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Boltzmann planar maps

> Letm e ./\/l(./) be a bipartite rooted planar map with root face
degree 2/ and a marked vertex.

> Given a sequence § = (g1, G2, . ..) in [0, 00), define weight of m to
be the product wg(m) = [ ]/ Gaeg(r)/2 OVer non-root faces f.

> § admissible iff W(@) := Y _ 0

rise to probability measure on Mil): the §-Boltzmann planar map.

wg(m) < oo. Then wy gives
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> A rigid loop-decorated map (m, L) € LM is a rooted planar map
with root face degree 2/ and a set L of loops on the dual map.
» For g,n, g, >0and q=(q1,qo,...), define weight
Wq,g,n,g,ﬁ(m; L) — n#loopsg#loopffaces ﬁ#loops'g#loopffaces H qdeg(f)/2~

separating non-separating f
> (q,g,n, g, 1) admissible iff F.(l) = > Wognga(m, L) < oco.
(m,L)eLm?

Gives rise to the (q, g, n, &, i1)-Boltzmann loop-decorated map.
> In the presence of a marked vertex it is convenient to distinguish
separating from non-separating loops. [Borot, Bouttier,'15]
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Peeling process on loop-decorated maps
» Given a rooted loop-decorated map (m, L) with a marked vertex, we
define an exploration process: the (lazy) peeling process.
> Keep track of frontier length 2/;: perimeter process (I;);.

> If (m,L) € EM(,’) is a (q,g,n, g, n)-Boltzmann loop-decorated map
with a marked vertex, then (/;)i>o is a Markov process independent
of the peeling algorithm.
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» Given a rooted loop-decorated map (m, L) with a marked vertex, we
define an exploration process: the (lazy) peeling process.

> Keep track of frontier length 2/;: perimeter process (I;);.

> If (m,L) € EM(,’) is a (q,g,n, g, n)-Boltzmann loop-decorated map
with a marked vertex, then (/;)i>o is a Markov process independent
of the peeling algorithm.

> The law of (/;); is not affected by taking the gasket, which is a
(8, g, n,0,0)-Boltzmann loop-decorated map.
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> In the absence of loops, (/;); is simply a biased random walk:
Proposition (TB, '15)

> The perimeter process (I;)i>o of a §-Boltzmann planar map is given by
conditioning a random walk (W;)i>q to hit 0 before hitting Z .
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> In the absence of loops, (/;); is simply a biased random walk:

Proposition (TB, '15)

> The perimeter process (I;)i>o of a §-Boltzmann planar map is given by
conditioning a random walk (W;)i>o to not overshoot 0.

k—1
> Letv:7Z — R be the law of Wi,1 — W, then Gy = (@) v(k —1)

for k > 1 defines a bijection Ho (/)
—
{u : P, ((W;); does not overshoot 0) = 4~(?) } < {admissible §}.

> (I); is h-transform of (W;); w.r.t. Hy: P(lis1 = I + k|I;) = ”‘;jo’f(,f)k)y(k).
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Proposition (TB '15)

If (W;); with law v : Z — R started at | > 0 does not overshoot 0 with
probability Ho(!) := 4"(2,’), then
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> Let (S¢):>0 be the symmetric simple random walk started at 0 and
(Y;)i=o the sequence of (half) times at which (S;)¢>0 returns to 0.
Proposition (TB '15)
If (W;); with law v : Z — R started at | > 0 does not overshoot 0 with
probability Ho(!) := 4"(2/), then
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> Let (S¢):>0 be the symmetric simple random walk started at 0 and
(Y;)i=o the sequence of (half) times at which (S;)¢>0 returns to 0.

Proposition (TB '15)
If (W;); with law v : Z — R started at | > 0 does not overshoot 0 with
probability Hy(l) := 4”(2/), then
(i) the descending ladder process of (W;); is equal in law to (Y;);;
(ii) the probability that (W;); hits Z<o at —k is 7;
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A special family of random walks &

> Let (S¢):>0 be the symmetric simple random walk started at 0 and
(Y;)i=o the sequence of (half) times at which (S;)¢>0 returns to 0.

