Autour de la combinatoire des arrangements de Shi dans les groupes de Coxeter

- Séminaire Philippe Flajolet -

IHP, Paris 1er juin 2023

Christophe Hohlweg, LACIM, UQAM, Montréal

Coxeter system (W, S): W group generated by S, the `simple reflections'; $T = \{wsw^{-1} \mid s \in S, w \in W\}$, the `reflections'

Indefinite Coxeter system (not finite, nor affine)

General philosophy: to generalize combinatorial methods of S_n to arbitrary W.

Inversions and descents Inversion set of $w \in W$: $T(w) = \{t \in T \mid H_t \text{ separates } w \text{ form } e\}$ Length of $w \in W$: $\ell(w) = |T(w)| = \text{length of a reduced word}$

Inversions and descents Proposition. $T(w) = \{t \in T \mid \ell(tw) < \ell(w)\}$

Inversions and descents Inversion set of $w \in W$: $T(w) = \{t \in T \mid H_t \text{ separates } w \text{ form } e\}$ Length of $w \in W$: $\ell(w) = |T(w)| = \text{length of a reduced word}$

Inversions and descents Proposition. $T(w) = \{t \in T \mid \ell(tw) < \ell(w)\}$

Inversions and descents Let $w \in W$: $D_L(w) = \{s \in S \mid \ell(sw) < \ell(w)\}$ (left descents) $D_R(w) = \{s \in S \mid \ell(ws) < \ell(w)\}$ (right descents)

Inversions and descents Let $w \in W$: $D_L(w) = \{s \in S \mid \ell(sw) < \ell(w)\}$ (left descents) $T_R(w) = \{wsw^{-1} \mid s \in D_R(w)\}$ (descents-walls)

Shi arrangements

Infinite-depth of reflections (Brink-Howlett 1993, Fu 2012): $dp_{r}(t) = #$ distinct parallels H_r to H_t that separates H_t from e.

Shi arrangements

m-small reflections ($m \in \mathbb{N}$): $\Sigma_m = \{t \in T \mid dp_{\infty}(t) \leq m\}$. Theorem (Brink-Howlett 1993, Fu 2012) Σ_m is a finite set.

Shi arrangementsm-small reflections ($m \in \mathbb{N}$): $\Sigma_m = \{t \in T \mid dp_{\infty}(t) \leq m\}.$ Theorem (Brink-Howlett 1993, Fu 2012) Σ_m is a finite set.

Finite Coxeter groups $\Sigma_m = \Sigma_0 = \mathscr{A} \text{ finite for all}$ $m \in \mathbb{N}$

Affine Coxeter groups: easy (transitivity parallelism) Indefinite (hyperbolic etc.): work to do (combinatorics of Coxeter groups)!

Shi arrangements: Shi₀ Example: Shi₀ = { $H_t \mid t \in \Sigma_0$ } (Shi 1988 in affine types).

Shi arrangements: Shi_0

Theorem (Shi 88) Enumeration of the number of regions in affine type.

Example: For \tilde{S}_n , there are $(n+1)^{n-1}$ regions.

Shi arrangements: Shi_0

Theorem (Shi 88) Enumeration of admissible signs in affine type.

Example: For \tilde{S}_n , there are $(n+1)^{n-1}$ admissible signs.

Shi arrangements: Shi_m

Theorem (Yosiniga 04, Thiel 16) Enumeration in affine type.

Example: For \tilde{S}_n , there are $((m+1)n+1)^{n-1}$ regions.

Shi arrangements

- Catalan combinatorics (Catalan numbers in affine types)
- Kazhdan-Lusztig cells (Affine types, Shi 86)
- Provides a finite Garside family in the Artin-Tits monoïd, a step forward answering the word problem in Artin (braid) groups (Dehornoy-Dyer-CH 15)
- Automata recognizing the language of reduced words (Eriksson, Headley, Brink-Howlett 90')
- Provides the basic tools to prove automaticity (Brink-Howlett 94) and bi-automaticity (Osajda-Przyticky, 22) of Coxeter systems

Shi arrangements affine types: enumeration Shi's method (88) extended by Thiel for all $m \in \mathbb{N}$ (2015): I. Shi_m is gated, i.e., each region contains a unique minimal length element. Denote by \mathscr{G}_m the set of gates.

