory;
- ...

Some questions of interest:

Given a finite alphabet $A_{n}=\{0,1, \ldots, n-1\}$,

- how difficult is it to check whether a word $u \in A_{n}^{*}$ is a square? a $k^{\text {th }}$ power? a power?
- how difficult is it to check whether a word $u \in A_{n}^{*}$ is square-free?
- are there arbitrarily long square-free words in A_{n}^{*} ?

Why studying squares, powers and square-free words?

66 A problem that is easy to state, yet difficult to solve, should be studied primarily for its own sake, even if it does not yet have concrete applications. 99

Axel Thue, 1912
Squares, powers and square-free words arise in many areas:

- group theory;
- bio-informatics;
- compression algorithms;
- automata theory;
- ...

Some questions of interest:

Given a finite alphabet $A_{n}=\{0,1, \ldots, n-1\}$,

- how difficult is it to check whether a word $u \in A_{n}^{*}$ is a square? a $k^{\text {th }}$ power? a power?
- how difficult is it to check whether a word $u \in A_{n}^{*}$ is square-free?
- are there arbitrarily long square-free words in A_{n}^{*} ? infinite square-free words in A_{n}^{ω} ?

Are there infinite square-free or $k^{\text {th }}$-power-free words? $(1 / 2)$
Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$. Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids $\mathbf{T M}$ defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :

Are there infinite square-free or $k^{\text {th }}$-power-free words? (1/2)

Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$. Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids TM defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :

Are there infinite square-free or $k^{\text {th }}$-power-free words? (1/2)

Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$. Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids TM defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :
$0 \cdot 1$

Are there infinite square-free or $k^{\text {th }}$-power-free words? $(1 / 2)$
Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$. Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids TM defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :
$0 \cdot 1 \cdot 10$

Are there infinite square-free or $k^{\text {th }}$-power-free words? $(1 / 2)$
Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$. Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids TM defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :
$0 \cdot 1 \cdot 10 \cdot 1001$

Are there infinite square-free or $k^{\text {th }}$-power-free words? ($1 / 2$)
Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$. Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids TM defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :

$$
0 \cdot 1 \cdot 10 \cdot 1001 \cdot 10010110
$$

Are there infinite square-free or $k^{\text {th }}$-power-free words? ($1 / 2$)
Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$. Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids TM defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :

$$
0 \cdot 1 \cdot 10 \cdot 1001 \cdot 10010110 \cdot 1001011001101001 \cdots
$$

Are there infinite square-free or $k^{\text {th }}$-power-free words? (1/2)

Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$.
Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids $\mathbf{T M}$ defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :

$$
0 \cdot 1 \cdot 10 \cdot 1001 \cdot 10010110 \cdot 1001011001101001 \cdot \ldots
$$

Proof: Assume that there is a shortest cube-free word w for which $\mathbf{T M}(w)$ has a factor x^{3} :

- if $\mathbf{T M}(w)=x^{3},|x|$ is even, and there exists a word u such that $\mathbf{T M}(u)=x$ and $w=u^{3}$;

Are there infinite square-free or $k^{\text {th }}$-power-free words? ($1 / 2$)

Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$.
Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids $\mathbf{T M}$ defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :

$$
0 \cdot 1 \cdot 10 \cdot 1001 \cdot 10010110 \cdot 1001011001101001 \cdot \ldots
$$

Proof: Assume that there is a shortest cube-free word w for which $\mathbf{T M}(w)$ has a factor x^{3} :

- if $\mathbf{T M}(w)=x^{3},|x|$ is even, and there exists a word u such that $\mathbf{T M}(u)=x$ and $w=u^{3}$;
- if $\mathbf{T M}(w)=\lambda \cdot x^{3}$ or $\mathbf{T M}(w)=x^{3} \cdot \lambda$ for some letter $\lambda \in A_{2}$,

$$
\mathbf{1}_{\lambda=0} \equiv 3|x|_{0}+\mathbf{1}_{\lambda=0} \equiv|\mathbf{T M}(w)|_{0} \equiv|\mathbf{T M}(w)|_{1} \equiv 3|x|_{1}+\mathbf{1}_{\lambda=1} \equiv \mathbf{1}_{\lambda=1} \quad(\bmod 3) ;
$$

Are there infinite square-free or $k^{\text {th }}$-power-free words? ($1 / 2$)

Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$.
Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids $\mathbf{T M}$ defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :

$$
0 \cdot 1 \cdot 10 \cdot 1001 \cdot 10010110 \cdot 1001011001101001 \cdot \ldots
$$

Proof: Assume that there is a shortest cube-free word w for which $\mathbf{T M}(w)$ has a factor x^{3} :

- if $\mathbf{T M}(w)=x^{3},|x|$ is even, and there exists a word u such that $\mathbf{T M}(u)=x$ and $w=u^{3}$;
- if $\mathbf{T M}(w)=\lambda \cdot x^{3}$ or $\mathbf{T M}(w)=x^{3} \cdot \lambda$ for some letter $\lambda \in A_{2}$,

$$
\mathbf{1}_{\lambda=0} \equiv 3|x|_{0}+\mathbf{1}_{\lambda=0} \equiv|\mathbf{T M}(w)|_{0} \equiv|\mathbf{T M}(w)|_{1} \equiv 3|x|_{1}+\mathbf{1}_{\lambda=1} \equiv \mathbf{1}_{\lambda=1} \quad(\bmod 3) ;
$$

- if $\mathbf{T M}(w)=\lambda \cdot x^{3} \cdot \mu$ for some letters $\lambda \in A_{2}$ and $\mu \in A_{2},|x|$ is even, and we can factor x as $x=a \cdot y \cdot b$, where $|y|$ is even; then, $\mathbf{T M}(w)=\lambda a \cdot y \cdot b a \cdot y \cdot b a \cdot y \cdot b \mu$: there exists a word u such that $\mathbf{T M}(u)=y$, and $\mathbf{T M}(\lambda)=\lambda a=\mathbf{T M}(b)=b \mu$, so that $w=\lambda \cdot u \cdot \lambda \cdot u \cdot \lambda \cdot u \cdot \lambda$.

Are there infinite square-free or $k^{\text {th }}$-power-free words? ($1 / 2$)

Lemma (Folklore): Square-free words over the alphabet $A_{2}=\{0,1\}$ are $\varepsilon, 0,01,010,1,10,101$.
Theorem (Thue, 1906): The Thue-Morse word is cube-free. This is the infinite fixed-point of the morphism of monoids $\mathbf{T M}$ defined by $\mathbf{T M}(0)=01$ and $\mathbf{T M}(1)=10$, and starting with 0 :

$$
0 \cdot 1 \cdot 10 \cdot 1001 \cdot 10010110 \cdot 1001011001101001 \cdot \ldots
$$

Proof: Assume that there is a shortest cube-free word w for which $\mathbf{T M}(w)$ has a factor x^{3} :

- if $\mathbf{T M}(w)=x^{3},|x|$ is even, and there exists a word u such that $\mathbf{T M}(u)=x$ and $w=u^{3}$;
- if $\mathbf{T M}(w)=\lambda \cdot x^{3}$ or $\mathbf{T M}(w)=x^{3} \cdot \lambda$ for some letter $\lambda \in A_{2}$,

$$
\mathbf{1}_{\lambda=0} \equiv 3|x|_{0}+\mathbf{1}_{\lambda=0} \equiv|\mathbf{T M}(w)|_{0} \equiv|\mathbf{T M}(w)|_{1} \equiv 3|x|_{1}+\mathbf{1}_{\lambda=1} \equiv \mathbf{1}_{\lambda=1} \quad(\bmod 3) ;
$$

- if $\mathbf{T M}(w)=\lambda \cdot x^{3} \cdot \mu$ for some letters $\lambda \in A_{2}$ and $\mu \in A_{2},|x|$ is even, and we can factor x as $x=a \cdot y \cdot b$, where $|y|$ is even; then, $\mathbf{T M}(w)=\lambda a \cdot y \cdot b a \cdot y \cdot b a \cdot y \cdot b \mu$: there exists a word u such that $\mathbf{T M}(u)=y$, and $\mathbf{T M}(\lambda)=\lambda a=\mathbf{T M}(b)=b \mu$, so that $w=\lambda \cdot u \cdot \lambda \cdot u \cdot \lambda \cdot u \cdot \lambda$. In conclusion, the Thue-Morse morphism TM is cube-free: if w is cube-free, so is $\mathbf{T M}(w)$!