Proposition (TB '15)
If (W;); with law v : Z — R started at | > 0 does not overshoot 0 with
probability Hy(l) := 4”(2/), then

(i) the descending ladder process of (W;); is equal in law to (Y;);;

(ii) the probability that (W;); hits Z<o at —k is Hi(l) := iz Ho()Ho(k);
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> Let (S¢):>0 be the symmetric simple random walk started at 0 and
(Y;)i=o the sequence of (half) times at which (S;)¢>0 returns to 0.

Proposition (TB '15)
If (W;); with law v : Z — R started at | > 0 does not overshoot 0 with
probability Hy(l) := 4”(2/), then

(i) the descending ladder process of (W;); is equal in law to (Y;);;
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A special family of random walks .

> Let (S¢):>0 be the symmetric simple random walk started at 0 and
(Y;)i=o the sequence of (half) times at which (S;)¢>0 returns to 0.

Proposition (TB '15)
If (W;); with law v : Z — R started at | > 0 does not overshoot 0 with
probability Ho(l) := 47! (%), then

(i) the descending ladder process of (W;); is equal in law to (Y;);;

(i) the probability that (W;); hits Z<o at —k is Hi(l) == ,J%kHo(/)Ho(k);
(iii) for k > 1:  v(—k) = Hk—1(1) = 3720 Hik—1 (! + 1)v(/)
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A special family of random walks A

> Let (S¢):>0 be the symmetric simple random walk started at 0 and
(Y;)i=o the sequence of (half) times at which (S;)¢>0 returns to 0.
Proposition (TB '15)
If (W;); with law v : Z — R started at | > 0 does not overshoot 0 with
probability Hy(l) := 4~ ( ) then
(i) the descending ladder process of (W;); is equal in law to (Y;);;
(i) the probability that (W;); hits Z<o at —k is Hi(l) == I+kH (NHo(k);
(iii) for k >1:  v(—k) = Hk—1(1) = Y720 Hk—1 (! + 1) (1)
(iv) for > 2: Yore v(k)v(—=k = 1) =2v(-1)
» Relation with g-Boltzmann planar maps:
8« = V(;1)7 ak ké g: ly(k - 1)7 1% W(I) l;O lg_l_ly(_l - 1)>

26x%
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A special family of random walks FY

> Let (S¢):>0 be the symmetric simple random walk started at 0 and
(Y;)i=o the sequence of (half) times at which (S;)¢>0 returns to 0.

Proposition (TB '15)
If (W;); with law v : Z — R started at | > 0 does not overshoot 0 with
probability Hy(l) := 4”(2/), then

(i) the descending ladder process of (W;); is equal in law to (Y;);;

(ii) the probability that (W;); hits Z<o at —k is Hi(I) := 7 Ho(!)Ho(k);
(iii) for k > 1:  v(—k) = Hk—1(1) = Y720 Hik—1 (! + L)v(1)
(iv) for | > 2: E:ozfoo v(k)v(—k — 1) =2v(-1)

» Relation with @-Boltzmann planar maps:
v(— N k>0 j_ >0 1 _j_
8x = (21)a dk 2 gf ly(k - 1)7 W(I) é %g* ! 1V(_/ - 1)7

> (iv) implies that W) = W()(§) since it satisfies Tutte's equation

%) /-1
w — Z GeWUHk=1) o Z wOwi='-1) (1>1)
k=1 I'=0



Building a marked Boltzmann planar map
» A marked q-Boltzmann planar map m € ./\/l(.l’l,) is a map with root

face and marked face of degree 2/ > 0 resp. 2/’ > 0, determined by
weight wq(m) = [ Gueg(r)/2 OVver non-root, non-marked faces f.
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1 2 3 4 5 6 7 8 9 10\1
=2+

» Start with 2Wp-gon. If W;11 > W;: insert new face
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» A marked §-Boltzmann planar map m € M(.I’I,) is a map with root
face and marked face of degree 2/ > 0 resp. 2/’ > 0, determined by
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This map is a marked, rooted §-Boltzmann planar map m € M(.I’I/) with
independent random /’ such that P(/ = k) = H(/).




