Autour de la combinatoire des arrangements de Shi dans les

groupes de Coxeter

- Séminaire Philippe Flajolet -

IHP, Paris
ler juin 2023

Christophe Hohlweg, LACIM, UQAM, Montréal

Coxeter groups
Coxeter system (W, S) : W group generated by S, the simple reflections'; $T=\left\{w s w^{-1} \mid s \in S, w \in W\right\}$, the 'reflections'

Coxeter groups
Coxeter system (W, S) : W group generated by S, the simple reflections'; $T=\left\{w s w^{-1} \mid s \in S, w \in W\right\}$, the 'reflections'

$$
\Delta_{1} \Delta_{2} \Delta_{1}=(13)=\Delta_{2} \Delta_{1} \Delta_{2}
$$

$\Delta_{2}=(23)$
$W=S_{3}$ symmetric group $S=\left\{s_{1}, s_{2}\right\}$ simple transpositions $T=\left\{s_{1}, \Delta_{2}, s_{1} \Delta_{2} s_{3}\right\}$ transpositions $\Delta_{1} \Delta_{2}$ is a rotation of oder 3 $2 \quad 2$
$\Delta_{1}=(12)$

Coxeter (hyperplane) arran gerent - Finite type.

Coxeter groups
Coxeter system (W, S) : W group generated by S, the 'simple reflections'; $T=\left\{w s w^{-1} \mid s \in S, w \in W\right\}$, the 'reflections'

Coxeter groups
Coxeter system (W, S) : W group generated by S, the 'simple reflections'; $T=\left\{w s w^{-1} \mid s \in S, w \in W\right\}$, the 'reflections'

$W=\widetilde{S}_{3}$ AFFINE symmetric group

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

T infinite
$\Delta_{i} \mathrm{~s}_{j}$ is a rotation of a der $3(i \neq j)$

$$
\begin{aligned}
W_{0} & =S_{3} \\
& \leqslant \widetilde{S_{3}}
\end{aligned}
$$

Coxeter (hyperplane) arran gerent - AFFINE type C_{e} fundamental chamber

Coxeter groups

Coxeter system (W, S) : W group generated by S, the simple reflections'; $T=\left\{w s w^{-1} \mid s \in S, w \in W\right\}$, the 'reflections'

Indefinite Coxeter system (not finite, nor affine)

General philosophy: to generalize combinatorial methods of S_{n} to arbitrary W.

Inversions and descents
Inversion set of $w \in W: T(w)=\left\{t \in T \mid H_{t}\right.$ separates w form $\left.e\right\}$
Length of $w \in W: \ell(w)=|T(w)|=$ length of a reduced word

Inversions and descents
Proposition. $T(w)=\{t \in T \mid \ell(t w)<\ell(w)\}$

Inversions and descents

Inversion set of $w \in W: T(w)=\left\{t \in T \mid H_{t}\right.$ separates w form $\left.e\right\}$
Length of $w \in W: \ell(w)=|T(w)|=$ length of a reduced word

Inversions and descents
Proposition. $T(w)=\{t \in T \mid \ell(t w)<\ell(w)\}$

Example: $W=\widetilde{S}_{3}$

$$
\begin{aligned}
& \omega=D_{3} \Delta_{1} D_{2} D_{1} D_{3} \\
& T(w)=\left\{D_{3}\left(D_{D_{1}, D_{3},}, D_{3} \Delta_{2} D_{3}, t_{1}, t_{2}\right\}\right. \\
& u=D_{3} D_{1} D_{3} \omega \\
& l(u)=4<5=l(w)
\end{aligned}
$$

$$
\begin{aligned}
& t_{1}=\Delta_{3} D_{2} D_{1} D_{2} D_{3} \\
& t_{2}=D_{3} D_{1} D_{2} D_{1} D_{3} D_{1} D_{2} D_{1} D_{3}
\end{aligned}
$$