Are there infinite square-free or $k^{\text {th }}$-power-free words? $(2 / 2)$

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free. م

Are there infinite square-free or $k^{\text {th }}$-power-free words? $(2 / 2)$

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free. م

Open question: Can we decide whether a given ℓ-uniform morphism is cube-free?

Are there infinite square-free or $k^{\text {th }}$-power-free words? $(2 / 2)$

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free. o

Open question: Can we decide whether a given ℓ-uniform morphism is cube-free?

Corollary (Thue, 1906; Leech, 1957): The Leech morphism L defined by

$$
\mathbf{L}(0)=0121021201210 \quad \mathbf{L}(1)=1202102012021 \quad \mathbf{L}(2)=2010210120102
$$

is square-free. Thus, the infinite fixed-point of \mathbf{L} starting with 0 is square-free.

Are there many square-free or $k^{\text {th }}$-power-free words? $(1 / 3)$

How many square-free words of length n over the alphabet $A_{\ell}=\{0,1, \ldots, \ell-1\}$ are there?

Are there many square-free or $k^{\text {th }}$-power-free words? $(1 / 3)$

How many square-free words of length n over the alphabet $A_{\ell}=\{0,1, \ldots, \ell-1\}$ are there?

Analytic approach when $\ell \geqslant 4$:

(1) For all square-free words $w \in A_{\ell}^{n}$ and letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ has a factorisation $w \cdot \lambda=p \cdot s \cdot s$, where $p \cdot s$ is square-free: knowing $p \cdot s$ determines w and λ.

Are there many square-free or $k^{\text {th }}$-power-free words? $(1 / 3)$

How many square-free words of length n over the alphabet $A_{\ell}=\{0,1, \ldots, \ell-1\}$ are there?
Analytic approach when $\ell \geqslant 4$:
(1) For all square-free words $w \in A_{\ell}^{n}$ and letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ has a factorisation $w \cdot \lambda=p \cdot s \cdot s$, where $p \cdot s$ is square-free: knowing $p \cdot s$ determines w and λ.

Are there many square-free or $k^{\text {th }}$-power-free words? $(1 / 3)$

How many square-free words of length n over the alphabet $A_{\ell}=\{0,1, \ldots, \ell-1\}$ are there?
Analytic approach when $\ell \geqslant 4$:
(1) For all square-free words $w \in A_{\ell}^{n}$ and letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ has a factorisation $w \cdot \lambda=p \cdot s \cdot s$, where $p \cdot s$ is square-free: knowing $p \cdot s$ determines w and λ.
(2) Let W_{ℓ}^{n} be the set of square-free words in $A_{\ell}^{n}:\left|W_{\ell}^{n}\right|\left|A_{\ell}\right| \leqslant\left|W_{\ell}^{0}\right|+\left|W_{\ell}^{1}\right|+\cdots+\left|W_{\ell}^{n+1}\right|$.

Are there many square-free or $k^{\text {th }}-$ power-free words? $(1 / 3)$

How many square-free words of length n over the alphabet $A_{\ell}=\{0,1, \ldots, \ell-1\}$ are there?
Analytic approach when $\ell \geqslant 4$:
(1) For all square-free words $w \in A_{\ell}^{n}$ and letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ has a factorisation $w \cdot \lambda=p \cdot s \cdot s$, where $p \cdot s$ is square-free: knowing $p \cdot s$ determines w and λ.
(2) Let W_{ℓ}^{n} be the set of square-free words in $A_{\ell}^{n}:\left|W_{\ell}^{n}\right|\left|A_{\ell}\right| \leqslant\left|W_{\ell}^{0}\right|+\left|W_{\ell}^{1}\right|+\cdots+\left|W_{\ell}^{n+1}\right|$.
(3) We prove by induction that $\left|W_{\ell}^{n+1}\right| \geqslant(\ell-2)\left|W_{\ell}^{n}\right|$, so that $\left|W_{\ell}^{n}\right| \geqslant(\ell-2)^{n}$:

$$
\frac{\left|W_{\ell}^{n+1}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\sum_{k \geqslant 1} \frac{\left|W_{\ell}^{n-k}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\sum_{k \geqslant 1} \frac{1}{(\ell-2)^{k}}=(\ell-2)+\frac{\ell-4}{\ell-3} \geqslant \ell-2 .
$$

Are there many square-free or $k^{\text {th }}$-power-free words? $(1 / 3)$
How many square-free words of length n over the alphabet $A_{\ell}=\{0,1, \ldots, \ell-1\}$ are there?
Analytic approach when $\ell \geqslant 4$:
(1) For all square-free words $w \in A_{\ell}^{n}$ and letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ has a factorisation $w \cdot \lambda=p \cdot s \cdot s$, where $p \cdot s$ is square-free: knowing $p \cdot s$ determines w and λ.
(2) Let W_{ℓ}^{n} be the set of square-free words in $A_{\ell}^{n}:\left|W_{\ell}^{n}\right|\left|A_{\ell}\right| \leqslant\left|W_{\ell}^{0}\right|+\left|W_{\ell}^{1}\right|+\cdots+\left|W_{\ell}^{n+1}\right|$.
(3) We prove by induction that $\left|W_{\ell}^{n+1}\right| \geqslant(\ell-2)\left|W_{\ell}^{n}\right|$, so that $\left|W_{\ell}^{n}\right| \geqslant(\ell-2)^{n}$:

$$
\frac{\left|W_{\ell}^{n+1}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\sum_{k \geqslant 1} \frac{\left|W_{\ell}^{n-k}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\sum_{k \geqslant 1} \frac{1}{(\ell-2)^{k}}=(\ell-2)+\frac{\ell-4}{\ell-3} \geqslant \ell-2 .
$$

Corollaries (Folklore): $\left|W_{\ell}^{n}\right| \geqslant(\ell-2)^{n}$ when $\ell \geqslant 4$.
There are infinite square-free words in A_{ℓ}^{ω} when $\ell \geqslant 4$.

Are there many square-free or $k^{\text {th }}-$ power-free words? $(1 / 3)$

How many square-free words of length n over the alphabet $A_{\ell}=\{0,1, \ldots, \ell-1\}$ are there?

Analytic approach when $\ell \geqslant 4$:

(1) For all square-free words $w \in A_{\ell}^{n}$ and letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ has a factorisation $w \cdot \lambda=p \cdot s \cdot s$, where $p \cdot s$ is square-free: knowing $p \cdot s$ determines w and λ.
(2) Let W_{ℓ}^{n} be the set of square-free words in $A_{\ell}^{n}:\left|W_{\ell}^{n}\right|\left|A_{\ell}\right| \leqslant\left|W_{\ell}^{0}\right|+\left|W_{\ell}^{1}\right|+\cdots+\left|W_{\ell}^{n+1}\right|$.
(3) We prove by induction that $\left|W_{\ell}^{n+1}\right| \geqslant(\ell-2)\left|W_{\ell}^{n}\right|$, so that $\left|W_{\ell}^{n}\right| \geqslant(\ell-2)^{n}$:

$$
\frac{\left|W_{\ell}^{n+1}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\sum_{k \geqslant 1} \frac{\left|W_{\ell}^{n-k}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\sum_{k \geqslant 1} \frac{1}{(\ell-2)^{k}}=(\ell-2)+\frac{\ell-4}{\ell-3} \geqslant \ell-2 .
$$

Corollaries (Folklore): $\left|W_{\ell}^{n}\right| \geqslant(\ell-2)^{n}$ when $\ell \geqslant 4$.
There are infinite square-free words in A_{ℓ}^{ω} when $\ell \geqslant 4$; cube-free words in A_{ℓ}^{ω} when $\ell \geqslant 3$; $5^{\text {th }}$-power-free words in A_{ℓ}^{ω} when $\ell \geqslant 2$.