Building a marked Boltzmann planar map %

» A marked §-Boltzmann planar map m € M(.I’I,) is a map with root
face and marked face of degree 2/ > 0 resp. 2/’ > 0, determined by
weight wq(m) = [ Gueg(r)/2 Over non-root, non-marked faces f.
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2 u(=3) = 2w
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This map is a marked, rooted §-Boltzmann planar map m € M(.I’I/) with
independent random /’ such that P(/ = k) = H(/).




Building a marked Boltzmann planar map %

» A marked §-Boltzmann planar map m € M(.I’I,) is a map with root
face and marked face of degree 2/ > 0 resp. 2/’ > 0, determined by
weight wq(m) = [ Gueg(r)/2 Over non-root, non-marked faces f.
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This map is a marked, rooted §-Boltzmann planar map m € M(.I’I/) with
independent random /’ such that P(/ = k) = H(/).




Building a marked Boltzmann planar map %

» A marked §-Boltzmann planar map m € M(.I’I,) is a map with root
face and marked face of degree 2/ > 0 resp. 2/’ > 0, determined by
weight wq(m) = [ Gueg(r)/2 Over non-root, non-marked faces f.

R R ni &
-2t gi T

This map is a marked, rooted §-Boltzmann planar map m € M(.I’I/) with
independent random /’ such that P(/ = k) = H(/).




Building a marked Boltzmann planar map %

» A marked §-Boltzmann planar map m € M(.I’I,) is a map with root
face and marked face of degree 2/ > 0 resp. 2/’ > 0, determined by
weight wq(m) = [ Gueg(r)/2 Over non-root, non-marked faces f.
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This map is a marked, rooted §-Boltzmann planar map m € M(.I’I/) with
independent random /” such that P(/" = k) = Hi(/). Conditioning on
I" = 0 gives a marked vertex!




Partially reflected random walks

» Reflected random walk (W*);:
reflection until it hits 0.
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» Reflected random walk (W);: continue random walk (W;); by
reflection until it hits 0.
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Partially reflected random walks

> Reflected random walk (W;*);: continue random walk (W;); by
reflection until it hits 0.
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» Reflected random walk (W);: continue random walk (W;); by
reflection until it hits 0.
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» Reflected random walk (W);: continue random walk (W;); by
reflection until it hits 0.
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Partially reflected random walks

» Reflected random walk (

W.* .
reflection until it hits 0.

*)i: continue random walk (W;); by
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Partially reflected random walks

» Reflected random walk (W);: continue random walk (W;); by
reflection until it hits 0.
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Result is a (§,g = g«, n = 2,0,0)-Boltzmann loop-decorated map.
Critical case: increasing g or n leads to non-admissible (g, g, n,0, 0)




Partially reflected random walks

> Reflected random walk (W);: continue random walk (W;); by
reflection until it hits 0.

> J-Partially reflected random walk (W;");: reflect with probability 7
each time (W;*); hits Z«o and kill it otherwise.
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Partially reflected random walks

> Reflected random walk (W);: continue random walk (W;); by
reflection until it hits 0.

> J-Partially reflected random walk (W;");: reflect with probability 7
each time (W;*); hits Z«o and kill it otherwise.

ol Y Y VN N A
4L 12 3 4 5 6 {,,,,s 9 10\1 12 13 14
2t 2 ] bm——————

n
1_2

(m,L) e LM with a marked face (/" > 0) or vertex (I’ =0), and /" is

Result is a (§,g = g«, n, 0,0)-Boltzmann loop-decorated map
a random variable.