Inversions and descents
Let $w \in W: D_{L}(w)=\{s \in S \mid \ell(s w)<\ell(w)\}$ (left descents) $D_{R}(w)=\{s \in S \mid \ell(w s)<\ell(w)\}$ (right descents)

Inversions and descents
Let $w \in W: D_{L}(w)=\{s \in S \mid \ell(s w)<\ell(w)\}$ (left descents) $T_{R}(w)=\left\{w s w^{-1} \mid s \in D_{R}(w)\right\}$ (descents-walls)

Inversions and descents
Let $w \in W: D_{L}(w)=\{s \in S \mid \ell(s w)<\ell(w)\}$ (left descents) $D_{R}(w)=\{s \in S \mid \ell(w s)<\ell(w)\}$ (right descents)

Example: $W=\widetilde{S}_{3}$

$$
\omega=D_{3} \Delta_{1} D_{2} D_{1} \Delta_{3} .
$$

$$
T(w)=\left\{D_{3}, D_{3}, D_{3}, \Delta_{3} \Delta_{2} \Delta_{3}, t_{1}, t_{2}\right\}
$$

$$
D_{L}(\omega)=\left\{D_{3}\right\}=D_{R}(\omega)
$$

$$
\begin{aligned}
& t_{1}=\Delta_{3} D_{2} D_{1} D_{2} D_{3} \\
& t_{2}=D_{3} D_{1} D_{2} D_{1} D_{3} D_{1} \Delta_{2} D_{1} D_{3}
\end{aligned}
$$

Inversions and descents
Let $w \in W: D_{L}(w)=\{s \in S \mid \ell(s w)<\ell(w)\}$ (left descents) $T_{R}(w)=\left\{w s w^{-1} \mid s \in D_{R}(w)\right\}$ (descents-walls)

Example: $W=\widetilde{S}_{3}$
$T(\omega)=\left\{D_{3}, D_{3} \Delta_{1}, D_{3}, D_{3}, D_{2} D_{3}, t_{1}, t_{2}\right\}$

$$
\begin{aligned}
& D_{L}(\omega)=\left\{D_{3}\right\}=D_{R}(\omega) \\
& T_{R}(\omega)=\left\{t_{2}\right\} \\
& t_{1}=\Delta_{3} D_{2} D_{1} D_{2} D_{3} \\
& t_{2}=\Delta_{3} D_{1} D_{2} \Delta_{1} D_{3} D_{1} D_{2} \Delta_{1} D_{3}
\end{aligned}
$$

Shi arrangements

Infinite-depth of reflections (Brink-Howlett 1993, Fu 2012):
dp $(t)=\#$ distinct parallels H_{r} to H_{t} that separates H_{t} from e.

Shi arrangements

$m-$ small reflections $(m \in \mathbb{N}): \Sigma_{m}=\left\{t \in T \mid \mathrm{dp}_{\infty}(t) \leq m\right\}$.
Theorem (Brink-Howlett 1993, Fu 2012) $\quad \Sigma_{m}$ is a finite set.

Shi arrangements

m-small reflections $(m \in \mathbb{N}): \Sigma_{m}=\left\{t \in T \mid \mathrm{dp}_{\infty}(t) \leq m\right\}$.
Theorem (Brink-Howlett 1993, Fu 2012) $\quad \Sigma_{m}$ is a finite set.

Finite Coxeter groups
$\Sigma_{m}=\Sigma_{0}=\mathscr{A}$ finite for all $m \in \mathbb{N}$

Affine Coxeter groups: easy (transitivity parallelism)

Indefinite (hyperbolic etc.): work to do (combinatorics of Coxeter groups)!

Shi arrangements: Shi $_{0}$

Example: Shi $_{0}=\left\{H_{t} \mid t \in \Sigma_{0}\right\} \quad$ (Shi 1988 in affine types).

Shi arrangements: Shio

Theorem (Shi 88) Enumeration of the number of regions in affine type.
Example: For $\tilde{S}_{n^{\prime}}$ there are $(n+1)^{n-1}$ regions.