Are there many square-free or $k^{\text {th }}-$ power-free words? $(1 / 3)$

How many square-free words of length n over the alphabet $A_{\ell}=\{0,1, \ldots, \ell-1\}$ are there?
Analytic approach when $\ell \geqslant 4$:
(1) For all square-free words $w \in A_{\ell}^{n}$ and letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ has a factorisation $w \cdot \lambda=p \cdot s \cdot s$, where $p \cdot s$ is square-free: knowing $p \cdot s$ determines w and λ.
(2) Let W_{ℓ}^{n} be the set of square-free words in $A_{\ell}^{n}:\left|W_{\ell}^{n}\right|\left|A_{\ell}\right| \leqslant\left|W_{\ell}^{0}\right|+\left|W_{\ell}^{1}\right|+\cdots+\left|W_{\ell}^{n+1}\right|$.
(3) We prove by induction that $\left|W_{\ell}^{n+1}\right| \geqslant(\ell-2)\left|W_{\ell}^{n}\right|$, so that $\left|W_{\ell}^{n}\right| \geqslant(\ell-2)^{n}$:

$$
\frac{\left|W_{\ell}^{n+1}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\sum_{k \geqslant 1} \frac{\left|W_{\ell}^{n-k}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\sum_{k \geqslant 1} \frac{1}{(\ell-2)^{k}}=(\ell-2)+\frac{\ell-4}{\ell-3} \geqslant \ell-2 .
$$

Corollaries (Folklore): $\left|W_{\ell}^{n}\right| \geqslant(\ell-2)^{n}$ when $\ell \geqslant 4$.
There are infinite square-free words in A_{ℓ}^{ω} when $\ell \geqslant 4$;
\triangle Non-constructive existence results! cube-free words in A_{ℓ}^{ω} when $\ell \geqslant 3$; $5^{\text {th }}$-power-free words in A_{ℓ}^{ω} when $\ell \geqslant 2$.

Are there many square-free words? $(2 / 3)$

Theorem (Brandenburg, 1983; Brinkhuis, 1983; Kolpakov, 2006; Shur, 2009): $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$.
Proof that $\left|W_{3}^{n}\right| \geqslant 2^{n / 72} \approx 1.01^{n}$: If $w=1201021$, the \boldsymbol{A}_{4}-to- $\boldsymbol{A}_{\mathbf{3}}$ morphism φ defined by

$$
\begin{aligned}
\varphi(0) & =\mathbf{L}(01020) \cdot w \\
\varphi(1) & =\mathbf{L}(02010) \cdot w
\end{aligned}
$$

$$
\varphi(2)=\mathbf{L}(01210) \cdot w
$$

$$
\varphi(3)=\mathbf{L}(02120) \cdot w
$$

is square-free.

Are there many square-free words? $(2 / 3)$

Theorem (Brandenburg, 1983; Brinkhuis, 1983; Kolpakov, 2006; Shur, 2009): $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$.
Proof that $\left|W_{3}^{n}\right| \geqslant 2^{n / 72} \approx 1.01^{n}$: If $w=1201021$, the \boldsymbol{A}_{4}-to- $\boldsymbol{A}_{\mathbf{3}}$ morphism φ defined by

$$
\begin{aligned}
\varphi(0) & =\mathbf{L}(01020) \cdot w \\
\varphi(1) & =\mathbf{L}(02010) \cdot w
\end{aligned}
$$

$$
\varphi(2)=\mathbf{L}(01210) \cdot w
$$

$$
\varphi(3)=\mathbf{L}(02120) \cdot w
$$

is square-free. Thus, there are at least 2^{n} square-free words $x \in W_{4}^{n} \subseteq A_{4}^{n}$.

Are there many square-free words? $(2 / 3)$

Theorem (Brandenburg, 1983; Brinkhuis, 1983; Kolpakov, 2006; Shur, 2009): $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$.
Proof that $\left|W_{3}^{n}\right| \geqslant 2^{n / 72} \approx 1.01^{n}$: If $w=1201021$, the \boldsymbol{A}_{4}-to- \boldsymbol{A}_{3} morphism φ defined by

$$
\begin{aligned}
\varphi(0) & =\mathbf{L}(01020) \cdot w \\
\varphi(1) & =\mathbf{L}(02010) \cdot w
\end{aligned}
$$

$$
\varphi(2)=\mathbf{L}(01210) \cdot w
$$

$$
\varphi(3)=\mathbf{L}(02120) \cdot w
$$

is square-free. Thus, there are at least 2^{n} square-free words $x \in W_{4}^{n} \subseteq A_{4}^{n}$, at least 2^{n} square-free words $\varphi(x) \in W_{3}^{72 n}$, and

$$
\left|W_{3}^{n}\right|^{72} \geqslant\left|W_{3}^{72 n}\right| \geqslant 2^{n}
$$

Are there many square-free words? $(3 / 3)$

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(0. Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$.

Are there many square-free words? (3/3)

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$. Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(? 012)\right|$

Are there many square-free words? (3/3)

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$. Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}$

Are there many square-free words? $(3 / 3)$

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$. Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right|$

Are there many square-free words? $(3 / 3)$

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$. Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right|$

Are there many square-free words? $(3 / 3)$

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$. Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right| ;$
- $\left|W_{3}^{n}(020102)\right| \geqslant\left|W_{3}^{n-1}(102010)\right|+\mathbf{1}_{n=6}$.

Are there many square-free words? $(3 / 3)$

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$. Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right| ;$
- $\left|W_{3}^{n}(020102)\right| \geqslant\left|W_{3}^{n-1}(102010)\right|+\mathbf{1}_{n=6}-\sum_{i \geqslant 6}\left|W_{3}^{n-i}(020102)\right|$.

Are there many square-free words? $(3 / 3)$

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$. Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right| ;$
- $\left|W_{3}^{n}(020102)\right| \geqslant\left|W_{3}^{n-1}(102010)\right|+\mathbf{1}_{n=6}-\sum_{i \geqslant 6}\left|W_{3}^{n-i}(020102)\right|-\left|W_{3}^{n-4}(? ? 0102)\right|$.

Are there many square-free words? $(3 / 3)$

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$. Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right| ;$
- $\left|W_{3}^{n}(020102)\right| \geqslant\left|W_{3}^{n-1}(102010)\right|+\mathbf{1}_{n=6}-\sum_{i \geqslant 6}\left|W_{3}^{n-i}(020102)\right|-\left|W_{3}^{n-2}(010201)\right|$.

Are there many square-free words? (3/3)

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$.

Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right| ;$
- $\left|W_{3}^{n}(020102)\right| \geqslant\left|W_{3}^{n-1}(102010)\right|+\mathbf{1}_{n=6}-\sum_{i \geqslant 6}\left|W_{3}^{n-i}(020102)\right|-\left|W_{3}^{n-2}(010201)\right|$.
(2) Group the terms $\left|W_{3}^{n}(w)\right|$ in a vector \mathbf{W}_{3}^{n}, and then in a power series $\mathbf{W}_{3}(z)=\sum_{n \geqslant 0} \mathbf{W}_{3}^{n} z^{n}$: Inequalities about $\left|W_{3}^{n}(w)\right|$ rewrite as $\mathbf{M}(z) \mathbf{W}_{3}(z) \geqslant(1-z) z^{k} \mathbf{1}$, where $\boldsymbol{M}(z)$ is polynomial.

Are there many square-free words? (3/3)

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$.

Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right| ;$
- $\left|W_{3}^{n}(020102)\right| \geqslant\left|W_{3}^{n-1}(102010)\right|+\mathbf{1}_{n=6}-\sum_{i \geqslant 6}\left|W_{3}^{n-i}(020102)\right|-\left|W_{3}^{n-2}(010201)\right|$.
(2) Group the terms $\left|W_{3}^{n}(w)\right|$ in a vector \mathbf{W}_{3}^{n}, and then in a power series $\mathbf{W}_{3}(z)=\sum_{n \geqslant 0} \mathbf{W}_{3}^{n} z^{n}$: Inequalities about $\left|W_{3}^{n}(w)\right|$ rewrite as $\mathbf{M}(z) \mathbf{W}_{3}(z) \geqslant(1-z) z^{k} \mathbf{1}$, where $\boldsymbol{M}(z)$ is polynomial.
(3) For $k=23$ and $z=4 / 5$, there exists a non-zero vector $\mathbf{v} \geqslant 0$ such that $\mathbf{v M}(z) \leqslant 0$, hence $\mathbf{v M}(z) \mathbf{W}_{3}(z) \leqslant 0<(1-z) z^{k} \mathbf{v} \mathbf{1}$, hence $\mathbf{W}_{3}(z)$ is divergent and $\lim \sup \left|W_{3}^{n}\right|^{1 / n} \geqslant 5 / 4$. م

Are there many square-free words? $(3 / 3)$

Finer analytic approach towards proving that $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$:
(1) Let $W_{3}^{n}(w)$ be the set of words $x \in W_{3}^{n}$ that end with w, for all $w \in W_{3}^{k}$ (for a given k): Find linear inequalities that connect $\left|W_{3}^{n}(w)\right|$ to terms $\left|W_{3}^{m}\left(w^{\prime}\right)\right|$ when $m \leqslant n-1$.

Examples:

- $\left|W_{3}^{n}(0121)\right| \geqslant\left|W_{3}^{n-1}(1012)\right|+\left|W_{3}^{n-1}(2012)\right|+\mathbf{1}_{n=4}-\sum_{i \geqslant 4}\left|W_{3}^{n-i}(0102)\right| ;$
- $\left|W_{3}^{n}(020102)\right| \geqslant\left|W_{3}^{n-1}(102010)\right|+\mathbf{1}_{n=6}-\sum_{i \geqslant 6}\left|W_{3}^{n-i}(020102)\right|-\left|W_{3}^{n-2}(010201)\right|$.
(2. Group the terms $\left|W_{3}^{n}(w)\right|$ in a vector \mathbf{W}_{3}^{n}, and then in a power series $\mathbf{W}_{3}(z)=\sum_{n \geqslant 0} \mathbf{W}_{3}^{n} z^{n}$: Inequalities about $\left|W_{3}^{n}(w)\right|$ rewrite as $\mathbf{M}(z) \mathbf{W}_{3}(z) \geqslant(1-z) z^{k} \mathbf{1}$, where $\mathbf{M}(z)$ is polynomial.
(3) For $k=23$ and $z=4 / 5$, there exists a non-zero vector $\mathbf{v} \geqslant 0$ such that $\mathbf{v M}(z) \leqslant 0$, hence $\mathbf{v M}(z) \mathbf{W}_{3}(z) \leqslant 0<(1-z) z^{k} \mathbf{v} \mathbf{1}$, hence $\mathbf{W}_{3}(z)$ is divergent and $\lim \sup \left|W_{3}^{n}\right|^{1 / n} \geqslant 5 / 4$. 0
(9) The sequence $\left(\log \left|W_{3}^{n}\right|\right)_{n \geqslant 0}$ is sub-additive, hence $\left|W_{3}^{n}\right| \geqslant(5 / 4)^{n}$ for all $n \geqslant 0$.

Shuffles

A shuffle of two words u and v is a word w obtained by merging u and v from left to right, choosing the next symbol arbitrarily from u or from v : we write $w \in u \amalg v$.

Examples: 0123, 0213, 0231, 2013, 2031 and 2301

$$
0101=0101 \text { and } 0011=0011=0011=0011
$$

Counter-examples: 1023 and 0122
are the shuffles of 01 and 23 ; are the shuffles of 01 and 01 . are not shuffles of 01 and 23 .

Shuffles

A shuffle of two words u and v is a word w obtained by merging u and v from left to right, choosing the next symbol arbitrarily from u or from v : we write $w \in u \amalg v$.

Examples: 0123, 0213, 0231, 2013, 2031 and 2301
are the shuffles of 01 and 23;

$$
0101=0101 \text { and } 0011=0011=0011=0011
$$ are the shuffles of 01 and 01 .

Counter-examples: 1023 and 0122 are not shuffles of 01 and 23 .

> Playing cards

Single-thread	Message
concurrent execution	synchronisation

Message
synchronisation

| Process/message A | A_{0} | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Interleaving
Process/message B \square

Shuffled squares and powers

A word u is a shuffled square if there exists a word v such that $u \in v Ш v$.

Examples: 0101 and 0011

Counter-examples: 0110, 010101 and 000001111101

Shuffled squares and powers

A word u is a shuffled square if there exists a word v such that $u \in v Ш v$; shuffled $k^{\text {th }}$ power if there exists a word v such that $u \in v Ш \cdots ш v$ (with $k v s$); shuffled power if u is a shuffled $k^{\text {th }}$ power for some integer $k \geqslant 2$.
Examples: 0101 and 0011
010101, 010011, 001101, 001011 and 000111 000001111101

Counter-examples: 0110, 010101 and 000001111101
0101 and 010110,000001111101
0110,010110 and 000001111110
are shuffled squares; are shuffled cubes; is a shuffled power.
are not shuffled squares; are not shuffled cubes; are not shuffled powers.

Shuffled squares and powers

A word u is a shuffled square if there exists a word v such that $u \in v Ш v$; shuffled $k^{\text {th }}$ power if there exists a word v such that $u \in v Ш \cdots 山 v$ (with $k v s$); shuffled power if u is a shuffled $k^{\text {th }}$ power for some integer $k \geqslant 2$.
Examples: 0101 and 0011
010101, 010011, 001101, 001011 and 000111
000001111101
are shuffled squares; are shuffled cubes; is a shuffled power.
Counter-examples: 0110, 010101 and 000001111101
0101 and 010110,000001111101
0110,010110 and 000001111110 are not shuffled squares; are not shuffled cubes; are not shuffled powers.

A word u is shuffled-square-free if none of its non-empty factors is a shuffled square. shuffled-power-free if none of its non-empty factors is a shuffled power.
Examples: 010, 0102010 and 01202102012
are shuffled-square-free.
Counter-examples: 010212 and 2010201202
Ternary words u of length $|u| \geqslant 12$ are not shuffled-square-free; are not shuffled-square-free.

Being \square-free vs being \amalg^{2}-free

Lemma (Folklore): One can check whether u is a \square in time $\mathcal{O}(|u|)$.
Theorem (Buss \& Soltys, 2013; Rizzi \& Vialette, 2013; Bulteau \& Vialette, 2020): Checking whether u is a \sqcup^{2} is NP-hard, even if $|A|=2$.

Being \square-free vs being \amalg^{2}-free

Lemma (Folklore): One can check whether u is a \square in time $\mathcal{O}(|u|)$.
Theorem (Buss \& Soltys, 2013; Rizzi \& Vialette, 2013; Bulteau \& Vialette, 2020): Checking whether u is a \amalg^{2} is NP-hard, even if $|A|=2$.

Theorem (Crochemore, 1983): If A is fixed, one can check whether u is \square-free in time $\mathcal{O}(|u|)$. Theorem (Bulteau, Jugé \& Vialette, 2023): Checking whether u is \amalg^{2}-free is NP-hard.

Being \square-free vs being \amalg^{2}-free

Lemma (Folklore): One can check whether u is a \square in time $\mathcal{O}(|u|)$.
Theorem (Buss \& Soltys, 2013; Rizzi \& Vialette, 2013; Bulteau \& Vialette, 2020): Checking whether u is a \sqcup^{2} is NP-hard, even if $|A|=2$.

Theorem (Crochemore, 1983): If A is fixed, one can check whether u is \square-free in time $\mathcal{O}(|u|)$. Theorem (Bulteau, Jugé \& Vialette, 2023): Checking whether u is \amalg^{2}-free is NP-hard.

Lemma (Folklore): When k divides ℓ, every $\ell^{\text {th }}$ power is a $k^{\text {th }}$ power. Lemma (Folklore): 0102013231023123 is a shuffled $4^{\text {th }}$ power of 0123 but is \amalg^{2}-free.