Partially reflected random walks (continued)

» What is the probability h}(/) that (W;*); started at / is killed at 0?
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Partially reflected random walks (continued)

4

» What is the probability h}(/) that (W;*); started at / is killed at 0? y

hi() = o) + 3 Hy(1) 5 hi ()
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Partially reflected random walks (continued)

» What is the probability h}(/) that (W;*); started at / is killed at 0?
n
() = Ho() + 3 Hol1) 2hi(p)
p=1

» Unique solution that is analytic in n around 0 is

i B (1) 52 = n+ 2 cosh(2(b — 1) arctanh x)
n - n+2 )

where b := L arccos(n/2) € [0,1/2]. See also [Borot, Bouttier, '15]
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Partially reflected random walks (continued)
» What is the probability h}(/) that (W;*); started at / is killed at 07

B(1) = Ho() + Y Ho( 3 hi(p)

O

» Unique solution that is analytic in n around 0 is

ih‘L(/) oy n+2cosh(2(b— 1)arctanh x)
x* = 7
=0 " n+2

where b := L arccos(n/2) € [0,1/2]. See also [Borot, Bouttier, '15]

Proposition

The perimeter process (I;); of a pointed (4, g«, n, 0,0)-Boltzmann
loop-decorated map is obtained by conditioning (W;*); to be killed at
zero, by an h-transform w.r.t. hﬁ, Ie.

(1) n
i — ] — _"n - nop ,
Plls = 1l = 1) = 575 (v =D+ v = D1rsoy)




Partially reflected random walks (continued) L
» What is the probability h%(/) that (W;*); started at / is killed at 07 ©

B(1) = Ho() + Y Ho( 3 hi(p)

» Unique solution that is analytic in n around 0 is

ih%/) oy n+2cosh(2(b— 1)arctanh x)
x* = 7
=0 " n+2

where b := L arccos(n/2) € [0,1/2]. See also [Borot, Bouttier, '15]

Proposition

The perimeter process (I;); of a pointed (q, g, n, g, i1)-Boltzmann
loop-decorated map is obtained by conditioning (W;*); to be killed at
zero, by an h-transform w.r.t. hﬁ, Ie.

(1) n
i — ] — —_n - nop ,
Plls = 1l = 1) = 575 (v =D+ v = D1rsoy)

4

» The same is true for (q, g«, n, &, 1)-Boltzmann loop-decorated maps.



Scaling limit of the perimeter process %
» First determine scaling limit of random walk (W;); with law v.
Recall v(—k) = Hy_1(1) = 322 Hi_a (I + 1)u(1).
Proposition
For our class of v'’s, if v is regularly varying, there exists a € [1/2,3/2]

such that v(—k) ~ k=~ and V’Z(_kz) — | cos(ma)|

~ [kt ~ | cos(ra)| K~ 1

7-6-5-4-3-2-11 1234567



Scaling limit of the perimeter process A
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Recall v(—k) = Hy_1(1) = 322 Hi_a (I + 1)u(1).
Proposition
For our class of v'’s, if v is regularly varying, there exists a € [1/2,3/2]

such that v(—k) ~ k=1 and &L — | cos(ra)| = 1.

» Recall v <+ §, and § < (q, n, g). If q falls off fast, i € (0,2) and
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Scaling limit of the perimeter process A
—

» First determine scaling limit of random walk (W;); with law v.
Recall v(—k) = Hik—1(1) = 3720 Hi—1 (I + 1)v(1).

Proposition
For our class of v'’s, if v is regularly varying, there exists a € [1/2,3/2]

such that v(—k) ~ k=~ and V’z(kz) — | cos(ra)| = g

» Recall v <+ §, and § < (q, n, g). If q falls off fast, i € (0,2) and
g = g. critical, then v(k) ~ Zv(—k).

» Depending on q: two p055|b|e values o =1+ 1 — arccos(f/2)
correspond to dense o € (1/2,1] and dilute o € [1,3/2) branch.

1

~ [kt ~ | cos(ra)| K~ 1

7-6-5-4-3-2-11 1234567



> If a € (1/2,3/2), the random walk (W;); has the scaling limit

(d)
(Wierat) /A) 10 o (Se)ezo,
where (S;)¢>0 is the a-stable process with positivity parameter

p=P(5 >0)=1-1/2a).
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where (S;)¢>0 is the a-stable process with positivity parameter
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> If a € (1/2,3/2), the random walk (W;); has the scaling limit
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where (S;)¢>0 is the a-stable process with positivity parameter
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> If a € (1/2,3/2), the random walk (W;); has the scaling limit
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where (S;)¢>0 is the a-stable process with positivity parameter
p=P(5 >0)=1-1/2a).
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» If « € (1/2,3/2), the random walk (W;); has the scaling limit

d
(WLO\”L‘J /)‘) L) (St)tzo,

20 3\ Lo

where (5¢)¢>0 is the a-stable process with positivity parameter
p:=P(5 >0)=1-1/2x).
> If (/}); is (W;); started at Iy conditioned to not overshoot 0, then
(d)
(/Lc/outj//o) - (5#)20,

t>0 lo— 00

which is the a-stable process conditioned to die continuously at O.