Shi arrangements: Shin
Theorem (Shi 88) Enumeration of admissible signs in affine type.
Example: For $\tilde{S}_{n^{\prime}}$ there are $(n+1)^{n-1}$ admissible signs.

Shi arrangements: Shi $_{m}$

 $m-$ Shi arrangements $(m \in \mathbb{N}): \quad \operatorname{Shi}_{m}=\left\{H_{t} \mid t \in \Sigma_{m}\right\}$.Example: Shi $_{2}=\left\{H_{t} \mid t \in \Sigma_{2}\right\}$

Shi arrangements: Shi $_{m}$

Theorem (Yosiniga 04, Thiel 16) Enumeration in affine type.
Example: For \tilde{S}_{n} there are $((m+1) n+1)^{n-1}$ regions.

Shi arrangements

- Catalan combinatorics (Catalan numbers in affine types)
- Kazhdan-Lusztig cells (Affine types, Shi 86)
- Provides a finite Garside family in the Artin-Tits monoïd, a step forward answering the word problem in Artin (braid) groups (Dehornoy-Dyer-CH 15)
- Automata recognizing the language of reduced words (Eriksson, Headley, Brink-Howlett 90')
- Provides the basic tools to prove automaticity (Brink-Howlett 94) and bi-automaticity (Osajda-Przyticky, 22) of Coxeter systems

Shi arrangements

 affine types: enumerationShis method (88) extended by Thiel for all $m \in \mathbb{N}$ (2015):
I. Shi ${ }_{m}$ is gated, i.e., each region contains a unique minimal length element. Denote by \mathscr{G}_{m} the set of gates.

Shi arrangements

 affine types: enumeration Shi's method (88) extended by Thiel for all $m \in \mathbb{N}$ (2015):2. Shi ${ }_{m}$ has the convex property: $P=\bigcup w^{-1}\left(C_{e}\right)$ is convex $w \in \mathscr{G}_{m}$

Shi arrangements

 affine types: enumerationShi's method (88) extended by Thiel for all $m \in \mathbb{N}$ (2015):
3. P is a dilatation of $($ factor $((m+1) n+1))$ in $\left.\tilde{S}_{n}\right)$ of C_{e}

Shi arrangements

 affine types: enumerationAim: generalize these results to all Coxeter systems
I. Minimal elements (conjectured by Dyer-CH 16)
2. Convexity property (conjectured by CH-Nadeau-Williams 16)

Low elements

Candidates for \mathscr{G}_{m}
Short inversions of $w \in W: T^{1}(w)=\{t \mid \ell(t w)=\ell(w)-1\}$.
Theorem (Dyer, 93) $\quad T^{1}(w)$ characterizes uniquely the inversion set $T(w)$

Examples: $W=S_{3}$;

- $w=s_{1} s_{2}=231 ; T^{1}(w)=T(w)=\{(\underline{12)},(13)\}$
- $w=s_{1} s_{2} s_{1}=321 ; T^{1}(w)=\{(\underline{12)},(23)\} ; T(w)=T$ and $(13)=(12)(23)(12)$
Examples: $W=S_{4}$;
- $w=s_{2} s_{1} s_{3} s_{2}=3412 ; T^{1}(w)=T(w)=\{(23),(13),(24),(14)\}$
- $w=s_{1} s_{2} s_{3} s_{2} s_{1}=4231 ; T^{1}(w)=\{(12),(13),(34),(24)\}$ and $T(w)=T^{1}(w) \cup\{(14)\}$, where $(14)=(12)(24)(12)$.