Being \square-free vs being \amalg^{2}-free

Lemma (Folklore): One can check whether u is a \square in time $\mathcal{O}(|u|)$.
Theorem (Buss \& Soltys, 2013; Rizzi \& Vialette, 2013; Bulteau \& Vialette, 2020): Checking whether u is a \sqcup^{2} is NP-hard, even if $|A|=2$.

Theorem (Crochemore, 1983): If A is fixed, one can check whether u is \square-free in time $\mathcal{O}(|u|)$. Theorem (Bulteau, Jugé \& Vialette, 2023): Checking whether u is $\mathrm{\omega}^{2}$-free is NP-hard.

Lemma (Folklore): When k divides ℓ, every $\ell^{\text {th }}$ power is a $k^{\text {th }}$ power. Lemma (Folklore): 0102013231023123 is a shuffled $4^{\text {th }}$ power of 0123 but is \amalg^{2}-free.

Theorem: There are infinite \square-free words in A^{ω} if and only if $|A| \geqslant 3$.
Open question: For which alphabets A are there infinite \sqcup^{2}-free words in A^{ω} ?

When does A_{ℓ}^{ω} contain infinite \amalg^{2}-free words? (1/3)

Lemma: When $\ell \leqslant 3$, it does not. Conjecture: When $\ell \geqslant 4$, it does.

When does A_{ℓ}^{ω} contain infinite \amalg^{2}-free words? (1/3)
Lemma: When $\ell \leqslant 3$, it does not.
Conjecture: When $\ell \geqslant 4$, it does.
Theorem (Currie, 2014; Müller, 2015; Guégan \& Ochem, 2016; Bulteau, Jugé \& Vialette, 2023):
When $\ell \geqslant 6$, it does.
Proof relying on an analytic approach when ℓ is large enough:

When does A_{ℓ}^{ω} contain infinite \amalg^{2}-free words? (1/3)

Lemma: When $\ell \leqslant 3$, it does not.
Conjecture: When $\ell \geqslant 4$, it does.
Theorem (Currie, 2014; Müller, 2015; Guégan \& Ochem, 2016; Bulteau, Jugé \& Vialette, 2023):
When $\ell \geqslant 6$, it does.
Proof relying on an analytic approach when ℓ is large enough:
(1) For all \amalg^{2}-free words $w \in A_{\ell}^{n}$ and all letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ is \amalg^{2}-free or has a factorisation $w \cdot \lambda=x \cdot y$, where x is $Ш^{2}$-free and $y \in u \amalg u$ for some word u.

When does A_{ℓ}^{ω} contain infinite \sqcup^{2}-free words? (1/3)

Lemma: When $\ell \leqslant 3$, it does not.
Conjecture: When $\ell \geqslant 4$, it does.
Theorem (Currie, 2014; Müller, 2015; Guégan \& Ochem, 2016; Bulteau, Jugé \& Vialette, 2023):
When $\ell \geqslant 6$, it does.
Proof relying on an analytic approach when ℓ is large enough:
(1) For all \amalg^{2}-free words $w \in A_{\ell}^{n}$ and all letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ is ω^{2}-free or has a factorisation $w \cdot \lambda=x \cdot y$, where x is $Ш^{2}$-free and $y \in u \amalg u$ for some word u.
(2) Let W_{ℓ}^{n} be the set of \amalg^{2}-free words in A_{ℓ}^{n}. Once the length $k=|u|$ is fixed, there are $\left|W_{\ell}^{n+1-2 k}\right|$ choices for x, ℓ^{k} choices for u and up to $2^{2 k}$ choices for y :

$$
\left|W_{\ell}^{n}\right| \ell \leqslant\left|W_{\ell}^{n+1}\right|+\left|W_{\ell}^{n-1}\right|(4 \ell)+\cdots+\left|W_{\ell}^{n+1-2 k}\right|(4 \ell)^{k}+\cdots
$$

When does A_{ℓ}^{ω} contain infinite \sqcup^{2}-free words? $(1 / 3)$

Lemma: When $\ell \leqslant 3$, it does not.
Conjecture: When $\ell \geqslant 4$, it does.
Theorem (Currie, 2014; Müller, 2015; Guégan \& Ochem, 2016; Bulteau, Jugé \& Vialette, 2023):
When $\ell \geqslant 6$, it does.
Proof relying on an analytic approach when ℓ is large enough:
(1) For all \amalg^{2}-free words $w \in A_{\ell}^{n}$ and all letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ is \amalg^{2}-free or has a factorisation $w \cdot \lambda=x \cdot y$, where x is \amalg^{2}-free and $y \in u \amalg u$ for some word u.
(2) Let W_{ℓ}^{n} be the set of ω^{2}-free words in A_{ℓ}^{n}. Once the length $k=|u|$ is fixed, there are $\left|W_{\ell}^{n+1-2 k}\right|$ choices for x, ℓ^{k} choices for u and up to $2^{2 k}$ choices for y :

$$
\left|W_{\ell}^{n}\right| \ell \leqslant\left|W_{\ell}^{n+1}\right|+\left|W_{\ell}^{n-1}\right|(4 \ell)+\cdots+\left|W_{\ell}^{n+1-2 k}\right|(4 \ell)^{k}+\cdots
$$

(3) We prove by induction that $\left|W_{\ell}^{n+1}\right| \geqslant 2 \ell\left|W_{\ell}^{n}\right| / 3$ when $\ell \geqslant 27$, so that $W_{\ell}^{n} \neq \emptyset$:

$$
\frac{\left|W_{\ell}^{n+1}\right|}{\left|W_{\ell}^{n}\right|} \geqslant \ell-\sum_{k \geqslant 1} \frac{\left|W_{\ell}^{n+1-2 k}\right|}{\left|W_{\ell}^{n}\right|}(4 \ell)^{k} \geqslant \ell-\sum_{k \geqslant 1} \frac{3^{2 k-1}}{(2 \ell)^{2 k-1}}(4 \ell)^{k}=\frac{2 \ell}{3}+\frac{\ell(\ell-27)}{3 \ell-27} \geqslant \frac{2 \ell}{3} .
$$

When does A_{ℓ}^{ω} contain infinite \amalg^{2}-free words? (2/3)

Theorem: When $\ell \geqslant 6$, it does.
Proof relying on a finer analytic approach when ℓ is not so large:
(1) For all ω^{2}-free words $w \in A_{\ell}^{n}$ and all letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ is ω^{2}-free or has a factorisation $w \cdot \lambda=x \cdot y$, where x is $Ш^{2}$-free and $y \in u \amalg u$ for some word u. Moreover,

When does A_{ℓ}^{ω} contain infinite \amalg^{2}-free words? (2/3)

Theorem: When $\ell \geqslant 6$, it does.
Proof relying on a finer analytic approach when ℓ is not so large:
(1) For all ω^{2}-free words $w \in A_{\ell}^{n}$ and all letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ is ω^{2}-free or has a factorisation $w \cdot \lambda=x \cdot y$, where x is $Ш^{2}$-free and $y \in u Ш u$ for some word u. Moreover,

- either $u=\lambda$ or $|u| \geqslant 2$ and $x \cdot y_{0} \cdot y_{1}$ is ω^{2}-free;
- the suffix y can be chosen minimal: no strict factor of y is a \uplus^{2}.