Shi arrangements affine types: enumeration Shi's method (88) extended by Thiel for all $m \in \mathbb{N}$ (2015): 2. Shi_m has the convex property: $P = \bigcup w^{-1}(C_e)$ is convex $w \in \mathscr{G}_m$ $D_2 = (23)$ $D_1 D_2 D_1 = (13) = D_2 D_1 D_2$ D3 Dedzo, D D2 D3D1 D3b2b1 D, 23 2 D3D2 D2D3 D3 b, b, b D20,0301 D3D1D2 D2D, 03 D3 ۵, e 123 D1 Dz Da $D_{1} = (12)$ b₁ DD3b1 P10201 4-1 D1D3D1D2 AP3 D, D2 0,000,03 D, 03 02 0,0203 W 01020302

Shi arrangements affine types: enumeration Shi's method (88) extended by Thiel for all $m \in \mathbb{N}$ (2015): 3. P is a dilatation of (factor ((m + 1)n + 1)) in \tilde{S}_n) of C_e

Shi arrangements affine types: enumeration

Aim: generalize these results to all Coxeter systems

- I. Minimal elements (conjectured by Dyer-CH 16)
- 2. Convexity property (conjectured by CH-Nadeau-Williams 16)

Short inversions of $w \in W$: $T^1(w) = \{t \mid \ell(tw) = \ell(w) - 1\}.$

Theorem (Dyer, 93) $T^{1}(w)$ characterizes uniquely the inversion set T(w)

Examples: $W = S_3$; • $w = s_1 s_2 = 231$; $T^1(w) = T(w) = \{(12), (13)\}$

• $w = s_1 s_2 s_1 = 321; T^1(w) = \{(12), (23)\}; T(w) = T$ and (13) = (12)(23)(12)

Examples: $W = S_4$;

• $w = s_2 s_1 s_3 s_2 = 3412; T^1(w) = T(w) = \{(23), (13), (24), (14)\}$

• $w = s_1 s_2 s_3 s_2 s_1 = 4231$; $T^1(w) = \{(12), (13), (34), (24)\}$ and $T(w) = T^1(w) \cup \{(14)\}$, where (14) = (12)(24)(12).

Short inversions of $w \in W$: $T^1(w) = \{t \mid \ell(tw) = \ell(w) - 1\}.$

Short inversions of $w \in W$: $T^1(w) = \{t \mid \ell(tw) = \ell(w) - 1\}.$

Short inversions of $w \in W$: $T^1(w) = \{t \mid \ell(tw) = \ell(w) - 1\}.$

Short inversions of $w \in W$: $T^1(w) = \{t \mid \ell(tw) = \ell(w) - 1\}.$

Short inversions of $w \in W$: $T^1(w) = \{t \mid \ell(tw) = \ell(w) - 1\}.$

m-Low elements: $L_m = \{ w \in W \mid T^1(w) \subseteq \Sigma_m \}.$

Remarks:

 Introduced in the context of the word problem of Artin (braid) groups (Dehornoy, Dyer, CH 2015): they produce Garside families in the corresponding Artin monoïd (Dyer-CH 2016; Dyer 2022).

• W finite:
$$L_m = L_0 = W$$
.

• In general: $L_m \subseteq \mathcal{G}_m$ (therefore L_m is finite) and there is at most one m—low element in each m—Shi region of Shi_m (Dyer-CH 2016; CH-Nadeau-Williams 2016).