Low elements

Candidates for \mathscr{G}_{m}
Short inversions of $w \in W: T^{1}(w)=\{t \mid \ell(t w)=\ell(w)-1\}$.
Theorem (Dyer, 93) $\quad T^{1}(w)$ characterizes uniquely the inversion set $T(w)$

Low elements

Candidates for \mathscr{G}_{m}
Short inversions of $w \in W: T^{1}(w)=\{t \mid \ell(t w)=\ell(w)-1\}$.
Theorem (Dyer, 93) $\quad T^{1}(w)$ characterizes uniquely the inversion set $T(w)$

Low elements

Candidates for \mathscr{G}_{m}
Short inversions of $w \in W: T^{1}(w)=\{t \mid \ell(t w)=\ell(w)-1\}$.
Theorem (Dyer, 93) $\quad T^{1}(w)$ characterizes uniquely the inversion set $T(w)$

Low elements

Candidates for \mathscr{G}_{m}
Short inversions of $w \in W: T^{1}(w)=\{t \mid \ell(t w)=\ell(w)-1\}$.
Theorem (Dyer, 93) $\quad T^{1}(w)$ characterizes uniquely the inversion set $T(w)$

$$
\begin{aligned}
& \text { Example: } W=\widetilde{S_{3}} \\
& \omega=D_{3} D_{1} D_{2} D_{1} D_{3}
\end{aligned}
$$

$T(\omega)=\left\{D_{3}, \Delta_{3}, D_{3}, D_{3}, \Delta_{2} \Delta_{2}, \mathcal{X}, t_{2}\right\}$
$E_{1} \notin T^{1}(\omega)$
since $\epsilon_{1} w=e$

Low elements

Candidates for \mathscr{G}_{m}
Short inversions of $w \in W: T^{1}(w)=\{t \mid \ell(t w)=\ell(w)-1\}$.
Theorem (Dyer, 93) $\quad T^{1}(w)$ characterizes uniquely the inversion set $T(w)$

Low elements

Candidates for \mathscr{G}_{m}
m-Low elements: $L_{m}=\left\{w \in W \mid T^{1}(w) \subseteq \Sigma_{m}\right\}$.

Remarks:

- Introduced in the context of the word problem of Artin (braid) groups (Dehornoy, Dyer, CH 2015): they produce Garside families in the corresponding Artin monoïd (Dyer-CH 2016; Dyer 2022).
-W finite: $L_{m}=L_{0}=W$.
- In general: $L_{m} \subseteq \mathscr{G}_{m}$ (therefore L_{m} is finite) and there is at most one m-low element in each m-Shi region of Shi_{m} (Dyer-CH 2016; CH-Nadeau-Williams 2016).

Aim: to prove the equality $L_{m}=\mathscr{G}_{m}$.

Low elements

Candidates for \mathscr{G}_{m}
m-Low elements: $L_{m}=\left\{w \in W \mid T^{1}(w) \subseteq \Sigma_{m}\right\}$.

Low elements
Candidates for \mathscr{G}_{m}
m-Low elements: $L_{m}=\left\{w \in W \mid T^{1}(w) \subseteq \Sigma_{m}\right\}$.

Example: $W=\widetilde{S}_{3}$
$d p_{\infty}(\epsilon)$
$T(\omega)=\left\{D_{3}, D_{3} D_{1}, D_{3}, D_{3} \Delta_{2} \Delta_{3}, t_{1}, D_{2}\right\}$
$T^{1}(\omega)=\left\{D_{3}, D_{3} D_{3}, D_{3}, D_{2} D_{3}, L_{2}\right\}$
Here: $\omega \in L_{2}$ since $d p_{\infty}\left(t_{2}\right)=2$ and $d_{p \infty}$ (others) $=0$.
So $\quad T^{1}(\omega) \subseteq \Sigma_{2}$.
BUT: $\omega \notin L_{0}$ and $\omega \notin L_{1}$

$$
\Delta_{3} D_{1} D_{2} \Delta_{1} \Delta_{3} D_{1} D_{2} \Delta_{1} \Delta_{3}=E_{2}
$$

Low elements
Candidates for \mathscr{G}_{m}
Fact. Let $w \in \mathscr{G}_{m^{\prime}}$ then $T_{R}(w) \subseteq \Sigma_{m}$. But is $T^{1}(w) \subseteq \Sigma_{m}$?
Recall that: $T_{R}(w)=\left\{w s w^{-1} \mid s \in D_{R}(w)\right\}$ descent-walls.