When does A_{ℓ}^{ω} contain infinite \sqcup^{2}-free words? $(2 / 3)$

Theorem: When $\ell \geqslant 6$, it does.
Proof relying on a finer analytic approach when ℓ is not so large:
(1) For all ω^{2}-free words $w \in A_{\ell}^{n}$ and all letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ is \amalg^{2}-free or has a factorisation $w \cdot \lambda=x \cdot y$, where x is $Ш^{2}$-free and $y \in u ш u$ for some word u. Moreover,

- either $u=\lambda$ or $|u| \geqslant 2$ and $x \cdot y_{0} \cdot y_{1}$ is ω^{2}-free;
- the suffix y can be chosen minimal: no strict factor of y is a $Ш^{2}$.
(2) Let S_{ℓ}^{k} be the set of minimal \amalg^{2} of length $2 k$: once the length $k=|u|$ and the word $y \in S_{\ell}^{k}$ are fixed, there are $\left|W_{\ell}^{n+3-2 k}\right| / \ell(\ell-1)$ choices for $x \cdot y_{0} \cdot y_{1}$:

$$
\left|W_{\ell}^{n}\right| \ell \leqslant\left|W_{\ell}^{n+1}\right|+\left|W_{\ell}^{n}\right|+\frac{\left|W_{\ell}^{n-1}\right|\left|S_{\ell}^{2}\right|+\left|W_{\ell}^{n-3}\right|\left|S_{\ell}^{3}\right|+\cdots+\left|W_{\ell}^{n+3-2 k}\right|\left|S_{\ell}^{k}\right|+\cdots}{\ell(\ell-1)}
$$

When does A_{ℓ}^{ω} contain infinite \sqcup^{2}-free words? $(2 / 3)$

Theorem: When $\ell \geqslant 6$, it does.
Proof relying on a finer analytic approach when ℓ is not so large:
(1) For all \amalg^{2}-free words $w \in A_{\ell}^{n}$ and all letters $\lambda \in A_{\ell}$, the word $w \cdot \lambda$ is ω^{2}-free or has a factorisation $w \cdot \lambda=x \cdot y$, where x is $Ш^{2}$-free and $y \in u Ш u$ for some word u. Moreover,

- either $u=\lambda$ or $|u| \geqslant 2$ and $x \cdot y_{0} \cdot y_{1}$ is ω^{2}-free;
- the suffix y can be chosen minimal: no strict factor of y is a $Ш^{2}$.
(2) Let S_{ℓ}^{k} be the set of minimal \amalg^{2} of length $2 k$: once the length $k=|u|$ and the word $y \in S_{\ell}^{k}$ are fixed, there are $\left|W_{\ell}^{n+3-2 k}\right| / \ell(\ell-1)$ choices for $x \cdot y_{0} \cdot y_{1}$:

$$
\left|W_{\ell}^{n}\right| \ell \leqslant\left|W_{\ell}^{n+1}\right|+\left|W_{\ell}^{n}\right|+\frac{\left|W_{\ell}^{n-1}\right|\left|S_{\ell}^{2}\right|+\left|W_{\ell}^{n-3}\right|\left|S_{\ell}^{3}\right|+\cdots+\left|W_{\ell}^{n+3-2 k}\right|\left|S_{\ell}^{k}\right|+\cdots}{\ell(\ell-1)}
$$

(3) We can prove that $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.
(1) We can prove by induction that $\left|W_{\ell}^{n+1}\right| \geqslant 37 \sqrt{\ell-1}\left|W_{\ell}^{n}\right| / 16$ when $\ell \geqslant 7$, so that $W_{\ell}^{n} \neq \emptyset$.

Intermezzo: counting minimal $山^{2}$ words and \amalg^{2}-free words
When choosing a word $y \in u \amalg u$ whose strict factors are \amalg^{2}-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;

Intermezzo: counting minimal $山^{2}$ words and \amalg^{2}-free words
When choosing a word $y \in u \amalg u$ whose strict factors are $山^{2}$-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;

Intermezzo: counting minimal \amalg^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are $山^{2}$-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;

Intermezzo: counting minimal \amalg^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are $山^{2}$-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

Intermezzo: counting minimal \amalg^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are $山^{2}$-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

Intermezzo: counting minimal \amalg^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are \amalg^{2}-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

Intermezzo: counting minimal \amalg^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are \amalg^{2}-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

Intermezzo: counting minimal \amalg^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are $山^{2}$-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

Intermezzo: counting minimal \amalg^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are \amalg^{2}-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

The generating series $\mathcal{C}(z)=\sum_{k \geqslant 0} \operatorname{Cat}(k) z^{k}$ satisfies the equation $\mathcal{C}(z)=1+z \mathcal{C}(z)^{2}$.

Intermezzo: counting minimal \amalg^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are \amalg^{2}-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

The generating series $\mathcal{C}(z)=\sum_{k \geqslant 0} \operatorname{Cat}(k) z^{k}$ satisfies the equation $\mathcal{C}(z)=1+z \mathcal{C}(z)^{2}$.

$\mathcal{C}(z) \quad=1+$

$$
z \times \mathcal{C}(z) \times 1 \times \mathcal{C}(z)
$$

Intermezzo: counting minimal \sqcup^{2} words and \amalg^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are $山^{2}$-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

The generating series $\mathcal{C}(z)=\sum_{k \geqslant 0} \operatorname{Cat}(k) z^{k}$ satisfies the equation $\mathcal{C}(z)=1+z \mathcal{C}(z)^{2}$, hence

$$
\mathcal{C}(z)=\frac{2}{1+\sqrt{1-4 z}} \text { when }|z|<\frac{1}{4} .
$$

Intermezzo: counting minimal $山^{2}$ words and ω^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are $山^{2}$-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

The generating series $\mathcal{C}(z)=\sum_{k \geqslant 0} \operatorname{Cat}(k) z^{k}$ satisfies the equation $\mathcal{C}(z)=1+z \mathcal{C}(z)^{2}$, hence

$$
\mathcal{C}(z)=\frac{2}{1+\sqrt{1-4 z}} \text { when }|z|<\frac{1}{4}
$$

We prove now by induction that $\left|W_{\ell}^{n+1}\right| \geqslant \lambda\left|W_{\ell}^{n}\right|$ when $\ell \geqslant 7$, where $\lambda=37 \sqrt{\ell-1} / 16 \geqslant 5.65$:

$$
\frac{\left|W_{\ell}^{n+1}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\frac{1}{\ell(\ell-1)} \sum_{k \geqslant 2} \lambda^{3-2 k}\left|S_{\ell}^{k}\right| \geqslant(\ell-1)-\frac{\lambda}{\ell-1}\left(\mathcal{C}\left(\frac{\ell-1}{\lambda^{2}}\right)-1\right)
$$

Intermezzo: counting minimal $山^{2}$ words and ω^{2}-free words

When choosing a word $y \in u \amalg u$ whose strict factors are $山^{2}$-free, with $|u|=k$:

- each letter u_{i+1} precedes the letter $u_{i}: \operatorname{Cat}(k-1)=\frac{1}{k}\binom{2 k-2}{k-1}$ interleavings are possible;
- each letter u_{i+1} must be distinct from its predecessor in y : given an interleaving, there are up to $\ell(\ell-1)^{k-1}$ choices for u. Hence, $\left|S_{\ell}^{k}\right| \leqslant \ell(\ell-1)^{k-1} \operatorname{Cat}(k-1)$.

The generating series $\mathcal{C}(z)=\sum_{k \geqslant 0} \operatorname{Cat}(k) z^{k}$ satisfies the equation $\mathcal{C}(z)=1+z \mathcal{C}(z)^{2}$, hence

$$
\mathcal{C}(z)=\frac{2}{1+\sqrt{1-4 z}} \text { when }|z|<\frac{1}{4}
$$

We prove now by induction that $\left|W_{\ell}^{n+1}\right| \geqslant \lambda\left|W_{\ell}^{n}\right|$ when $\ell \geqslant 7$, where $\lambda=37 \sqrt{\ell-1} / 16 \geqslant 5.65$:

$$
\frac{\left|W_{\ell}^{n+1}\right|}{\left|W_{\ell}^{n}\right|} \geqslant(\ell-1)-\frac{1}{\ell(\ell-1)} \sum_{k \geqslant 2} \lambda^{3-2 k}\left|S_{\ell}^{k}\right| \geqslant(\ell-1)-\frac{\lambda}{\ell-1}\left(\mathcal{C}\left(\frac{\ell-1}{\lambda^{2}}\right)-1\right)=\lambda+\frac{P(\lambda)}{\lambda},
$$

where P is an explicit polynomial such that $P(x)>0$ whenever $x \geqslant 5.65$.