[Caravenna, Chaumont]
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where (5¢)¢>0 is the a-stable process with positivity parameter
p:=P(5 >0)=1-1/2x).
> If (/}); is (W;); started at Iy conditioned to not overshoot 0, then
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» If « € (1/2,3/2), the random walk (W;); has the scaling limit

d
(WLO\”L‘J /)‘) L) (St)tzo,

t20 N Lo
where (5¢)¢>0 is the a-stable process with positivity parameter
p:=P(5 >0)=1-1/2x).
> If (/}); is (W;); started at Iy conditioned to not overshoot 0, then
(d)
(/Lc/outj//o) — (5#)20,

t>0 lo— 00

which is the a-stable process conditioned to die continuously at O.
[Caravenna, Chaumont]

» Both are self-similar with index «.

St St




Partially reflected stable process
lp— 00

» Need to check conditions for: Markov process on Z~q ——
self-similar Markov process on (0, 00). [Bertoin, Kortchemski, '14].

Theorem (TB, '15)

Let n, 7 € (0,2) and i = —2cos(mar), a € (1/2,3/2). The perimeter (I;);
of a (q, g«, n.g«, 1)-Boltzmann loop decorated map with root face degree
2ly has the scaling limit

(’Lct/ﬁ > @, (X0
>0 B

/() lo— o0

where (XY)¢ is the (self-similar) 2-partially reflected a-stable process
conditioned to die continuously at 0.

[ Xt
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Application: integrals of (X;);.

> (X}): is self-similar with index a and dies continuously (at t = Tp):

To
/ (X})dt < oo as.  fory > —a
0

» Can determine explicitly Mellin transform in terms of Barnes double
Gamma functions G(, ) using [Kuznetsov, Pardo, '10]

s—1
" 6(-)G( )G (= )G(-.)
M(s;a,n, :ZE/ XHdt| =( )
(somn) =F) [ (%) O G660, )6 )
> Ugly, except when v = —1, n=fi = —2cos(ra), a =1+ L,
m=273, ...
RY = B P(R¢<r)—i/wdzzie—23 ( m )
o XF Ma) Jo "\rzw
1+ ycot (5
Bm(}/) (2 )

T, (L= yiemm)
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Summary

Ta

» The O(n) model on random maps equipped with different distances
potentially gives rise to several random continuous metric spaces
outside of the Brownian map universality class.

» The peeling process provides a convenient way to ...

> ...classify and enumerate Boltzmann (loop-decorated) maps;
> . ..study distances which are not easily accessible using other
methods, like tree bijections.

» Having a self-similar scaling limit opens up new machinery to
compute explicit statistics, like the distances with shortcuts.
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Outlook

» Study the continuum geometry of “pinched” loop-decorated map
and the corresponding gasket, which is roughly the “dual” of the
stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

>



Summary &

>

» The O(n) model on random maps equipped with different distances
potentially gives rise to several random continuous metric spaces
outside of the Brownian map universality class.

» The peeling process provides a convenient way to ...

> ...classify and enumerate Boltzmann (loop-decorated) maps;
> . ..study distances which are not easily accessible using other
methods, like tree bijections.

» Having a self-similar scaling limit opens up new machinery to
compute explicit statistics, like the distances with shortcuts.

Outlook

» Study the continuum geometry of “pinched” loop-decorated map
and the corresponding gasket, which is roughly the “dual” of the
stable maps. Gromov-Hausdorff? Hausdorff dimension? Topology?

R

Thanks for you attention!