Example: $W=\tilde{S}_{3}$

$$
L_{0}=g_{0}
$$

Low elements

Candidates for \mathscr{G}_{m}

Aim:to prove the equality $L_{m}=\mathscr{G}_{m}$.

Strategy: to prove that that the function $\mathrm{dp}_{\infty}: T^{1}(w) \rightarrow \mathbb{N}$ reaches its maximum on $T_{R}(w)$ (i.e., the 'descent-walls').

Surprisingly it goes down to a combinatorial problem to be solved even in finite Coxeter groups

The short inversion poset
Let $w \in W$, the short inversion poset $\left(T^{1}(w), \preceq_{w}\right)$ is the transitive and reflexive closure of the relation $\dot{\gamma}_{w}$: we write $s \dot{\gamma}_{w} t$ if:

- $s \in T(t)$ or there is $r \in T \backslash T(w)$ with $\langle s, t\rangle \subseteq\langle s, r\rangle$ and $r \in T(t)$.

Theorem (Ch-Dyer 16, Dyer 22) For $w \in W: s \leq_{w} t \Longrightarrow d p_{\infty}(s) \leq d p_{\infty}(t)$
Examples: $W=S_{3}$;

- $w=s_{1} s_{2}=231 ; T^{1}(w)=T(w)=\{(\underline{12}),(13)\}$

Here: $s_{1}=(12) \in T\left(D_{1} D_{2} D_{1}\right)=T(321)$.

$$
\left\{\begin{array}{l}
s_{1} s_{2} s_{1}=(13) \\
s_{1}=(12)
\end{array}\right.
$$

- $w=s_{1} s_{2} s_{1}=321 ; T^{1}(w)=\{\underline{(12)},(\underline{23)}\}$

Here: $\quad(12) \notin T(23) ;(23) \notin T(12)$ and $T(\Pi \omega)=\varnothing$

$$
S_{1}=(12) \quad s_{2}=(23)
$$

The short inversion poset
Let $w \in W$, the short inversion poset $\left(T^{1}(w), \preceq_{w}\right)$ is the transitive and reflexive closure of the relation $\dot{\gamma}_{w}$: we write $s \dot{\gamma}_{w} t$ if:

- $s \in T(t)$ or there is $r \in T \backslash T(w)$ with $\langle s, t\rangle \subseteq\langle s, r\rangle$ and $r \in T(t)$.

This condition is empty $f_{\Omega} S_{m}$ and \tilde{S}_{m}
Examples: $W=S_{3}$;

- $w=s_{1} s_{2}=231 ; T^{1}(w)=T(w)=\{(\underline{12}),(13)\}$

Here: $s_{1}=(12) \in T\left(D_{1} D_{2} D_{1}\right)=T(321)$.

$$
\left\{\begin{array}{l}
s_{1} s_{2} s_{1}=(13) \\
s_{1}=(12)
\end{array}\right.
$$

- $w=s_{1} s_{2} s_{1}=321 ; T^{1}(w)=\{\underline{(12)},(\underline{23)}\}$

Here: $\quad(12) \notin T(23) ;(23) \notin T(12)$
and $T \mid T(\omega)=\varnothing$

$$
s_{1}=(12) \quad s_{2}=(23)
$$

The short inversion poset

Let $w \in W$, the short inversion poset $\left(T^{1}(w), \preceq_{w}\right)$ is the transitive and reflexive closure of the relation $\dot{\gamma}_{w}$: we write $s \dot{\gamma}_{w} t$ if:

- $s \in T(t)$ or there is $r \in T \backslash T(w)$ with $\langle s, t\rangle \subseteq\langle s, r\rangle$ and $r \in T(t)$.