When does A_{ℓ}^{ω} contain infinite \amalg^{2}-free words? (3/3)
Theorem: When $\ell \geqslant 6$, it does.
Proof relying on finer upper bounds on $\left|S_{\ell}^{k}\right|$ when $\ell=6$:
When a letter u_{i} is placed just before a peak, it can take at most $\ell-2$ values (unless $i=2$):

- if $u_{b}=u_{c}$, then $u_{i} \neq u_{a}$ and $u_{i} \neq u_{b}$;
- if $u_{b} \neq u_{c}$, then $u_{i} \neq u_{b}$ and $u_{i} \neq u_{c}$.

When does A_{ℓ}^{ω} contain infinite \sqcup^{2}-free words? (3/3)
Theorem: When $\ell \geqslant 6$, it does.
Proof relying on finer upper bounds on $\left|S_{\ell}^{k}\right|$ when $\ell=6$:
When a letter u_{i} is placed just before a peak, it can take at most $\ell-2$ values (unless $i=2$):

- if $u_{b}=u_{c}$, then $u_{i} \neq u_{a}$ and $u_{i} \neq u_{b}$;

Remark (Narayana, 1959): There are $\operatorname{Cat}(k, p)=\frac{1}{k}\binom{k}{p}\binom{k}{p-1}$ size- k Dyck trees with p peaks.

When does A_{ℓ}^{ω} contain infinite \sqcup^{2}-free words? (3/3)

Theorem: When $\ell \geqslant 6$, it does.
Proof relying on finer upper bounds on $\left|S_{\ell}^{k}\right|$ when $\ell=6$:
When a letter u_{i} is placed just before a peak, it can take at most $\ell-2$ values (unless $i=2$):

- if $u_{b}=u_{c}$, then $u_{i} \neq u_{a}$ and $u_{i} \neq u_{b}$;
- if $u_{b} \neq u_{c}$, then $u_{i} \neq u_{b}$ and $u_{i} \neq u_{c}$.

Remark (Narayana, 1959): There are $\operatorname{Cat}(k, p)=\frac{1}{k}\binom{k}{p}\binom{k}{p-1}$ size- k Dyck trees with p peaks.
Lemma: The generating series $\mathcal{C}(x, y)=\sum_{k, p \geqslant 0} \operatorname{Cat}(k, p) x^{k} y^{p}$ satisfies the relation

$$
\mathcal{C}(x, y)=1+x y \mathcal{C}(x, y)+x(\mathcal{C}(x, y)-1) \mathcal{C}(x, y)
$$

\sqcup

When does A_{ℓ}^{ω} contain infinite \sqcup^{2}-free words? (3/3)

Theorem: When $\ell \geqslant 6$, it does.
Proof relying on finer upper bounds on $\left|S_{\ell}^{k}\right|$ when $\ell=6$:
When a letter u_{i} is placed just before a peak, it can take at most $\ell-2$ values (unless $i=2$):

- if $u_{b}=u_{c}$, then $u_{i} \neq u_{a}$ and $u_{i} \neq u_{b}$;
- if $u_{b} \neq u_{c}$, then $u_{i} \neq u_{b}$ and $u_{i} \neq u_{c}$.

Remark (Narayana, 1959): There are $\operatorname{Cat}(k, p)=\frac{1}{k}\binom{k}{p}\binom{k}{p-1}$ size- k Dyck trees with p peaks.
Lemma: The generating series $\mathcal{C}(x, y)=\sum_{k, p \geqslant 0} \operatorname{Cat}(k, p) x^{k} y^{p}$ satisfies the relation

$$
\mathcal{C}(x, y)=1+x y \mathcal{C}(x, y)+x(\mathcal{C}(x, y)-1) \mathcal{C}(x, y) .
$$

Corollary: We can prove that $\left|W_{\ell}^{n+1}\right| \geqslant \lambda\left|W_{\ell}^{n}\right|$, where $\lambda \approx 4.56594$ is the largest root of

$$
P(X)=X^{5}-5 X^{4}+18 X^{3}-210 X^{2}+626 X-5
$$

Open questions

(1) When A is fixed, how hard is recognising \amalg^{2}-free words?

Open questions

(1) When A is fixed, how hard is recognising \amalg^{2}-free words?
(2) Can we extend our analytic proof to the cases $|A|=4$? $|A|=5$? م

Open questions

(1) When A is fixed, how hard is recognising \amalg^{2}-free words?
(2) Can we extend our analytic proof to the cases $|A|=4$? $|A|=5$? ,
(3) Can we decide whether a given word is a factor of an infinite \sqcup^{2}-free word?

Open questions

(1) When A is fixed, how hard is recognising \sqcup^{2}-free words?
(2) Can we extend our analytic proof to the cases $|A|=4$? $|A|=5$? م
(3) Can we decide whether a given word is a factor of an infinite $山^{2}$-free word?
(1) A morphism of monoids $\varphi: A^{*} \rightarrow B^{*}$ is \square-free if $\varphi(x)$ is \square-free whenever x is \square-free. Can we meaningfully generalise this notion to \amalg^{2}-free morphisms?

Open questions

(1) When A is fixed, how hard is recognising \sqcup^{2}-free words?
(2) Can we extend our analytic proof to the cases $|A|=4$? $|A|=5$? م
(3) Can we decide whether a given word is a factor of an infinite \amalg^{2}-free word?
(9) A morphism of monoids $\varphi: A^{*} \rightarrow B^{*}$ is \square-free if $\varphi(x)$ is \square-free whenever x is \square-free. Can we meaningfully generalise this notion to \amalg^{2}-free morphisms?
(6) What about shuffled-cube-free or shuffled-power-free words?

Does there exist an infinite shuffled-power-free word on a finite alphabet? in A_{4}^{ω} ?

Open questions

(1) When A is fixed, how hard is recognising \sqcup^{2}-free words?
(2) Can we extend our analytic proof to the cases $|A|=4$? $|A|=5$? ,
(3) Can we decide whether a given word is a factor of an infinite \amalg^{2}-free word?
(9) A morphism of monoids $\varphi: A^{*} \rightarrow B^{*}$ is \square-free if $\varphi(x)$ is \square-free whenever x is \square-free. Can we meaningfully generalise this notion to \sqcup^{2}-free morphisms?
(0) What about shuffled-cube-free or shuffled-power-free words?

Does there exist an infinite shuffled-power-free word on a finite alphabet? in A_{4}^{ω} ?

$Q^{T} U^{H_{E}} A_{S} N_{T}{ }^{K} Y_{1} Y_{O} O_{N} U_{S}!?$

Bibliography

Axel Thue, Über unendliche Zeichenreihen 1906
Axel Thue, Über die gegenseitige Lage gleicher teile gewisser Zeichenreihen 1912
John Leech, A problem on strings of beads 1957
Tadepalli Venkata Narayana, A partial order and its applications to probability theory 1959
Maxime Crochemore, Sharp characterizations of square-free morphisms 1982
Franz-Josef Brandenburg, Uniformly growing $k^{\text {th }}$ power-free homomorphisms 1983
Jan Brinkhuis, Non-repetitive sequences on three symbols 1983
Maxime Crochemore, Recherche linéaire d'un carré dans un mot 1983
Roman Kolpakov, Efficient lower bounds on the number of repetition-free words 2007
Arseny Shur, Two-sided bounds for the growth rates of power-free languages 2009
Sam Buss \& Michael Soltys, Unshuffling a square is NP-hard 2013
Romeo Rizzi \& Stéphane Vialette, On recognizing words that are squares for the shuffle product 2013
James Currie, Shuffle squares are avoidable (unpublished manuscript) 2014
Mike Müller, Avoiding and enforcing repetitive structures in words 2015
Guillaume Guégan \& Pascal Ochem, A short proof that shuffle squares are 7-avoidable 2016
Laurent Bulteau \& Stéphane Vialette, Recognizing binary shuffle squares is NP-hard 2020
Laurent Bulteau, Vincent Jugé \& Stéphane Vialette, On shuffled-square-free words 2023

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$. Claim \#0: φ is injective.

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.
Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.

Is this morphism square-free? 0

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.
Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.