Aim: to prove the equality $L_m = \mathscr{G}_m$.

m-Low elements: $L_m = \{ w \in W \mid T^1(w) \subseteq \Sigma_m \}.$

m-Low elements: $L_m = \{ w \in W \mid T^1(w) \subseteq \Sigma_m \}.$

Aim: to prove the equality $L_m = \mathscr{G}_m$.

Strategy: to prove that that the function $dp_{\infty} : T^1(w) \to \mathbb{N}$ reaches its maximum on $T_R(w)$ (i.e., the `descent-walls').

Surprisingly it goes down to a combinatorial problem to be solved even in finite Coxeter groups

Let $w \in W$, the short inversion poset $(T^1(w), \leq_w)$ is the transitive and reflexive closure of the relation $\dot{\prec}_{w}$: we write $s \dot{\prec}_{w} t$ if: • $s \in T(t)$ or there is $r \in T \setminus T(w)$ with $\langle s, t \rangle \subseteq \langle s, r \rangle$ and $r \in T(t)$. **Theorem** (Ch-Dyer 16, Dyer 22) For $w \in W$: $s \leq_w t \implies dp_{\infty}(s) \leq dp_{\infty}(t)$ Examples: $W = S_3$; $S_{1}S_{2}S_{1} = (13)$ $S_{1} = (12)$ • $w = s_1 s_2 = 231; T^1(w) = T(w) = \{(12), (13)\}$ Here: $S_1 = (12) \in T(D_1, D_2, D_1) = T(321)$.

 $S_1 = (12)$ $S_2 = (23)$

•
$$w = s_1 s_2 s_1 = 321; T^1(w) = \{(12), (23)\}$$

Here:
$$(12) \notin T(23); (23) \notin T(12)$$

and $T \setminus T(\omega) = \emptyset$

Let $w \in W$, the short inversion poset $(T^1(w), \leq_w)$ is the transitive and reflexive closure of the relation $\dot{\prec}_w$: we write $s \dot{\prec}_w t$ if:

• $s \in T(t)$ or there is $r \in T \setminus T(w)$ with $\langle s, t \rangle \subseteq \langle s, r \rangle$ and $r \in T(t)$.

This condition is empty for Sm and Sm

 $S_1 = (12)$ $S_2 = (23)$

Examples: $W = S_3$; • $w = s_1 s_2 = 231$; $T^1(w) = T(w) = \{(12), (13)\}$ Here: $s_1 = (12) \in T(b_1 b_2 b_1) = T(321)$. $s_1 = (12) \in S_1 = (12)$

• $w = s_1 s_2 s_1 = 321; T^1(w) = \{(12), (23)\}$

Here:
$$(12) \notin T(23); (23) \notin T(12)$$

and $T \setminus T(w) = \emptyset$

Let $w \in W$, the short inversion poset $(T^1(w), \leq_w)$ is the transitive and reflexive closure of the relation $\dot{\prec}_w$: we write $s \dot{\prec}_w t$ if:

• $s \in T(t)$ or there is $r \in T \setminus T(w)$ with $\langle s, t \rangle \subseteq \langle s, r \rangle$ and $r \in T(t)$.

Let $w \in W$, the short inversion poset $(T^1(w), \leq_w)$ is the transitive and reflexive closure of the relation $\dot{\prec}_w$: we write $s \dot{\prec}_w t$ if:

• $s \in T(t)$ or there is $r \in T \setminus T(w)$ with $\langle s, t \rangle \subseteq \langle s, r \rangle$ and $r \in T(t)$.

This condition is empty Sa S_m and S_m Examples: $W = S_4$;

• $w = s_1 s_2 s_3 s_2 s_1 = 4231; T^1(w) = \{(12), (13), (34), (24)\}$

Let $w \in W$, the short inversion poset $(T^1(w), \leq_w)$ is the transitive and reflexive closure of the relation $\dot{\prec}_w$: we write $s \dot{\prec}_w t$ if:

• $s \in T(t)$ or there is $r \in T \setminus T(w)$ with $\langle s, t \rangle \subseteq \langle s, r \rangle$ and $r \in T(t)$.