Examples: $W=S_{4}$;
This condition is empty $f_{\Omega} S_{m}$ and S_{m}

- $w=s_{2} s_{1} s_{3} s_{2}=3412 ; T^{1}(w)=T(w)=\{(23),(13),(24),(14)\}$

Here:

The short inversion poset

Let $w \in W$, the short inversion poset $\left(T^{1}(w), \preceq_{w}\right)$ is the transitive and reflexive closure of the relation $\dot{\gamma}_{w}$: we write $s \dot{\gamma}_{w} t$ if:

- $s \in T(t)$ or there is $r \in T \backslash T(w)$ with $\langle s, t\rangle \subseteq\langle s, r\rangle$ and $r \in T(t)$.

Examples: $W=S_{4}$;

- $w=s_{1} s_{2} s_{3} s_{2} s_{1}=4231 ; T^{1}(w)=\{(12),(13),(34),(24)\}$

The short inversion poset

Let $w \in W$, the short inversion poset $\left(T^{1}(w), \preceq_{w}\right)$ is the transitive and reflexive closure of the relation $\dot{\gamma}_{w}$: we write $s \dot{\gamma}_{w} t$ if:

- $s \in T(t)$ or there is $r \in T \backslash T(w)$ with $\langle s, t\rangle \subseteq\langle s, r\rangle$ and $r \in T(t)$.

Examples: $W=S_{5}$;
This condition is empty $f_{\Omega} S_{m}$ and S_{m}

- $w=24513 ; T^{1}(w)=T(w)=\{(15),(14),(12),(35),(34)\}$

The short inversion poset

Example: $W=\widetilde{S_{3}}$

$$
\omega=D_{3} D_{1} D_{2} D_{1} D_{3} .
$$

$$
T(w)=\left\{D_{3}, \Delta_{3} \Delta_{1} D_{3}, \Delta_{3} \Delta_{2} \Delta_{3}, t_{1}, t_{2}\right\}
$$

$$
T^{1}(\omega)=\left\{\Delta_{3}, \Delta_{3} \Delta_{1} D_{3}, \Delta_{3} \Delta_{2} \Delta_{3}, t_{2}\right\}
$$

$$
\left(T^{\prime}(\omega), \leqslant \omega\right)
$$

The short inversion poset

Example: $W=\widetilde{S}_{3}$

$$
\omega=D_{3} \Delta_{1} D_{2} D_{1} D_{3} .
$$

$$
T(w)=\left\{D_{3}, \Delta_{3} \Delta_{1} D_{3}, \Delta_{3} \Delta_{2} \Delta_{3}, t_{1}, t_{2}\right\}
$$

$$
T^{1}(\omega)=\left\{\Delta_{3}, \Delta_{3} \Delta_{1}, D_{3}, \Delta_{2} \Delta_{3}, \epsilon_{2}\right\}
$$

$\nu_{2} \Delta_{3} \quad\left(T^{\prime}(\omega), \preccurlyeq \omega\right)$

$$
\begin{aligned}
& \Delta_{3} D_{1} D_{2} \Delta_{1} \Delta_{3} D_{1} D_{2} \Delta_{1} \Delta_{3}=t_{2} \\
& D_{3} D_{1} D_{2} D_{1} D_{3}=t_{1}
\end{aligned}
$$

The short inversion poset
Minimal and maximal elements
Theorem (Dyer, CH, Fishel, Mark '23) Let $w \in W$, for any $r \in T^{1}(w)$, there is $s \in D_{L}(w)$ and $t \in T_{R}(w)$ such that $s \leq_{w} r \leq_{w} t$.

Where: $D_{L}(w)=T(w) \cap S$ and $T_{R}(w)=\left\{w s w^{-1} \mid s \in D_{R}(w)\right\}$
Examples: $W=S_{3}$;

$$
\begin{aligned}
&-w=s_{1} s_{2}=231 ; T^{1}(w)=T(w)=\{(12),(13)\} Q_{1}^{s_{1} s_{2} s_{1}=(13)} \\
& D_{L}(w)=\{(12)\} \text { and } T_{R}(w)=\{(13)\} s_{1}=(12) \\
& \text { - } w=s_{1} s_{2} s_{1}=321 ; T^{1}(w)=\{(12),(23)\} \\
& D_{L}(w)=T^{\prime}(w)=T_{R}(w) s_{1}=(12) \\
& s_{2}=(23)
\end{aligned}
$$

The short inversion poset

Minimal and maximal elements
Theorem (Dyer, CH, Fishel, Mark '23) Let $w \in W$, for any $r \in T^{1}(w)$, there is $s \in D_{L}(w)$ and $t \in T_{R}(w)$ such that $s \preceq_{w} r \preceq_{w} t$.