Is this morphism square-free? O

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.
Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.
Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.
Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.

$$
u=s_{2}, \text { because }
$$

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.
Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.

$$
u=s_{1}, \text { because }
$$

Is this morphism square-free? O

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.
Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.
Conclusion: w is not minimal!

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$.
Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.
Conclusion: w is not minimal!

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$. Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.
Conclusion: w is not minimal!

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$. Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.
Conclusion: w is not minimal!

Is this morphism square-free? ©

Theorem (Thue, 1912; Crochemore, 1982): An ℓ-uniform morphism φ is square-free if $\varphi(w)$ is square-free whenever $|w| \leqslant 3$ and w is square-free.
Proof: Assume that there is a shortest square-free word $w=w_{0} w_{1} \cdots w_{t-1}$, of length $|w| \geqslant 4$, for which $\varphi(w)$ has a factorisation $\varphi(w)=a \cdot x^{2} \cdot b$ where $0 \leqslant|a|<\ell, x \neq \varepsilon$ and $0 \leqslant|b|<\ell$. Claim \#0: φ is injective.
Claim \#1: x has a factorisation $x=c \cdot \varphi(d) \cdot e$, where $0 \leqslant|c|<\ell, d \neq \varepsilon$ and $0 \leqslant|e|<\ell$.
Claim \#2: in each factorisation of the form $\varphi(s)=t \cdot \varphi(u) \cdot v$ where s is square-free and $u \neq \varepsilon$, there exist words \bar{t} and \bar{v} such that $t=\varphi(\bar{t})$ and $v=\varphi(\bar{v})$.
Conclusion: w is not minimal!

The vector vo

By identifing isomorphic words w to let them start with 01 and ordering coordinates w of \mathbf{W}_{3}^{n} in lexicographic order, we can choose \mathbf{v} as the inverse of

 $\begin{array}{llllllllllll}890 & 1210 & 722 & 930 & 1076 & 1024 & 754 & 1078 & 742 & 575 & 636 & \infty\end{array}$

Missing computational details 0

- For all $k \geqslant 2,\left|S_{k}\right| \geqslant \Sigma_{k}$, where

$$
\Sigma_{k}=\sum_{p \geqslant 1} \ell(\ell-1)^{k-p-1}(\ell-2)^{p} \operatorname{Cat}(k-1, p)+\ell(\ell-1)^{k-p-1}(\ell-2)^{p-1} \operatorname{Cat}(k-2, p-1)
$$

(2) The generating series $\mathcal{C}(x, y)=\sum_{k, p \geqslant 0} \operatorname{Cat}(k, p) x^{k} y^{p}$ coincides with

$$
\mathcal{C}(x, y)=\frac{1+x-x y-\sqrt{(1+x-x y)^{2}-4 x}}{2 x}
$$

(3) We prove by induction that $\left|W_{k+1}\right| \geqslant \lambda\left|W_{k}\right|$:

$$
\frac{\left|W_{n+1}\right|}{\left|W_{n}\right|} \geqslant(\ell-1)-\frac{1}{\ell(\ell-1)} \sum_{k \geqslant 2} \lambda^{3-2 k} \Sigma_{k}=(\ell-1)+\frac{\lambda}{\ell-1}-\frac{\lambda^{2}+1}{\lambda(\ell-1)} \mathcal{C}\left(\frac{\ell-1}{\lambda^{2}}, \frac{\ell-2}{\ell-1}\right)=\lambda .
$$

Going to $|A|=4$ or $|A|=5$: a (too) optimistic view? 0

If there are $\left|W_{\ell}^{n}\right| \approx \alpha^{n} Ш^{2}$-free words in A_{ℓ}^{n}, we roughly estimate $\left|S_{\ell}^{k}\right|$ as follows: there are
(1) some words $y \in S_{\ell}^{k}$ with multiple decompositions: $010201320232=010201320232$;

Going to $|A|=4$ or $|A|=5$: a (too) optimistic view? 0

If there are $\left|W_{\ell}^{n}\right| \approx \alpha^{n} Ш^{2}$-free words in A_{ℓ}^{n}, we roughly estimate $\left|S_{\ell}^{k}\right|$ as follows: there are
(1) some words $y \in S_{\ell}^{k}$ with multiple decompositions: $010201320232=010201320232$;
(2) $\operatorname{Cat}(k-1) \approx 2^{2 k} / k^{3 / 2}$ possible interleavings;
(3) ℓ^{k} ways of choosing u;
(9) a probability $(\alpha / \ell)^{2 k}$ not to get ϖ^{2} factors, because u_{i} and u_{i} are $\approx \sqrt{k}$ steps apart;

Going to $|A|=4$ or $|A|=5$: a (too) optimistic view? ©

If there are $\left|W_{\ell}^{n}\right| \approx \alpha^{n} Ш^{2}$-free words in A_{ℓ}^{n}, we roughly estimate $\left|S_{\ell}^{k}\right|$ as follows: there are
(1) some words $y \in S_{\ell}^{k}$ with multiple decompositions: $010201320232=010201320232$;
(2) $\operatorname{Cat}(k-1) \approx 2^{2 k} / k^{3 / 2}$ possible interleavings;
(3) ℓ^{k} ways of choosing u;
(1) a probability $(\alpha / \ell)^{2 k}$ not to get ω^{2} factors, because u_{i} and u_{i} are $\approx \sqrt{k}$ steps apart; thus,

$$
\left|W_{\ell}^{n+3-2 k}\right|\left|S_{\ell}^{k}\right| \approx \alpha^{n}(4 / \ell)^{k} k^{-3 / 2}
$$

and we obtain a converging series for $\ell=4$ and $\ell=5$.

Going to $|A|=4$ or $|A|=5$: a (too) optimistic view? م

If there are $\left|W_{\ell}^{n}\right| \approx \alpha^{n} Ш^{2}$-free words in A_{ℓ}^{n}, we roughly estimate $\left|S_{\ell}^{k}\right|$ as follows: there are
(1) some words $y \in S_{\ell}^{k}$ with multiple decompositions: $010201320232=010201320232$;
(2) $\operatorname{Cat}(k-1) \approx 2^{2 k} / k^{3 / 2}$ possible interleavings;
(3) ℓ^{k} ways of choosing u;
(1) a probability $(\alpha / \ell)^{2 k}$ not to get $Ш^{2}$ factors, because u_{i} and u_{i} are $\approx \sqrt{k}$ steps apart; thus,

$$
\left|W_{\ell}^{n+3-2 k}\right|\left|S_{\ell}^{k}\right| \approx \alpha^{n}(4 / \ell)^{k} k^{-3 / 2}
$$

and we obtain a converging series for $\ell=4$ and $\ell=5$. Next, we control its sum by working on sets $W_{\ell}^{n}(w)$, i.e., considering separately suffixes of x, w and y and prefixes of y.

Going to $|A|=4$ or $|A|=5$: a (too) optimistic view? م

If there are $\left|W_{\ell}^{n}\right| \approx \alpha^{n} Ш^{2}$-free words in A_{ℓ}^{n}, we roughly estimate $\left|S_{\ell}^{k}\right|$ as follows: there are
(1) some words $y \in S_{\ell}^{k}$ with multiple decompositions: $010201320232=010201320232$;
(2) $\operatorname{Cat}(k-1) \approx 2^{2 k} / k^{3 / 2}$ possible interleavings;
(3) ℓ^{k} ways of choosing u;
(1) a probability $(\alpha / \ell)^{2 k}$ not to get $Ш^{2}$ factors, because u_{i} and u_{i} are $\approx \sqrt{k}$ steps apart; thus,

$$
\left|W_{\ell}^{n+3-2 k}\right|\left|S_{\ell}^{k}\right| \approx \alpha^{n}(4 / \ell)^{k} k^{-3 / 2}
$$

and we obtain a converging series for $\ell=4$ and $\ell=5$. Next, we control its sum by working on sets $W_{\ell}^{n}(w)$, i.e., considering separately suffixes of x, w and y and prefixes of y.

In practice, experiments suggest that $\left|S_{\ell}^{k}\right| \approx \beta^{k}$ for some $\beta<\alpha^{2} \ldots$