This condition is empty for S_m and S_m Examples: $W = S_5$;

• $w = 24513; T^{1}(w) = T(w) = \{(15), (14), (12), (35), (34)\}$

The short inversion poset Minimal and maximal elements

Theorem (Dyer, CH, Fishel, Mark '23) Let $w \in W$, for any $r \in T^1(w)$, there is $s \in D_L(w)$ and $t \in T_R(w)$ such that $s \leq_w r \leq_w t$.

Where: $D_I(w) = T(w) \cap S$ and $T_R(w) = \{wsw^{-1} \mid s \in D_R(w)\}$ Examples: $W = S_3$; • $w = s_1 s_2 = 231; T^1(w) = T(w) = \{(12), (13)\}$ $D_{L}(\omega) = \{(12)\} \text{ and } T_{R}(\omega) = \{(13)\}$ (12) = (12) • $w = s_1 s_2 s_1 = 321; T^1(w) = \{(12), (23)\}$ $\begin{array}{c} \bullet \\ S_{1} = (12) \\ S_{2} = (23) \\ \end{array}$ $D_{L}(\omega) = T'(\omega) = T_{R}(\omega)$

Minimal and maximal elements

Theorem (Dyer, CH, Fishel, Mark '23) Let $w \in W$, for any $r \in T^1(w)$, there is $s \in D_L(w)$ and $t \in T_R(w)$ such that $s \leq_w r \leq_w t$.

Minimal and maximal elements

Theorem (Dyer, CH, Fishel, Mark '23) Let $w \in W$, for any $r \in T^1(w)$, there is $s \in D_L(w)$ and $t \in T_R(w)$ such that $s \leq_w r \leq_w t$.

The short inversion poset Minimal and maximal elements

Theorem (Dyer, CH, Fishel, Mark '23) Let $w \in W$, for any $r \in T^1(w)$, there is $s \in D_L(w)$ and $t \in T_R(w)$ such that $s \leq_w r \leq_w t$.

Theorem (Dyer, CH, Fishel, Mark '23) For (W, S) and $m \in \mathbb{N}$, one has $\mathcal{G}_m = L_m$.

Theorem (Dyer, CH, Fishel, Mark '23) For (W, S) and $m \in \mathbb{N}$, one has $\mathscr{G}_m = L_m$.

Hyperbolic Coxeter system

Theorem (Dyer, CH, Fishel, Mark '23) For (W,S), Shi $_0$ has the convex property.

Theorem (Dyer, CH, Fishel, Mark '23) For (W, S), Shi $_0$ has the convex property.

Counting in indefinite Coxeter system: the convex is not anymore a dilatation of the fundamental chamber!

Enumeration is unknown!

Theorem (Dyer, CH, Fishel, Mark '23) For (W,S), Shi $_0$ has the convex property.

Counting in indefinite Coxeter system: the convex is not anymore a dilatation of the fundamental chamber!

Enumeration is unknown!

Shi_m $(m \ge 1)$ does not have in general the convexity property

Final remarks

• Study Shi arrangement in general (enumeration, classification of Shi_m with the convexity property)

Coxeter graph of (W, S)	$ \Sigma_0 $	$ L_0 $	$ \Sigma_1 $	$ L_1 $	$ \Sigma_2 $	$ L_2 $
$\infty \int_{\infty}^{\infty} \infty$	3	4	9	10	21	22
∞	3	5	7	10	14	19
	7	18	13	40	20	70
7	13	40	18	72	24	110
	19	134	43	387	94	997

• Study the short inversion poset in relation with the weak order: how to find join, meet etc.

Final remarks

• Study Shi arrangement in general (enumeration, classification of Shi_m with the convexity property)

• Study the short inversion poset in relation with the weak order: how to find join, meet etc.