Examples: $W=S_{4}$;

- $w=s_{2} s_{1} s_{3} s_{2}=3412 ; T^{1}(w)=T(w)=\{(23),(13),(24),(14)\}$

$D_{L}(\omega)=\{(23)\}$

$$
(24)
$$

$$
\begin{aligned}
& D_{R}(\omega)=\{(23)\} \\
& T_{R}(\omega)=\{(14)\}
\end{aligned}
$$

(23)

The short inversion poset

Minimal and maximal elements
Theorem (Dyer, CH, Fishel, Mark '23) Let $w \in W$, for any $r \in T^{1}(w)$, there is $s \in D_{L}(w)$ and $t \in T_{R}(w)$ such that $s \preceq_{w} r \preceq_{w} t$.

Examples: $W=S_{5}$;

- $w=24513 ; T^{1}(w)=T(w)=\{(15),(14),(12),(35),(34)\}$

The short inversion poset

Minimal and maximal elements

Theorem (Dyer, CH , Fishel, Mark '23) Let $w \in W$, for any $r \in T^{1}(w)$, there is $s \in D_{L}(w)$ and $t \in T_{R}(w)$ such that $s \preceq_{w} r \preceq_{w} t$.

Shi arrangement in general

Theorem (Dyer, CH, Fishel, Mark '23) For (W, S) and $m \in \mathbb{N}$, one has $\mathscr{G}_{m}=L_{m}$.

Shi arrangement in general

Theorem (Dyer, CH, Fishel, Mark '23) For (W, S) and $m \in \mathbb{N}$, one has $\mathscr{G}_{m}=L_{m}$.

Hyperbolic Coxeter system

Shi arrangement in general

Theorem (Dyer, CH, Fishel, Mark '23) For (W, S), Shio has the convex property.

Shi arrangement in general

Theorem (Dyer, CH, Fishel, Mark '23) For (W, S), Shi ${ }_{0}$ has the convex property.

Counting in indefinite Coxeter system: the convex is not anymore a dilatation of the fundamental chamber!

Enumeration is unknown!

Shi arrangement in general

Theorem (Dyer, CH, Fishel, Mark '23) For (W, S), Shio has the convex property.

Counting in indefinite Coxeter system: the convex is not anymore a dilatation of the fundamental chamber!

Enumeration is unknown!
Shi $_{m}(m \geq 1)$ does not have in general the

Final remarks

- Study Shi arrangement in general (enumeration, classification of Shi_{m} with the convexity property)

Coxeter graph of (W, S)	$\left\|\Sigma_{0}\right\|$	$\left\|L_{0}\right\|$	$\left\|\Sigma_{1}\right\|$	$\left\|L_{1}\right\|$	$\left\|\Sigma_{2}\right\|$	$\left\|L_{2}\right\|$
$\infty_{\infty}^{\infty} \infty_{\infty}^{\infty}$	3	4	9	10	21	22
$\infty_{0}^{\infty} \infty$	3	5	7	10	14	19
${ }_{4}^{-}$	7	18	13	40	20	70
76	13	40	18	72	24	110
${\underset{-}{-}}_{0-0}^{0} 4$	19	134	43	387	94	997

- Study the short inversion poset in relation with the weak order: how to find join, meet etc.

Final remarks

- Study Shi arrangement in general (enumeration, classification of Shi_{m} with the convexity property)

- Study the short inversion poset in relation with the weak order: how to find join, meet etc.

